33 research outputs found

    Insights into the effectuation entrepreneurial approach of small artisan entrepreneurs in Thailand

    Get PDF
    The aim of this thesis is to gain insights into the role of effectuation in influencing small artisans’ entrepreneurial decisions, actions and performance in Thailand. Specifically, this study examines the impact and role of effectuation on small artisan entrepreneurs’ performance such as improving business performance, strengthening long-term partnership commitment and managing the Covid-19 crisis

    Shearlets and Optimally Sparse Approximations

    Full text link
    Multivariate functions are typically governed by anisotropic features such as edges in images or shock fronts in solutions of transport-dominated equations. One major goal both for the purpose of compression as well as for an efficient analysis is the provision of optimally sparse approximations of such functions. Recently, cartoon-like images were introduced in 2D and 3D as a suitable model class, and approximation properties were measured by considering the decay rate of the L2L^2 error of the best NN-term approximation. Shearlet systems are to date the only representation system, which provide optimally sparse approximations of this model class in 2D as well as 3D. Even more, in contrast to all other directional representation systems, a theory for compactly supported shearlet frames was derived which moreover also satisfy this optimality benchmark. This chapter shall serve as an introduction to and a survey about sparse approximations of cartoon-like images by band-limited and also compactly supported shearlet frames as well as a reference for the state-of-the-art of this research field.Comment: in "Shearlets: Multiscale Analysis for Multivariate Data", Birkh\"auser-Springe

    Gravity Load Collapse Behavior of Nonengineered Reinforced Concrete Columns

    Get PDF
    This paper aims at investigating gravity load collapse behavior of extremely poor quality reinforced concrete columns under cyclic loading. Such columns were usually constructed by local people and may not be designed to meet any of the standards. It was found that their concrete strength may be as low as 5 MPa and the amount of longitudinal reinforcement may be lower than 1%. This type of column is deliberately defined as “nonengineered reinforced concrete column,” or NRCC. During earthquake, the gravity load collapse of the NRCC columns caused a large number of death tolls around the world. In this study, four columns as representative of existing NRCC were tested under cyclic loading. The compressive strength of concrete in order of 5 MPa was used to be representative of columns with poor quality concrete. Two axial load levels of 6 and 18 tons were used to study the influence of axial load level on maximum drift at gravity load collapse. To investigate the effect of bar types on drift capacity, 9 mm round bars were used in two specimens and 12 mm deformed bars were used for the rest of the specimens. The maximum drift before gravity load collapse was very dependent on the axial load level. The maximum drift of the specimens subjected to high axial load (18 tons) was extremely low at approximately 1.75% drifts. The use of deformed bars (associated with larger amount of longitudinal reinforcement) caused the damage to severely dissipate all over the height of the columns. Such damage caused columns to collapse at a lower drift compared to those using round bars. Finally, the plastic hinge model was used to predict the maximum drift of the low strength columns. It was found that the model overly underestimates the drift at gravity load collapse

    Efficient Resolution of Anisotropic Structures

    Get PDF
    We highlight some recent new delevelopments concerning the sparse representation of possibly high-dimensional functions exhibiting strong anisotropic features and low regularity in isotropic Sobolev or Besov scales. Specifically, we focus on the solution of transport equations which exhibit propagation of singularities where, additionally, high-dimensionality enters when the convection field, and hence the solutions, depend on parameters varying over some compact set. Important constituents of our approach are directionally adaptive discretization concepts motivated by compactly supported shearlet systems, and well-conditioned stable variational formulations that support trial spaces with anisotropic refinements with arbitrary directionalities. We prove that they provide tight error-residual relations which are used to contrive rigorously founded adaptive refinement schemes which converge in L2L_2. Moreover, in the context of parameter dependent problems we discuss two approaches serving different purposes and working under different regularity assumptions. For frequent query problems, making essential use of the novel well-conditioned variational formulations, a new Reduced Basis Method is outlined which exhibits a certain rate-optimal performance for indefinite, unsymmetric or singularly perturbed problems. For the radiative transfer problem with scattering a sparse tensor method is presented which mitigates or even overcomes the curse of dimensionality under suitable (so far still isotropic) regularity assumptions. Numerical examples for both methods illustrate the theoretical findings

    A Panorama on Multiscale Geometric Representations, Intertwining Spatial, Directional and Frequency Selectivity

    Full text link
    The richness of natural images makes the quest for optimal representations in image processing and computer vision challenging. The latter observation has not prevented the design of image representations, which trade off between efficiency and complexity, while achieving accurate rendering of smooth regions as well as reproducing faithful contours and textures. The most recent ones, proposed in the past decade, share an hybrid heritage highlighting the multiscale and oriented nature of edges and patterns in images. This paper presents a panorama of the aforementioned literature on decompositions in multiscale, multi-orientation bases or dictionaries. They typically exhibit redundancy to improve sparsity in the transformed domain and sometimes its invariance with respect to simple geometric deformations (translation, rotation). Oriented multiscale dictionaries extend traditional wavelet processing and may offer rotation invariance. Highly redundant dictionaries require specific algorithms to simplify the search for an efficient (sparse) representation. We also discuss the extension of multiscale geometric decompositions to non-Euclidean domains such as the sphere or arbitrary meshed surfaces. The etymology of panorama suggests an overview, based on a choice of partially overlapping "pictures". We hope that this paper will contribute to the appreciation and apprehension of a stream of current research directions in image understanding.Comment: 65 pages, 33 figures, 303 reference

    Invariant subspace method for fractional Black-Scholes equations

    No full text

    Invariant subspace method for fractional Black-Scholes equations

    No full text
    corecore