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COMPUTING THE NEWTON POTENTIAL IN THE BOUNDARY INTEGRAL
EQUATION FOR THE DIRICHLET PROBLEM OF THE POISSON EQUATION

WENCHAO GUAN, YING JIANG AND YUESHENG XU

Evaluating the Newton potential is crucial for efficiently solving the boundary integral equation of the
Dirichlet boundary value problem of the Poisson equation. In the context of the Fourier–Garlerkin
method for solving the boundary integral equation, we propose a fast algorithm for evaluating Fourier
coefficients of the Newton potential by using a sparse grid approximation. When the forcing function
of the Poisson equation expressed in the polar coordinates has mth-order bounded mixed derivatives,
the proposed algorithm achieves an accuracy of order O(n−m log3 n), with requiring O(n log2 n) number
of arithmetics for the computation, where n is the number of quadrature points used in one coordinate
direction. With the help of this algorithm, the boundary integral equation derived from the Poisson
equation can be efficiently solved by a fast fully discrete Fourier–Garlerkin method.

1. Introduction

Boundary value problems of the Laplace equation can be reformulated as boundary integral equations
(BIEs) which are defined only on the boundaries of their domains. A main advantage of the BIE method
lies in its reduction of the dimension of the spacial domains by one [27]. The reduction of the dimesion
translates to efficient numerical solutions of the boundary value problems. The resulting BIE can be
solved approximately by the Fourier–Garlerkin methods and other numerical methods [2; 12; 25; 26;
29; 32; 33]. The fast Fourier–Galerkin method was developed in [8; 11; 21; 18; 30], via approximating
the dense coefficient matrix obtained from discretization of the BIEs using the Galerkin principle and
the Fourier basis by a sparse matrix having only O(n log n) number of nonzero entries. This leads to a
fast method with the optimal convergence of order O(n−m), where n is the order of Fourier bases in the
method and m is the degree of regularity of the exact solution.

The BIE method seems to have less advantage when it is applied to solving a boundary value problem
of the Poisson equation, which has a nonzero forcing term, due to the present of the Newton potential,
an integral defined on its domain, in its BIE reformulation [27]. Even though the integral operator of the
resulting BIE is defined on the boundary of the domain, the Newton potential is defined on the domain,
instead of the boundary. Hence, efficient evaluation of the Newton potential becomes the bottleneck of
the BIE method for solving boundary value problems of the Poisson equation. When the domain has a
simple geometry and its boundary is smooth, the fast multipole (FMP) method was applied to the direct
evaluation of the Newton potential [14; 28]. Moreover, for the FMP method to have a high accuracy,
excessive adaptive refinement near the boundary is required, which demands additional computational
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complexity. Hence, it is desirable to develop a fast method for computing the Newton potential on a
general domain required only quasilinear (linear up to a logarithmic factor) computational costs, having
the optimal order of accuracy.

The purpose of this paper is to develop a fast method for evaluation of the Newton potential on a
general smooth boundary by using the sparse grid technique. To this end, we need to overcome certain
difficulties. The Newton potential is a singular integral defined on the domain of the Poisson equation. In
the context of solving the Poisson equation by the Fourier–Galerkin method, we are required to compute
the Fourier coefficients of the Newton potential. They are singular integrals of three variables. The use of
the sparse grid technique prefers smooth integrands. The singularity of the integrands of these integrals
prevents the direct use of the sparse grid technique. To address this issue, we divide the integration domain
into graded (noncuboid) subdomains on each of which the integrand is smooth. Aiming at designing a
sparse grid approximation of the integrand on each of the subdomains, we extend each of the noncuboid
subdomains to a cuboid region where a sparse grid approximation of the integrand is designed. In order
to obtain the integral value on each of the noncuboid subdomains, we turn to compute the integral of
the sparse grid approximation defined on the extension with restriction to the corresponding noncuboid
subdomain. Thus the Fourier coefficients of the Newton potential on the boundary can be estimated
by summing up these integral values. We prove that when the forcing function of the Poisson equation
expressed in the polar coordinates has mth-order bounded mixed derivatives, the proposed method for the
evaluation of the Fourier Coefficients of the Newton potential achieves an accuracy order O(n−m log3 n)
with the computational complexity of order O(n log2 n), where n is the number of the points used in
one coordinate direction. In passing, we remark that graded meshes have been widely used to deal with
approximation of functions with singularity. In particular, they were applied to numerical quadratures
[22; 31], solutions of partial differential equations [1; 3; 4] and integral equations with weakly singular
kernels [5].

This paper is organized in six sections. In Section 2, we review the BIE for the Dirichlet problem of
the Poisson equation, and describe the fast Fourier–Galerkin method for solving the BIE. Section 3 is
devoted to the development of the fast algorithm for computing the Fourier coefficients of the Newton
potential. For the purpose of analyzing the accuracy of the proposed method we estimate in Section 4
the regularity of the integrands of the integrals for the Fourier coefficients of the Newton potential. The
optimal accuracy order of the proposed fast algorithm is established in Section 5. In Section 6, we present
numerical examples to confirm the theoretical estimates.

2. BIE for the Poisson equation

We review the BIE of the Dirichlet problem for the Poisson equation, describe the Fourier–Galerkin
method for solving the BIE applied to the problem and identify computing the Fourier coefficients of the
Newton potential as a bottleneck of its fast solution.

We begin with a description of the Dirichlet problem for the Poisson equation. Let �⊆ R2 denote a
bounded open domain with a smooth boundary, ∂� denote the boundary of � and S� denote the closure
of �. We denote by C(E) the space of continuous functions defined on set E, and C2(E) the space
of functions defined on set E with the continuous second-order derivatives. Suppose that f ∈ C(S�)
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and u D(x) ∈ C(∂�) are given. We consider the Dirichlet problem for the Poisson equation

(2-1)
{
−1u(x)= f (x), x ∈�,
u(x)= u D(x), x ∈ ∂�,

where 1 denotes the Laplace operator mapping from C2(�) to C(�).
We describe the BIE of the boundary value problem (2-1). By the second Green identity, the solution u

of problem (2-1) can be represented by the sum of the Newton potential, the double layer potential and
the single layer potential (see, [2; 23; 27])

(2-2) u(x)= (N f )(x)+
∫
∂�

(
8(x − y)

∂u(y)
∂n
−
∂8(x − y)
∂ny

u(y)
)

dsy, x ∈�.

The Newton potential is an operator N from C(S�) to C2(S�) defined by

(N f )(x) :=
∫
�

f (y)8(x − y) dy, x ∈�,

where
8(x) := − 1

2π
log|x |, x ∈ R2

\ {0}.

We comment that 8 is the fundamental solution of the two-dimensional Laplace equation (see [15]).
Formula (2-2) implies that the solution u of problem (2-1) can be calculated by the boundary data u|∂�,
(∂u/∂n)|∂� and the forcing function f . Since (∂u/∂n)|∂� is unknown, formula (2-2) is not adequate to
determine u directly. We then consider the case of x ∈ ∂� and obtain the BIE for the problem (2-1):

(2-3)
∫
∂�

8(x − y)
∂u(y)
∂n

dsy = h(x), x ∈ ∂�,

where

h(x) := −(N f )(x)+
∫
∂�

∂8(x − y)
∂n y

u D(y) dsy +
1
2

u D(x), x ∈ ∂�.

Upon solving ∂u(x)/∂n, x ∈ ∂�, from integral equation (2-3) and substituting it into the of (2-2), we
obtain the solution u of problem (2-1).

We need a parametrization of the boundary ∂�. Suppose that ∂� is described by the parametrization

(2-4) r(t) := (r1(t), r2(t)), t ∈ I2π := [0, 2π),

where r1(t) := r(t) cos(t), r2(t) := r(t) sin(t), r(t) ∈ C∞2π (E), the space of the infinitely differentiable
2π -periodic functions defined on set E. For function φ defined on ∂�, we define φ ◦ r(t) := φ(r(t)) and
write r ′(t) := ( dr1

dt (t),
dr2
dt (t)), t ∈ I2π . With the parametrization (2-4) of the boundary ∂�, the BIE (2-3)

is rewritten as

(2-5) −
1

2π

∫
I2π

∂u
∂n
◦ r(s) |r ′(s)| log|r(t)− r(s)| ds = h ◦ r(t), t ∈ I2π .

We next rewrite equation (2-5) in an operator form. For each l ≥ 0, we denote by H l(I2π ) the standard
Sobolev space of functions φ ∈ L2(I2π ) satisfying

∑
k∈Z(1+k2)l |φ̂k |

2<+∞, where φ̂k := 〈φ, ek〉 denote
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the coefficient of φ in the kth Fourier basis function ek(x) := eikx/(2π)1/2, for x ∈ I2π . The inner product
of space H l(I2π ) is defined by

〈φ,ψ〉l :=
∑
k∈Z

(1+ k2)l φ̂k
¯̂
ψk for φ,ψ ∈ H l(I2π )

and the norm is defined as ‖φ‖l,2 := 〈φ, φ〉
1/2
l,2 . Let X := H 0(I2π ) and Y := H 1(I2π ). Let A : X → Y

denote the bounded linear operator defined by

(Aw)(t) :=
∫

I2π

a(t, s) w(s) ds, t ∈ I2π ,

where

a(t, s) := − 1
2π

log
∣∣∣2e−1/2 sin t−s

2

∣∣∣, t, s ∈ I2π .

The operator A has the Fourier basis functions ek as its eigenfunctions and it has a bounded inverse
A−1
: Y → X . Let B : X→ Y be a compact operator defined by

(Bw)(t)=
∫

I2π

b(t, s) w(s) ds, t ∈ I2π ,

where

b(t, s) :=

{
−

1
2π (

1
2 + log |r(t)−r(s)|

|2 sin t−s
2 |
), t − s 6= 2kπ,

−
1

2π (
1
2 + log|r ′(t)|), t − s = 2kπ,

where k ∈ Z, see [2]. Clearly, b is a smooth kernel. In the notation defined above, the integral equa-
tion (2-5) has the operator form

(2-6) (A+B)w = g,

where g ∈ Y is given, w ∈ X is unknown.
We now turn to describing the Fourier–Galerkin method for solving the BIE (2-6). Specifically, we

employ the Galerkin method by using the Fourier (trigonometric polynomial) basis to discretize the
BIEs. Let N := {1, 2, . . .}, Z+n := {1, 2, . . . , n − 1} and Zn := {0} ∪ Z+n for n ∈ N. Let Xn denote a
finite-dimensional subspace span{ek : |k| ∈ Zn} and Pn denote the orthogonal projector from L2(I2π )

to Xn . Then

Pnw =
∑
|k|∈Zn

ŵ(k) ek, w ∈ L2(I2π ).

The classical Fourier–Galerkin method for solving (2-6) is to seek wn ∈ Xn such that

Pn(A+B) wn = Pn g.

Let Bn := PnB|Xn and gn := Png. Since eigenfunction of A, the above equation can be rewritten as

(2-7) (A+Bn) wn = gn.
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Next we show the matrix form of the above equation. To this end, for all k, l ∈ Z, we define

bk,l :=

∫
I 2
2π

b(t, s) ek(t) el(s) dt ds,

where I 2
2π := I2π × I2π . For all k, l ∈ Z with k, l > 0, we let

Dk,l :=

[
b−k,−l b−k,l

bk,−l bk,l

]
.

For all n ∈ N, we use [v−k, vk : k ∈ Zn] to denote vector [v0, v−1, v1, . . . , v1−n, vn−1]. For all n ∈ N, we
define matrix blocks

B1 := [b0,0], B2 := [b0,−l, b0,l : l ∈ Zn], B3 := [b−l,0, bl,0 : l ∈ Zn]
T , B4 := [Dk,l : k, l ∈ Z+n ].

Then we represent the operater Bn by the matrix form

Bn :=

[
B1 B2

B3 B4

]
.

Since ek is an eigenfunction of the operator A, we likewise define the matrix

An := diag[λ−k, λk : k ∈ Zn]

for the Dirichlet problem, where λk is the eigenvalue of ek . The solution of the equation (2-7) will take
the form wn(x) :=

∑
|k|∈Zn

wk ek(x), where x ∈ I2π and wk ∈ C. We let wn := [w−k,wk : k ∈ Zn] and
gn := [g−k, gk : k ∈ Zn], gk := 〈g, ek〉. Thus we can obtain the matrix representation of (2-7) as

(2-8) (An + Bn)wn = gn.

The classical Fourier–Garlerkin method yields the linear system (2-8) with the dense coefficient matrix
An + Bn . Solving a linear system with a dense coefficient matrix requires large computational costs. To
address this issue, a truncation strategy was introduced in [8] to approximate the dense coefficient matrix
An + Bn by a sparse one having O(n log n) number of nonzero entries with preserving the convergence
order of the original method. Specifically, for each n ∈N, we define an index set L2

n := {(k, l)∈Z2
n : kl ≤ n}

and define the truncation matrix of Bn by setting

B̃4 := [D̃k,l : k, l ∈ Z+n ], D̃k,l :=

{
Dk,l (k, l) ∈ L2

n,

02×2, otherwise,

and letting

B̃n :=

[
B1 B2

B3 B̃4

]
.

Replacing the dense matrix Bn in (2-8) by the sparse matrix B̃n , we have that

(2-9) (An + B̃n) w̃n = gn.

This truncation strategy yields the fast Fourier–Galerkin method. Its convergence order and computa-
tional complexity are analyzed in [8]. Moreover, a fast quadrature strategy was proposed in [20] for
computing the nonzero entries of the truncated matrix with total number O(n log2 n) of arithmetics for

---
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solving the entire linear system and with preserving the optimal order of convergence, when this method
is applied to solving the Laplace equation, in which N f = 0.

When this method is applied to solving the Poisson equation, one has to compute the integrals for the
Fourier coefficients of the Newton potential N f , which are defined on the domain �, not the boundary ∂�.
Due to the fact that the domain has one dimension higher than its boundary, computing these integrals
requires high computational costs. This becomes a bottleneck of applying the fast Fourier–Galerkin
method to solve the BIE of the Poisson equation. The purpose of this study is to develop a fast algorithm
for computing the Fourier coefficients of the Newton potential N f ◦ r by using graded meshes and sparse
grids so that the total number of arithmetics for solving the entire BIE is bounded above by O(n log2 n)
and the resulting fully discrete Fourier–Galerkin method achieves an accuracy of order O(n−m log3 n),
where n is the number of quadrature points used in one coordinate direction, when the forcing function
of the Poisson equation expressed in the polar coordinates has mth-order bounded mixed derivatives.

3. A fast algorithm for computing the Fourier coefficients of the Newton potential

We propose a fast algorithm for computing the Fourier coefficients of Newton potential N f ◦ r . The
definition of N f shows that computing the Fourier coefficients of N f ◦ r requires to compute triple
integrals with weak singularity. To develop a fast algorithm for computing these integrals, it is required
to address two mathematical issues: the singularity of their integrands and their high dimensionality.
To overcome the difficulty caused by the singularity of their integrands, we transform the integrands
to functions which have the only singularity on a line parallel to a coordinate axis, and then design
a graded mesh which splits the integration domain into subdomains. The three-dimensionality of the
integrals requires high computational costs to compute them. To handle this, we develop a sparse grids
to compute the triple integrals efficiently on each of the subdomains.

We now address the first issue. Recall that the kth Fourier coefficient of N f ◦ r has the form

(3-1) N̂ f ◦ r(k)=
∫

I2π

∫
�

f (y)8(r(t)− y) e−k(t) dy dt

for each k ∈ Ln := { j ∈ Z : | j | ≤ n−1}. Due to the singularity of 8, we see that the integrand of (3-1) has
a singularity on the set {(t, y) : t ∈ I2π , y ∈� and y = r(t)}. For example, when � is a circular domain,
the integrand of (3-1) has a singularity along the curve marked red in Figure 1 (left). We transform the
integrand of (3-1) to satisfy two conditions in order to apply the graded sparse grid technique to the
integrand: the integration domain is a cuboid, and its singularity points locate on a line parallel to a
coordinate axis. By the parametrization (2-4) of the boundary ∂�, the domain � can be described as
{y : y = λr(t −µ), λ ∈ [0, 1], µ ∈ [−π, π)}, for all t ∈ [0, 2π). We then substitute y in the integral (3-1)
by λr(t−µ) and define the function 3 f on S0 := {(t, µ, λ) : t ∈ [0, 2π), µ ∈ [−π, π) and λ ∈ [0, 1]} as

(3-2) 3 f (t, µ, λ) := f (λr(t −µ))8(r(t)− λr(t −µ)) λr2(t −µ).

Thus, the integral (3-1) is rewritten as

(3-3) N̂ f ◦ r(k)=
∫∫∫

S0

3 f (t, µ, λ) e−k(t) dt dµ dλ.
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Figure 1. The integration domains of (3-1) (left) and (3-3) (right). The red curves
indicate the singularity.

The integration domain of (3-3) becomes a cuboid after transformation. The integrand has a singularity
on the line segment T := {(t, µ, λ) : t ∈ [0, 2π), µ= 0, λ= 1}, the red line shown in Figure 1 (right).

The singularity of the integrand of (3-3) on T prevents a direct use of the sparse grid technique to eval-
uate the integral (3-3), since the use of the sparse grid technique requires smooth functions. To overcome
this problem, we use a graded mesh by dividing the integration domain S0=[0, 2π)×[−π, π)×[0, 1] into
a sequence of subdomains. We observe that the derivatives of 3 f increase as it closes to the singularity.
This observation leads to a radial refinement towards the singularity in the µ-λ plane by adapting the
idea in [22] to this setting (see, also [24]). Specifically, for all q ∈ N0 := {0} ∪N, we define

Sq := {(t, µ, λ) : t ∈ [0, 2π), µ ∈ [−µq , µq ], λ ∈ [λq , 1]} and Dq := Sq − Sq+1,

where µq := π/2q , λq := 1− 1/2q . It is clear that for any fixed τ ∈ N,

S0 = Sτ ∪ D0 ∪ · · · ∪ Dτ−1,

see, Figure 2. With this partition, the integral (3-3) can be expressed as a summation of the integrals
over the subdomains Sτ and Dq , q ∈ Zτ . That is

(3-4) N̂ f ◦ r(k)=
∫∫∫

Sτ
3 f (t, µ, λ) e−k(t) dt dµ dλ+

τ−1∑
q=0

(̂3 f )q(k),

where

(3-5) (̂3 f )q(k) :=
∫∫∫

Dq

(3 f )(t, µ, λ) e−k(t) dt dµ dλ.

Since the integral (3-3) is a weakly singular integral, when τ is sufficiently large, we drop the first term
of (3-4) and the integral can be approximated well by

(3-6) Q̃τ f (k) :=
τ−1∑
q=0

(̂3 f )q(k), k ∈ Ln.

a. 

6. 
l 
• 

0 
l 

0 ·,,.,, ..;--

?h 
(a) -1 -1 

8 

4 

2 

1 

2 4 

(b) 
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An appropriate choice of τ will be specified later. On passing, we comment that when k � 1, the
integral Q̃τ f (k) involves an oscillation factor. We construct an approximation of 3 f and then employ
the methods originated in [16; 24] so that the oscillatory integrals are evaluated efficiently.

Computing (3-6) requires to approximate 3 f on the noncuboid domains Dq . We will develop the
sparse grid method to approximate 3 f . The sparse grid method requires a cube domain while the
domains Dq are noncuboid. To overcome this problem, we extend the function 3 f to the cuboid do-
mains Sq . We next construct an extension of function (3 f )|SDq

from the noncuboid domain SDq to the
cuboid domain Sq such that the high-order derivative of the extension is continuous on Sq , where SDq is
the closure of Dq .

We construct below an extension Eqω of a smooth function ω from the noncuboid domain SDq to
the cuboid domain Sq by employing the Hermite interpolation. For all α := [α0, α1, α2] ∈ N3

0, we let
|α| :=

∑
i∈Z3
|αi | and

ω(α)(t, µ, λ) :=
(

∂ |α|

∂tα0 ∂µα1 ∂λα2
ω

)
(t, µ, λ).

For a fixed m ∈ N, we require the high-order derivatives (Eqω)
(α), for all |α|∞ < m, are continuous

on Sq . To this end, we define the polynomial function

(3-7) q j (µ) :=
µ j

j !
(1−µ)m+1

m− j∑
s=0

(
m+ s

s

)
µs .

For a smooth function ω defined on SDq , we construct its extension Eqω by the Hermite interpolation
with respect to the variables λ and µ having the form

(3-8) Eqω(t, µ, λ) :=
{
ω(t, µ, λ), (t, µ, λ) ∈ Dq ,

ωq,1(t, µ, λ)+ωq,2(t, µ, λ)−ωq,corner(t, µ, λ), (t, µ, λ) ∈ Sq+1,

where

ωq,1(t,µ,λ) :=
m∑

j=0

∂ jω

∂λ j (t,µ,λq+1)
1
j !
(λ−λq+1)

j ,

ωq,2(t,µ,λ) :=
m∑

j=0

(2µq+1)
j
[
∂ jω

∂µ j (t,−µq+1,λ)q j

(
µ+µq+1

2µq+1

)
+(−1) j ∂

jω

∂µ j (t,µq+1,λ)q j

(
µq+1−µ

2µq+1

)]
,

and

ωq,corner(t, µ, λ) :=
m∑

j=0

m∑
k=0

(2µq+1)
j 1
k!
(λ− λq+1)

k
[
∂ j+kω

∂µ j ∂λk (t,−µq+1, λq+1)q j

(
µ+µq+1

2µq+1

)

+ (−1) j ∂
j+kω

∂µ j ∂λk (t, µq+1, λq+1)q j

(
µq+1−µ

2µq+1

)]
.

Clearly, Eqω is an extension of ω. In the following lemma, we verify that the high-order derivatives
(Eqω)

(α), for all |α|∞ < m, are continuous on Sq .

Lemma 3.1. Let q ∈N0, m ∈N and α ∈N3
0. If ω(α) ∈ C(SDq), for all |α|∞ <m, then (Eqω)

(α)
∈ C(Sq).
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Figure 2. The integration domain S0 consists of the domains D0, D1 and S2.

Proof. By the definition (3-8), Eqω is a polynomial on Sq+1. It suffices to verify that on the junction be-
tween Dq and Sq+1, Eqω

(α) are continuous. That is, we shall prove that (Eqω)
(α)(t, µ, λ)=ω(t, µ, λ) on

the boundaries [0, 2π)×{−µq+1, µq+1}×[λq+1, 1] and [0, 2π)×[−µq+1, µq+1]×{λq+1}. Specifically,
it remains to show that the extension Eqω satisfies for all |α|∞ < m that

(Eqω)
(α)(t, µ, λq+1)= ω

(α)(t, µ, λq+1),(3-9)

(Eqω)
(α)(t, µq+1, λ)= ω

(α)(t, µq+1, λ),(3-10)

(Eqω)
(α)(t,−µq+1, λ)= ω

(α)(t,−µq+1, λ).(3-11)

We next verify (3-9), (3-10) and (3-11). For this purpose, we rewrite (3-8) as a summation of an
Hermite interpolation of the function ω with respect to λ and an Hermite interpolation of the function ω
with respect to µ. Firstly, we define the one-point Hermit interpolating extension Gqω of the function ω
with respect to the variable λ for each (t, µ) ∈ [0, 2π)×[−µq+1, µq+1] by

Gqω(t, µ, λ) :=

{
ω(t, µ, λ), (t, µ, λ) ∈ Dq ,∑m

j=0
∂ jω
∂λ j (t, µ, λq+1)

1
j !(λ− λq+1)

j , (t, µ, λ) ∈ Sq+1.

This extension satisfies that for all |α|∞ < m,

(3-12) (Gqω)
(α)(t, µ, λq+1)= ω

(α)(t, µ, λq+1).

The extension Gqω is smooth with respect to the variables t and λ. However, it has a discontinuity in
the variable µ on {(t, µ, λ) : t ∈ [0, 2π), µ=−µq+1 or µ= µq+1, λ ∈ [λq+1, 1]}. We then construct the
two-point Hermit interpolating extension Hqν of the function ν := ω−Gqω with respect to variable µ
to overcome the discontinuity of Gqω. The two-point Hermit interpolating extension Hqν is defined by

Hqν(t, µ, λ) :=


0, (t, µ, λ) ∈ Dq ,∑m

j=0{(2µq+1)
j ∂ jν
∂µ j,− (t,−µq+1, λ)q j (

µ+µq+1
2µq+1

)

+ (−2µq+1)
j ∂ jν
∂µ j,+ (t, µq+1, λ)q j (

µq+1−µ

2µq+1
)}, (t, µ, λ) ∈ Sq+1.

0 -4 
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Figure 3. Left: the graph of a singular function ω on a cross section of S0. Right: the
graph of the function E0ω on the same cross section of S0, where E0ω is the extension
of ω from D0 to S0.

It can be verified that Hqν satisfies the conditions for all |α|∞ < m that

(Hqν)
(α)(t, µ, λq+1)= 0,(3-13)

(Hqν)
(α)
− (t,−µq+1, λ)= ν

(α)
− (t,−µq+1, λ),(3-14)

(Hqν)
(α)
+ (t, µq+1, λ)= ν

(α)
+ (t, µq+1, λ),(3-15)

where for a smooth enough function h on Sq , h(α)− (t,−µq+1, λ) is the left partial derivative of h with
respect to µ on (t,−µq+1, λ), and h(α)+ (t, µq+1, λ) is the right partial derivative of h with respect to µ
on (t, µq+1, λ). With the above one- and two-point Hermit interpolating extensions, we rewrite (3-8) as

Eqω = Gqω+Hq(ω−Gqω).

where

Gqω(t, µ, λ)= ωq,1(t, µ, λ) and Hq(ω−Gqω)= ωq,2(t, µ, λ)−ωq,corner(t, µ, λ).

By equations (3-12), (3-13), (3-14) and (3-15), it can be verified for all |α|∞ < m that the equations
(3-9), (3-10) and (3-11) hold, completing the proof. �

We perform the above extension procedure to (3 f )| SDq
from SDq to Sq so that the extension Eq(3 f ) :=

Eq((3 f )| SDq
) has enough degree of smoothness to construct a sparse grid approximation. Since the

extension Eq(3 f ) is equal to 3 f on Dq , it follows from (3-6) that

(3-16) Q̃τ f (k)=
τ−1∑
q=0

∫∫∫
Dq

Eq(3 f )(t, µ, λ) e−k(t) dt dµ dλ, k ∈ Ln.

We shall construct a sparse grid approximation of Eq(3 f ) on the cuboid domain Sq and use it to replace
the function Eq(3 f ) in the integrand of (3-16). This will lead to a fast algorithm for computing an
approximate value of Q̃τ f (k).

2 2 

1.5 1.5 

0.5 0.5 

0 0 

-0.5 -0.5 
1 1 

0 0 



NEWTON POTENTIAL IN THE BOUNDARY INTEGRAL EQUATION FOR THE POISSON DIRICHLET PROBLEM 303

We next describe the multiscale Lagrange interpolation for the construction of the sparse grid ap-
proximation which will be used to compute an approximate value of the integral (3-16). We recall the
multiscale Lagrange interpolation on I := [0, 1], originally developed in [10] and the multiscale piecewise
polynomial interpolation formula on sparse grids presented in [9; 17; 19]. The piecewise polynomial
interpolating functions have a recursive structure and they are generated efficiently by the sequences of
interpolation functionals with a multiscale structure. This requires the concept of the refinable set relative
to a family of contractive mappings on I , which is used to generate the interpolation functionals. We
define two contractive mappings εk : I → I , k = {0, 1}, by ε0(t) := t/2 and ε1(t) := t + 1/2, t ∈ I , and
let ε := {εk : k ∈Z2}. For a finite set V ⊆ I , we let ε(V ) := {εk(t) : t ∈ V, k ∈Z2} be the image of V under
the family ε of contractive mappings. According to [10; 12], a subset V of I is said refinable relative to
the mapping ε if V ⊆ ε(V ). We then define the Lagrange polynomials with the interpolating points on
a refinable set V := {vr : 0≤ v0 < v1 < · · ·< vm−1 < 1}. The Lagrange polynomials `r of degree m− 1
are defined as

`r (t) :=
m−1∏

q=0,q 6=r

t − vq

vr − vq

for t ∈ I , r ∈ Zm . We next describe the multiscale Lagrange polynomials associate with the refinable set
V . To this end, for the family ε of contractive mappings, we define linear operators Jk : L∞(I )→ L∞(I ),
k ∈ Z2 for ω ∈ L∞(I ) by

(Jkω)(x) :=
{
(ω ◦ ε−1

k )(x), x ∈ εk(I ),
0, x /∈ εk(I ).

For all N ∈ N0 and r ∈ Zm2N , we define the multiscale Lagrange polynomials as

`N ,r :=

{
`r , N = 0,
Jp `r0, N > 0,

where p := [pk : k ∈ ZN ] ∈ ZN
2 and Jp := JpN−1 ◦ · · · ◦Jp0 . The multiscale interpolation points of `N ,r

are given by

vN ,r :=

{
vr , N = 0,
ε pvr0, N > 0,

where p ∈ ZN
2 , ε p := εpN−1 ◦ · · · ◦ εp0 , r0 = r −mK( p) ∈ Zm , and K( p) :=

∑
k∈ZN

pk2k . It is easy to
see that the multiscale Lagrange polynomials satisfy `N ,r (vN ,r ′) = 1, if r = r ′, and 0 otherwise. The
set of N th-level intepolation points VN is defined by VN := {vN ,r : r ∈ Zm2N } for all N ∈ N0. Thus,
the N th-level Lagrange interpolation operator PN : C(I )→ PN associate with the polynomials `N ,r is
defined as

(3-17) PNω :=
∑

r∈Zm2N

χN ,r (ω) `N ,r , ω ∈ C(I ),

where χN ,r (ω) := ω(vN ,r ), and PN := span{`N ,r : r ∈ Zm2N }.
We next rewrite the interpolation (3-17) in a multiscale form in order to describe the Lagrange inter-

polation on sparse grids. We define the index set on each level as

W0 := Zm and Wj := {r ∈ Zm2 j : v j,r ∈ V j \ V j−1}



304 WENCHAO GUAN, YING JIANG AND YUESHENG XU

for j ∈ N. With the notation above, for all N ∈ N and ω ∈ C(I ) we have

(3-18) PN ω =

N∑
j=0

∑
r∈Wj

η j,r (ω) ` j,r .

where
η0,r (ω) := ω(v0,r ), η j,r (ω) := ω(v j,r )−

∑
q∈Zm

ω(v j−1,mb r
2m c+q) aq,r mod 2m,

and
ar,k := `0,r (v1,k), r ∈ Zm and k ∈ Z2m .

The formula (3-18) is called the multiscale Lagrange interpolation on I .
We next describe the construction of the tensor product type multiscale Lagrange interpolation formula

on I 3. To this end, we introduce the tensor product of linear functionals as below. For d ∈ N, we denote
by L(C(I d)) the set of linear functionals in C(I d) which satisfy the condition: for each κ ∈ L(C(I d)),
there exist aj ∈ R and xj ∈ I d such that for all f ∈ C(I d),

κ( f )=
∑
j∈Zn

aj f (xj ).

Let d1, d2, n1, n2 ∈ N. For all κ1 ∈ L(C(I d1)) and κ2 ∈ L(C(I d2)), we define the tensor product κ1⊗ κ2,
for all ω ∈ C(I d1+d2), by

(κ1⊗ κ2)(ω) :=
∑

j1∈Zn1

∑
j2∈Zn2

a1
j1 a2

j2 ω(x
1
j1, x2

j2),

where
κ1(ω1)=

∑
j1∈Zn1

a1
j1ω1(x1

j1)

for all ω1 ∈ C(I d1), and
κ2(ω2)=

∑
j2∈Zn2

a2
j2ω2(x2

j2),

for all ω2 ∈ C(I d2). Let W3
j :=Wj0 ×Wj1 ×Wj2 . With the notation above, for j := [ jk : k ∈ Z3] ∈ N3

0,
r ∈W3

j , we define the linear functional η j ,r := η j0,r0 ⊗ η j1,r1 ⊗ η j2,r2, and the 3D Lagrange polynomial
` j ,r(x) := ` j0,r0(x0)` j1,r1(x1)` j2,r2(x2), where x := [x0, x1, x2] ∈ I 3. For ω ∈ C(I 3) and N ∈ N, the
multiscale Lagrange interpolation of ω on full grids is defined by

(3-19) P3
N ω :=

∑
j∈Z3

N

∑
r∈W3

j

η j ,r(ω) ` j ,r .

This interpolation involves O(23N ) interpolation points.
Employing the multiscale Lagrange interpolation on I , we introduce the sparse approximations of

functions in C(I 3) by using the sparse grid technique. For ω ∈C(I 3) and N ∈N, the multiscale Lagrange

-
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interpolation of ω on sparse grids is defined by

(3-20) SN ω :=
∑
j∈S3

N

∑
r∈W3

j

η j ,r(ω) ` j ,r , where S3
N :=

{
j ∈ Z3

N+1 :
∑
k∈Z3

jk ≤ N
}
.

Unlike the full grid interpolation P3
N ω which uses O(23N ) number of interpolation points, the interpola-

tion on the sparse grid uses only O(N 2 2N ) number of interpolation points.
We apply the interpolation scheme (3-20) to approximate the extension Eq(3 f ). To this end, we

transform Eq(3 f ) so that the resulting function is defined on the domain I 3. We denote by φq :=

(φ0, φ1,q , φ2,q) the mapping from the cuboid Dq to the cube I 3 where

φ0(t) :=
1

2π
t, φ1,q(t) :=

2q

2π
t + 1

2
, φ2,q(t) := 2q t + 1− 2q .

Let φ−1
q := (φ

−1
0 , φ−1

1,q , φ
−1
2,q). For Nq ∈ N, we construct the approximation of Eq(3 f ) by

S̃Nq (Eq(3 f )) := SNq

(
Eq(3 f ) ◦φ−1

q
)
◦φq .

We now return to computing the integral (3-16). Replacing the extension Eq(3 f ) in the integral (3-16)
by the sparse approximation S̃Nq (Eq(3 f )) leads to the following quadrature formula for computing the
Fourier coefficients of the Newton potential N f ◦ r ,

(3-21) Qτ,N f (k) :=
∑
q∈Zτ

∫∫∫
Dq̃

SNq (Eq(3 f ))(t, µ, λ) e−k(t) dt dµ dλ, k ∈ Ln,

where τ ∈N and N := [N0, . . . , Nτ−1] ∈Nτ . We define the multiscale Lagrange polynomials on [0, 2π),
[−µq , µq) and [λq , 1), respectively, by

`0, j,r := ` j,r ◦φ0, `1,q, j,r := ` j,r ◦φ1,q , `2,q, j,r := ` j,r ◦φ2,q .

The partition {Dq : q ∈ N} of S0 leads to a partition {D̃q : q ∈ N} of [−π, π)× [0, 1) in the µ-λ plane,
where D̃q is defined by

D̃q := ([−µq , µq ]× [λq , 1]) \ ([−µq+1, µq+1]× [λq+1, 1]).

By the definition of S̃Nq (Eq(3 f )), the formula (3-21) can be rewritten as

(3-22) Qτ,N f (k)=
∑
q∈Zτ

∑
j∈S3

Nq

∑
r∈W3

j

η̃ j ,r(Eq(3 f )) A j0,r0(k) Lq, j ,r , k ∈ Ln,

where

η̃ j ,r(Eq(3 f )) := η j ,r(Eq(3 f ) ◦φ−1
q ), A j0,r0(k) :=

∫ 2π

0
`0, j0,r0(t) e−k(t) dt,

and

Lq, j ,r :=

∫∫
D̃q

`1,q, j1,r1(µ) `2,q, j2,r2(λ) dµ dλ.

The formula (3-22) serves a basis for computing the kth Fourier coefficients of N f ◦ r .
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We next describe a fast algorithm for computing Qτ,N f (k) based on (3-22) by eliminating repeated
computations of A j0,r0(k) when computing the 2n − 1 different Fourier coefficients corresponding to
k ∈ Ln . To this end, for fixed s ∈ Zm2u , u ∈ ZNq , we let

0q,u,s :=
∑

j∈S3
Nq , j0=u

∑
r∈W3

j ,r0=s

η̃ j ,r(Eq(3 f )) Lq, j ,r , q ∈ Zτ .

By changing the order of summations in (3-22), we obtain that

(3-23) Qτ,N f (k)=
∑
q∈Zτ

∑
u∈ZNq

∑
s∈Zm2u

0q,u,s Au,s(k), k ∈ Ln.

We consider the computation of the partial sum

(3-24) Gq,u(k) :=
∑

s∈Zm2u

0q,u,s Au,s(k), k ∈ Ln.

Computing these partial sums for k ∈ Ln requires (2n− 1)m2u number of multiplications. In order to
reduce the computational complexity, we define the discrete Fourier coefficients of the vector 0q,u :=

[0q,u,s : s ∈ Zm2u ] by

(3-25) 0̂q,u :=

[ ∑
s∈Zm2u

0q,u,s e−i2πk(s/m2u)
: k ∈ Ln

]
.

We then rewrite the formula (3-24) as

(3-26) Gq,u(k)= tu(k)(0̂q,u)k, k ∈ Ln,

where

tu(k) :=
1

2u
√

2π

∫ 2π

0
`0,0,0(t) e−ikt/2u

dt.

By employing the periodicity of the discrete Fourier transform, we obtain that

(0̂q,u)k = (0̂q,u)Lu(k), k ∈ Ln,

where Lu : Z→ Zm2u is a modulo operation defined by

Lu(k) :=
{

k−m2u
bk/m2u

c, k ≥ 0,
k+m2u

d−k/m2u
e, k < 0.

By (3-26), we have that

(3-27) Gq,u(k)= tu(k)(0̂q,u)Lu(k), k ∈ Ln.

The vector 0̂q,u defined in (3-25) can be computed by applying the fast Fourier transform to 0q,u , which
costs (m log m) · u2u number of multiplications. Thus, the number of multiplications in the partial
sums (3-27) is (2n − 1)+ (m log m) · u2u for 2n − 1 different Fourier coefficients, which is less than
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Figure 4. The sample points of Algorithm 1 (left) and its cross section (right).

that required for computing the partial sums (3-26) when u < n. By substituting the partial sums (3-27)
into (3-23), we have that

(3-28) Qτ,N f (k)=
∑
q∈Zτ

∑
u∈ZNq

tu(k)(0̂q,u)Lu(k), k ∈ Ln.

We summarize the procedure of computing Qτ,N f (k) for all k ∈ Ln in the following algorithm.

Algorithm 1. Given n, τ,m ∈ N, N ∈ Nτ . Compute Qτ,N f (k) for all k ∈ Ln .
Step 1 For each q ∈ Zτ , compute η̃ j ,r(Eq(3 f )) for all j ∈ S3

Nq
, r ∈W3

j .
Step 2 For each q ∈ Zτ , compute the vector 0q,u = [0q,u,s : s ∈ Zm2u ] for all u ∈ ZNq ,
Step 3 For each q ∈ Zτ and u ∈ ZNq , compute 0̂q,u , by applying the fast Fourier transform to the
vector 0q,u .
Step 4 Compute Qτ,N f (k) for all k ∈ Ln by (3-28).

To close this section, we present an estimate on the computational costs of Algorithm 1. Let Mn,τ,N
denote the number of multiplications used in Algorithm 1. In the next proposition, we estimate the bound
on Mn,τ,N .

Proposition 3.2. Let m ∈ N be fixed. If there exists a positive constant c1 such that for each x ∈ �,
t ∈ R, the numbers of multiplications used in computing f (x) and r(t) are less than c1, then there exists
a positive constant c2 such that for all n, τ ∈ N and N := [Nq : q ∈ Zτ , Nq ∈ N],

Mn,τ,N ≤ c2

(∑
q∈Zτ

(N 2
q 2Nq )+ n

∑
q∈Zτ

Nq

)
.
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Proof. We prove this proposition by estimating the number of multiplications used in each step of
Algorithm 1. As a preparation, we estimate the number

∑
j∈S3

Nq
|W3

j |, where |W3
j | denotes the cardinality

of W3
j appearing in (3-22). For a fixing m, by Lemma 3.6 of [7], there exist constants c1, c2 such that

for all q ∈ Zτ ,

(3-29)
∑
j∈S3

Nq

|W3
j | ≤ c1

∑
j∈S3

Nq

2| j | ≤ c2 N 2
q 2Nq .

By using inequality (3-29), the number of multiplications used in Step 1 is bounded by O(N 2
q 2Nq ). More-

over, the number of multiplications used in Step 2 is not greater than the amount of η̃ j ,r(Eq(3 f )). Thus,
for each q ∈ Zτ , the number of multiplications used in Step 2 is bounded by O(N 2

q 2Nq ). By Lemma 3.6
of [7], for each q ∈ Zτ , the number of multiplications used in Step 3 is bounded by

O

( ∑
u∈ZNq

u2u
)
≤ O(Nq 2Nq ).

The number of multiplications used in Step 4 is bounded by 2mnNq for each q ∈ Zτ . Therefore, we
obtain the desired upper bound on the total number of multiplications used in Algorithm 1. �

The Proposition 3.2 allows us to choose specific τ and N so that the total number of multiplications
used in Algorithm 1 is linear up to a logarithmic factor. Specifically, in Algorithm 1 we choose

(3-30) τ := dm log ne, N := [Nq :=max{dlog n− 2q/me, 1} : q ∈ Zτ ]

and define Mn :=Mn,τ,N . In the next theorem, we provide an upper bound on Mn .

Theorem 3.3. Let m ∈ N be fixed. If τ and N are chosen as in (3-30), and there exists a positive
constant c1 such that the numbers of multiplications used in computing f (x) and r(t), for each x ∈�,
t ∈ R are bounded by c1, then there exists a positive constant c2 such that for all n ∈ N,

Mn ≤ c2 n log2 n.

Proof. This theorem is proved by using Proposition 3.2 with τ and N specified as in (3-30). Let N ′q :=
dlog n− q/me. We have for all n ∈ N that

max{dlog n− 2q/me, 1} ≤ N ′q ,

for all q ∈ Zτ . This with Proposition 3.2 implies that there exists a constant c3 such that for all n ∈ N,

(3-31) Mn ≤ c3

(∑
q∈Zτ

(N ′2q 2N ′q )+ n
∑
q∈Zτ

N ′q

)
.

Lemma 3.7 of [7] ensures that there exists a constant c4 such that for all n ∈ N,

(3-32)
∑
q∈Zτ

(N ′2q 2N ′q )≤ c4 n log2 n.
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Since τ = dm log ne, there exists a constant c5 such that for all n ∈ N,

(3-33)
∑
q∈Zτ

N ′q ≤ c5 log2 n.

Combining (3-31), (3-32) and (3-33) leads to the desired results. �

4. Regularity analysis

For the purpose of estimating the error of the proposed quadrature formula of Algorithm 1, we study the
asymptotic behavior of the derivatives of the function 3 f and those of its extensions Eq(3 f ), q ∈ N0.

Recall that the function 3 f may be written as the product of a smooth function

(4-1) (4 f )(t, µ, λ) := λr2(t −µ) f (λr(t −µ))

and a singular function

(4-2) 9(t, µ, λ) := − 1
2π log|r(t)− λr(t −µ)|.

Since the function 4 f is smooth, it suffices to understand the asymptotic behavior of the derivatives
of the function 9 toward its singular points on T = {(t, 0, 1) : t ∈ [0, 2π)}. In order to consider the
function 9, we recall that the fundamental solution 8 : R2

\ {0} → R is defined as

8(x)=− 1
2π log|x |,

and define a vector-valued function s : S0 \ T → R2
\ {0} as

(4-3) s(t, µ, λ) := r(t)− λr(t −µ).

It is clear that 9 is the composition of 8 and s, that is, 9 : S0 \ T
s
−→ R2

\ {0}
8
−→ R. The singularities

of 9 are caused by the singularity of 8 and the zeros of s. We express higher order derivatives of 9 in
terms of higher order derivatives of 8 and s, and recall the multivariate Faà di Bruno formula [6; 13] for
derivatives of a composition function. To this end, we need multivariate notation,

|v| :=
∑
i∈Zd

vi , v! :=
∏
i∈Zd

(vi !), jv :=
∏
i∈Zd

jvi
i , for v ∈ Nd

0 , j ∈ Rd .

For m ∈ N3
0, there are exactly |m| + 2 vectors γ i ∈ N3

0 such that 0≺ γ 0 ≺ · · · ≺ γ |m|+1 = m, where the
notation ≺ denotes the lexicographical order relation: [a1, b1, c1] ≺ [a2, b2, c2] if a1 < a2; or a1 = a2

and b1 < b2; or a1 = a2, b1 = b2 and c1 < c2, and we let %m := {γ 0, . . . , γ |m|+1}. For m ∈ N3
0, z ∈ N2

0,
we define

σm,z :=

{
[k0, . . . , k|m|+1] : ki ∈ N2

0,
∑

i∈Z|m|+2

ki = z,
∑

i∈Z|m|+2

|ki |γ i = m, γ i ∈ %m

}
.

The vector-valued function s defined by (4-3) can be expressed as s= (s1, s2), where s1 and s2 are smooth
functions. For γ ∈ N3

0, let s(γ ) := (s(γ )1 , s(γ )2 ). According to the multivariate Faà di Bruno formula [13],
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for m ∈ N3
0, we have that

(4-4) 9(m)
= (m!)

|m|∑
|z|=1

∑
[kj ]∈σm,z

8(z) ◦ s ·
∏

j∈Z|m|+2

(s(γ j ))kj

(kj !)(γ j !)
|kj |
,

where γ j ∈ %m, [kj ] := [k0, . . . , k|m|+1].
Estimation of 9(m) requires bounding 8(z) ◦ s. To this end, we let ϒ(t, µ, λ) := |s(t, µ, λ)| and

observe that

(4-5) 8(z) ◦ s ≤ cϒ−|z|

for some positive constant c. We need to estimate ϒ . For this purpose, we define

(4-6) 2(t, µ, λ) :=
(

r2(t −µ)µ2
+ (r(t −µ)(1− λ)+ dr

dt
(t −µ)µ)2

)1/2

and show that there exist positive constants c1, c2, c3, c4 such that for all (t, µ, λ) ∈ S0,

(4-7) c1 RT (t, µ, λ)≤ c22(t, µ, λ)≤ ϒ(t, µ, λ)≤ c32(t, µ, λ)≤ c4 RT (t, µ, λ),

where
RT (t, µ, λ) := (µ2

+ (1− λ)2)
1
2 , (t, µ, λ) ∈ S0.

To establish (4-7), we need to introduce an additional hypothesis.

Hypothesis 4.1. The boundary ∂� of � is of radiation type and the radial distance function r of
parametrization r defined in (2-4) satisfies that r ∈ C∞2π (R) and r > 0.

We estimate 2 below.

Lemma 4.2. If ∂� satisfies Hypothesis 4.1, then there exist constants c1, c2 > 0 such that for all
(t, µ, λ) ∈ S0,

(4-8) c1 RT (t, µ, λ)≤2(t, µ, λ)≤ c2 RT (t, µ, λ).

Proof. We first define the function

2̃(t, µ, λ) :=
(
µ2
+ ((1−λ)+ p(t, µ)µ)2

) 1
2 , where p(t, µ) := dr

dt
(t −µ)/r(t −µ), (t, µ, λ) ∈ S0,

and establish there exist two positive constants rmin, rmax such that for all (t, µ, λ) ∈ S0,

(4-9) rmin2̃(t, µ, λ)≤2(t, µ, λ)≤ rmax2̃(t, µ, λ).

In fact, since r ∈ C∞2π (R) and r(t) > 0 for all t ∈ R, there exist constants rmin, rmax such that 0< rmin ≤

r(t) ≤ rmax for all t ∈ R. Thus, it follows from the definition (4-6) of 2 that for all (t, µ, λ) ∈ S0,
inequality (4-9) holds.

It can be verified that

(4-10) a1(t, µ) RT (t, µ, λ)≤ 2̃(t, µ, λ)≤ a2(t, µ) RT (t, µ, λ),
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where

a1(t, µ) :=
1
√

2

(
p2(t, µ)+ 2−

√
p4(t, µ)+ 4p2(t, µ)

)1/2

and

a2(t, µ) :=
1
√

2

(
p2(t, µ)+ 2+

√
p4(t, µ)+ 4p2(t, µ)

)1/2
.

Since r ∈ C∞2π (R), there exists a positive constant pmax such that

(4-11)
∣∣∣dr
dt
(t)/r(t)

∣∣∣≤ pmax, t ∈ R.

By using (4-11), we obtain that for all (t, µ) ∈ [0, 2π)×[−π, π),

(4-12) a2(t, µ)≤
1
√

2

(
p2

max+ 2+
√

p4
max+ 4p2

max

)1/2

and

(4-13) a1(t, µ)= a−1
2 (t, µ)≥ 1

√
2

(
p2

max+ 2−
√

p4
max+ 4p2

max

)1/2
.

Thus, combining (4-9), (4-10), (4-12) and (4-13) leads to (4-8). �

We next estimate ϒ with the help of Lemma 4.2.

Lemma 4.3. If ∂� satisfies Hypothesis 4.1, then there exist constants c1, c2 > 0 such that for all
(t, µ, λ) ∈ S0,

(4-14) c1 RT (t, µ, λ)≤ ϒ(t, µ, λ)≤ c2 RT (t, µ, λ).

Proof. This lemma is proved by showing that there exist constants c′, c′′> 0 such that for all (t, µ, λ)∈ S0,

(4-15) c′2(t, µ, λ)≤ ϒ(t, µ, λ)≤ c′′2(t, µ, λ).

The desired result of this lemma is then obtained by combining Lemma 4.2 with (4-15).
It remains to establish (4-15). We define the difference between ϒ2 and 22 by

Dϒ(t, µ, λ) := ϒ2(t, µ, λ)−22(t, µ, λ), (t, µ, λ) ∈ S0.

Since r ∈C∞π (R), by using the Taylor theorem, there exist constants δ1, c5 > 0 such that for all (t, µ, λ)∈
S0 with µ2

+ (1− λ)2 < δ1,

(4-16) |Dϒ(t, µ, λ)| ≤ c5(|µ|
3
+ |µ2(1− λ)|).

By the definition (4-6) of 2, there holds that

(4-17) 22(t, µ, λ)≥ r2
min µ

2,
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where rmin > 0 satisfies that r(t) ≥ rmin for all t ∈ R. Thus, by inequalities (4-16) and (4-17), we have
that for all (t, µ, λ) ∈ S0 \ T with µ2

+ (1− λ)2 < δ1, there holds that

(4-18)
∣∣∣∣Dϒ(t, µ, λ)
22(t, µ, λ)

∣∣∣∣≤ c5(|µ|
3
+ |µ2(1− λ)|)
r2

min µ
2

≤
c5

r2
min
(|µ| + |1− λ|).

We then consider the inequality (4-15) in two cases: |µ| + |1− λ|< δ2 and |µ| + |1− λ| ≥ δ2, where
δ2 :=min{δ1, r2

min/(2c5)}. By noting that

ϒ2(t, µ, λ)= Dϒ(t, µ, λ)+22(t, µ, λ)

from (4-18), we have that for all (t, µ, λ) ∈ S0 with |µ| + |1− λ|< δ2,

(4-19)
(

1−
c5

r2
min
(|µ|+ |1−λ|)

)1/2

2(t, µ, λ)≤ϒ(t, µ, λ)≤
(

1+
c5

r2
min
(|µ|+ |1−λ|)

)1/2

2(t, µ, λ).

By noting that ϒ , 2 are continuous on the set S0 and2(t, µ, λ)=ϒ(t, µ, λ)= 0 if and only if (t, µ, λ)∈
T , we know that there exist constants c6, c7 > 0 such that for all (t, µ, λ) ∈ S0 with |µ| + |1− λ| ≥ δ2,

c6 ≤2(t, µ, λ)≤ c7 and c6 ≤ ϒ(t, µ, λ)≤ c7.

Thus we have that for all (t, µ, λ) ∈ S0 with |µ| + |1− λ| ≥ δ2,

(4-20)
c6

c7
2(t, µ, λ)≤ ϒ(t, µ, λ)≤

c7

c6
2(t, µ, λ).

Combining (4-19) and (4-20), we conclude that there exist constants c′, c′′ > 0 such that for all (t, µ, λ) ∈
S0, (4-15) holds. �

We now estimate the upper bound of |9(m)(t, µ, λ)|.

Proposition 4.4. Let m := [m0,m1,m2] ∈ N3
0 be fixed and |m|∞ > 0. If ∂� satisfies Hypothesis 4.1,

then there exists a constant cm > 0 such that for all (t, µ, λ) ∈ S0 \ T ,

(4-21) |9(m)(t, µ, λ)| ≤ cm R−(m1+m2)
T (t, µ, λ).

Proof. According to formula (4-4), it suffices to consider the upper bound of

(4-22) Z[k j ](t, µ, λ) :=8
(z)
◦ s(t, µ, λ) ·

∏
j∈Z|m|+2

(s(γ j )(t, µ, λ))kj

(kj !)(γ j !)
|kj |

,

for all (t, µ, λ) ∈ S0 \ T with given [kj ] ∈ σm,z. To this end, we introduce an index set

κm := { j : j ∈ Z|m|+2, γ j ∈ %m, (γ j )0 6= 0, (γ j )1 = (γ j )2 = 0},

and define two functions

Z1,[k j ](t, µ, λ) :=
∏
j∈κm

(s(γ j )(t, µ, λ))kj

(kj !)(γ j !)
|kj |

,(4-23)

Z2,[k j ](t, µ, λ) :=
∏

j∈Z|m|+2\κm

(s(γ j )(t, µ, λ))kj

(kj !)(γ j !)
|kj |

.(4-24)
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We then rewrite (4-22) as

(4-25) Z(t, µ, λ)=8(z) ◦ s(t, µ, λ) · Z1,[k j ](t, µ, λ) · Z2,[k j ](t, µ, λ)

and estimate 8(z) ◦ s, Z1,[k j ] and Z2,[k j ], separately.
We first provide an upper bound for |8(z) ◦ s|. It follows from (4-5) and (4-14) in Lemma 4.3 that

there exists a positive constant c1 such that for all (t, µ, λ) ∈ S0 \ T ,

(4-26) |(8(z) ◦ s)(t, µ, λ)| ≤ c1 R
−|z|

T (t, µ, λ).

We next bound the function |Z1,[k j ](t, µ, λ)|. The vector-valued function s(t, µ, λ) in Z1,[k j ] can be
expressed as

s(t, µ, λ)= (s1(t, µ, λ), s2(t, µ, λ)),

where
s1(t, µ, λ)= r1(t)− λr1(t −µ), s2(t, µ, λ)= r2(t)− λr2(t −µ),

and r1, r2 ∈ C∞2π (R). We first consider upper bounds of |s
(γ j )

i (t, µ, λ)|, where j ∈ κm and γ j ∈ %m. By
using the Taylor theorem, there exists a constant cγ j

> 0 such that for all (t, µ, λ) ∈ S0,

(4-27) |s
(γ j )

i (t, µ, λ)| ≤ cγ j
(|µ| + |1− λ|), i = 0, 1.

Applying the Cauchy–Schwartz inequality to (4-27) yields

(4-28) |s
(γ j )

i (t, µ, λ)| ≤ cγ j

√
2 RT (t, µ, λ), i = 0, 1.

Thus, for [kj ] ∈ σm,z, substituting (4-28) into (4-23) yields a positive constant c2 such that for all
(t, µ, λ) ∈ S0 \ T ,

(4-29) |Z1,[k j ](t, µ, λ)| ≤ c2 RϑT (t, µ, λ),

where ϑ :=
∑

j∈κm
|kj |. By the smoothness of s, we know that there exists a positive constant c3 such

that for all (t, µ, λ) ∈ S0 \ T ,

(4-30) |Z2,[k j ](t, µ, λ)| ≤ c3.

Combining the estimates (4-26), (4-29) and (4-30) yields a positive constant c4 such that for all (t, µ, λ)∈
S0 \ T ,

(4-31) |Z(t, µ, λ)| ≤ c4 R−|z|+ϑT (t, µ, λ).

Finally, we establish that |z| −ϑ ≤ m1+m2. Since
∑

j∈Z|m|+2
kj = z, we have that

(4-32) |z| −ϑ = |z| −
∑
j∈κm

|kj | =
∑

j∈Z|m|+2\κm

|kj |.

By the definition of κm,
∑

j∈Z|m|+2
|kj |γj = m and (4-32), we obtain that

(4-33) |z| −ϑ ≤ m1+m2.

By substituting (4-33) into (4-31), we obtain the desired inequality (4-21). �

-
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In the remainder of this section, we investigate the smoothness of 3 f and its extension Eq(3 f ) on
the domain Sq . We need the bounded mixed derivatives space defined by

Xm(E) := {ω : E→ R : ω(α) ∈ C(E), |α|∞ ≤ m}

with the norm and the seminorm, respectively, by

‖ω‖Xm(E) :=max{‖ω(α)‖∞ : α ∈ N3
0, |α|∞ ≤ m}, |ω|Xm(E) :=max{‖ω(α)‖∞ : α ∈ N3

0, |α|∞ = m},

where E⊂ R3.
In the rest of this paper, we assume that the composition of function f and the radial parametrization

r̃(t, µ, λ) := λr(t −µ) has mth-order bounded mixed derivatives. We define the space

Y m(�) := {ω :�→ R : ω ◦ r̃ ∈ Xm(S0)}

with the norm

‖ω‖Y m(�) := ‖ω ◦ r̃‖Xm(S0), where r̃(t, µ, λ) := λr(t −µ).

Clearly, f ◦ r̃ ∈ Xm(S0) when f ∈ Y m(�). We show in the following proposition that for all f ∈ Y m(�),
q ∈ N0, (3 f )|SDq

∈ Xm(SDq) and estimate the derivatives of 3 f on Dq .

Proposition 4.5. Let m ∈N be fixed. If ∂� satisfies Hypothesis 4.1, then for all f ∈ Y m(�) and q ∈N0,
there holds that (3 f )|SDq

∈ Xm(SDq). Moreover, there exists a positive constant c such that for all q ∈ N0,
f ∈ Y m(�), α ∈ N3

0 with |α|∞ = m,

(4-34) ‖(3 f )(α)|SDq
‖∞ ≤ c2q(α1+α2)‖ f ‖Y m(�).

Proof. We first prove that (3 f )|SDq
∈ Xm(SDq). Since the mth-order bounded mixed derivatives function

space have the property that ω1 ·ω2 ∈ Xm(SDq), when ω1, ω2 ∈ Xm(SDq), the proof of (3 f )| SDq
∈ Xm(SDq)

is done by proving that both 9|SDq
and (4 f )|SDq

are in Xm(SDq). By the definition of 9, we can easily
obtain that 9|SDq

∈ Xm(SDq). Since f ∈ Y m(�), by the definition of 4 f , we have that 4 f ∈ Xm(S0).
Thus, we obtain that (3 f )|SDq

∈ Xm(SDq).
We next prove inequality (4-34). By applying the Leibniz rule to 3 f = (4 f )9, we know that there

exists a positive constant c1 such that for all q ∈ N, f ∈ Y m(�), α ∈ N3
0 with |α|∞ = m,

(4-35) ‖(3 f )(α)|SDq
‖∞ ≤ c1

∑
β≤α

‖9(β)
|SDq
‖∞ ‖(4 f )(α−β)|SDq

‖∞,

where we say β ≤ α for any α := [α0, α1, α2], β := [β0, β1, β2] ∈ N3
0, if β0 ≤ α0, β1 ≤ α1 and β2 ≤ α2.

We bound ‖9(β)
|SDq
‖∞ and ‖(4 f )(α−β)|SDq

‖∞, separately. When q ∈ N0, (t, µ, λ) ∈ Dq , substituting the
inequality RT (t, µ, λ) ≥ 2−q−1π into the right-hand side of (4-21) in Proposition 4.4 yields that there
exists a positive constant c2 such that for all q ∈ N0, α ∈ N3

0 with |α|∞ = m and β ∈ N3
0 with β ≤ α,

(4-36) ‖9(β)
| SDq
‖∞ ≤ c2 2q(α1+α2).



NEWTON POTENTIAL IN THE BOUNDARY INTEGRAL EQUATION FOR THE POISSON DIRICHLET PROBLEM 315

By applying the Leibniz rule to 4 f defined by (4-1), we find that there exists a constant c3 such that
for all q ∈ N, f ∈ Y m(�), α ∈ N3

0 with |α|∞ = m and β ∈ N3
0 with β ≤ α,

(4-37) ‖(4 f )(α−β)|SDq
‖∞ ≤ c3‖ f ‖Y m(�).

Substituting (4-36) and (4-37) into the right hand side of (4-35), we obtain estimate (4-34). �

In order to ensure Eq(3 f ) ∈ Xm(SDq), we next establish that Eqω is in the space Xm(Sq), when the
function ω is in Xm(SDq).

Proposition 4.6. Let m ∈ N and q ∈ N0 be fixed. If ω ∈ Xm(SDq), then Eqω ∈ Xm(Sq). Moreover, there
exists a constant c such that for all q ∈ N0, ω ∈ Xm( SDq) and α := [α0, α1, α2] ∈ N3

0 with |α|∞ ≤ m,

(4-38) ‖(Eq ω)
(α)
‖∞ ≤ c‖ω(α)‖∞.

Proof. The statement Eqω ∈ Xm(Sq) follows from Lemma 3.1 immediately.
It remains to prove inequality (4-38). By the definition (3-8) of Eqω, we only need to estimate
‖ω

(α)
q,1|Sq+1‖∞, ‖ω(α)q,2|Sq+1‖∞ and ‖ω(α)q,corner|Sq+1‖∞. To estimate ‖ω(α)q,1|Sq+1‖∞, for all (t, µ, λ) ∈ Sq+1,

we compute

ω
(α)
q,1(t, µ, λ)=

m∑
j=α2

ω([α0,α1, j])(t, µ, λq+1)
1

( j −α2)!
(λ− λq+1)

j−α2

and observe that |λ− λq | ≤ 1. Hence, there exists a positive constant c1 such that for all ω ∈ Xm(SDq),
q ∈ N0 and α ∈ N3

0 with |α|∞ ≤ m,

(4-39) ‖ω
(α)
q,1|Sq+1‖∞ ≤ c1‖ω

(α)
‖∞.

To estimate ‖ω(α)q,2|Sq+1‖∞, for all (t, µ, λ) ∈ Sq+1, we have that

ω
(α)
q,2(t, µ, λ)=

m∑
j=0

(2µq+1)
j−α1

[
ω([α0, j,α2])(t,−µq+1, λ) q(α1)

j

(
µ+µq+1

2µq+1

)
+ (−1) j−α1 ω([α0, j,α2])(t, µq+1, λ) q(α1)

j

(
µq+1−µ

2µq+1

)]
,

where qj are defined in (3-7). Thus, there exists a positive constant c2 such that for all ω ∈ Xm(SDq),
q ∈ N0 and α ∈ N3

0 with |α|∞ ≤ m,

(4-40) ‖ω
(α)
q,2|Sq+1‖∞ ≤ c2‖ω

(α)
‖∞.

Finally, we estimate ‖ω(α)q,corner|Sq+1‖∞. Since for all (t, µ, λ) ∈ Sq+1,

ω(α)q,corner(t, µ, λ)

=

m∑
j=0

m∑
k=0

(2µq+1)
j

(k−α2)!
(λ− λq+1)

k−α2

[
ω([α0, j,k])(t,−µq+1, λq+1) q(α1)

j−α1

(
µ+µq+1

2µq+1

)
+ (−1) j−α1ω([α0, j,k])(t, µq+1, λq+1) q(α1)

j

(
µq+1−µ

2µq+1

)]
.
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Hence, there exists a positive constant c3 such that for all ω∈ Xm(SDq), q ∈N0 and α ∈N3
0 with |α|∞≤m,

(4-41) ‖ω(α)q,corner|Sq+1‖∞ ≤ c3‖ω
(α)
‖∞.

Note the definition (3-8) of Eqω. Combining inequalities (4-39), (4-40) and (4-41) yields the desired
estimate (4-38). �

By Propositions 4.5 and 4.6, we obtain the next proposition.

Proposition 4.7. Let m ∈N and q ∈N0 be fixed. If ∂� satisfies Hypothesis 4.1, then for all, f ∈ Y m(�),
there holds Eq(3 f ) ∈ Xm(Sq), and there exists a positive constant c such that for all q ∈N0, f ∈ Y m(�),
α ∈ N3

0 with |α|∞ = m,

(4-42) ‖(Eq(3 f ))(α)‖∞ ≤ c2q(α1+α2)‖ f ‖Y m(�).

Proof. First, we prove that Eq(3 f ) ∈ Xm(�). Since ∂� satisfies Hypothesis 4.1 and f ∈ Y m(�),
by Proposition 4.5, we have that (3 f )|SDq

∈ Xm(SDq). According to Proposition 4.5, we obtain that
Eq(3 f ) ∈ Y m(�).

It remains to establish estimate (4-42). Since ∂� satisfies Hypothesis 4.1, by Proposition 4.5, there
exists a positive constant c1 such that for all q ∈ N0, f ∈ Y m(�), α ∈ N3

0 with |α|∞ = m,

(4-43) ‖(3 f )(α)| SDq
‖∞ ≤ c12q(α1+α2)‖ f ‖Y m(�).

By identifying ω with 3 f in estimate (4-38) and combining (4-43), we obtain the desired estimate (4-42).
�

5. Error estimates

We estimate the accuracy of the proposed quadrature formula (3-21).
We first estimate the difference between Eq(3 f ) and S̃Nq (Eq(3 f )). To this end, we recall an estimate

of the difference between ω ∈ Xm(I 3) and its sparse approximation SN ω. The following error estimate
of the sparse grid approximation was obtained in Theorem 2.12 of [17]: For fixed m ∈ N, there exits a
positive constant c such that for all N ∈ N and ω ∈ Xm(I 3),

(5-1) ‖ω−SN ω‖∞ ≤ cN 2 2−m N
|ω|Xm(I 3).

Application of estimate (5-1) yields the next lemma.

Lemma 5.1. Let q ∈ N0, m ∈ N be fixed. If the boundary ∂� satisfies the Hypothesis 4.1, then there
exists a positive constant c such that for all N ∈ N and f ∈ Y m(�),

(5-2) ‖Eq(3 f )− S̃N (Eq(3 f ))‖∞ ≤ cN 2 2−m N
‖ f ‖Y m(�).

Proof. From the definition of S̃N , we have that

(5-3) ‖Eq(3 f )− S̃N (Eq(3 f ))‖∞ = ‖Eq(3 f ) ◦φ−1
q − SN (Eq(3 f ) ◦φ−1

q )‖∞.
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It suffices to bound the right hand side of (5-3). Since f ∈ Y m(�), Proposition 4.7 ensures that Eq(3 f ) ∈
Xm(SDq). By estimate (5-1), there exists a constant c1 such that for all q ∈ N and f ∈ Y m(�),

(5-4) ‖Eq(3 f ) ◦φ−1
q −SN (Eq(3 f ) ◦φ−1

q )‖∞ ≤ c1 N 22−m N
|Eq(3 f ) ◦φ−1

q |Xm(I 3).

It remains to establish that there exists a constant c2 such that for all q ∈ N and f ∈ Y m(�),

(5-5) |Eq(3 f ) ◦φ−1
q |Xm(I 3) ≤ c2‖ f ‖Y m(�).

We now prove estimate (5-5). By the chain rule of derivatives, we have that

(5-6) ‖(Eq(3 f ) ◦φ−1
q )(α)‖∞ = π

α0+α12−(q−1)(α1+α2)‖(Eq(3 f ))(α)‖∞.

Substituting (4-42) into (5-6) yields a constant c3 such that for all q ∈ N, f ∈ Y m(�) and α ∈ N3
0 with

|α|∞ = m,
‖(Eq(3 f ) ◦φ−1

q )(α)‖∞ ≤ c3‖ f ‖Y m(�).

Thus, from the definition of | · |Xm(I 3), we obtain estimate (5-5). By combining (5-3), (5-4) and (5-5), we
complete the proof of this lemma. �

We are now ready to estimate the error of the quadrature formula (3-21).

Proposition 5.2. Let m ∈ N be fixed. If ∂� satisfies Hypothesis 4.1, then there exists a constant c such
that for all τ ∈ N, N ∈ Nτ , |k| ∈ N0 and f ∈ Y m(�),

(5-7) |N̂ f ◦ r(k)−Qτ,N f (k)| ≤ c
(
τ2−2τ

+

∑
q∈Zτ

N 2
q 2−m Nq−2q

)
‖ f ‖Y m(�).

Proof. According to the triangle inequality, we have that

(5-8) |N̂ f ◦ r(k)−Qτ,N f (k)| ≤ ζ(k)+ϕ(k),

where

ζ(k) :=
∣∣∣∣N̂ f ◦ r(k)−

∑
q∈Zτ

(̂3 f )q(k)
∣∣∣∣ and ϕ(k) :=

∣∣∣∣∑
q∈Zτ

(̂3 f )q(k)−Qτ,N f (k)
∣∣∣∣.

We next estimate ζ(k) and ϕ(k) separately.
We first estimate ζ(k). By the definition (3-4) of N̂ f ◦ r(k) for all τ ∈ N and k ∈ N0 there holds

ζ(k)≤
∫∫∫

Sτ
|(3 f )(t, µ, λ) e−k(t)| dt dµ dλ.

Note that r ∈ C∞2π (R). Since 3 f =9 ·4 f , 9 =− 1
2π log ◦ϒ and there exists a positive constant cr such

that for all f ∈ Y m(�),
‖4 f ‖∞ ≤ cr‖ f ‖∞,

we conclude that for all τ ∈ N, k ∈ N0, and f ∈ Y m(�),

(5-9) ζ(k)≤
cr

2π
‖ f ‖∞

∫∫∫
Sτ
|logϒ(t, µ, λ)| dt dµ dλ.
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Applying the logarithmic function to (4-14), there exists a positive constant c1 such that for all (t, µ, λ) ∈
S0,

(5-10) |logϒ(t, µ, λ)| ≤ c1+ |log RT (t, µ, λ)|.

By applying the polar coordinates transform to RT with respect to (µ, λ), there exists a positive constant
c2 such that for all τ ∈ N,
(5-11)∫∫∫

Sτ
(c1+ |log RT (t, µ, λ)|) dt dµ dλ≤ 4π2c1 · 2−2τ

+

∫ 2π

0

∫ π

0

∫ 2−τπ

0
| log ρ| ρ dρ dθ dt ≤ c2 τ2−2τ .

Combining (5-9), (5-10) and (5-11) yields a constant c3 such that for all τ ∈N, k ∈N0 and f ∈ Y m(�),

(5-12) ζ(k)≤ c3τ2−2τ
‖ f ‖∞.

From the definition of ‖ · ‖Y m(�), we have that for all f ∈ Y m(�),

(5-13) ‖ f ‖∞ ≤ ‖ f ‖Ym(�).

Combining (5-12) and (5-13) leads to the estimate

(5-14) ζ(k)≤ c3 τ2−2τ
‖ f ‖Ym(�).

We next estimate ϕ(k). According to Eq(3 f )(t, µ, λ) = (3 f )(t, µ, λ), for all (t, µ, λ) ∈ Dq , the
definition (3-5) of (̂3 f )q(k) and the definition (3-21) of Qτ,N,m , we have that

ϕ(k)≤
∑
q∈Zτ

∫∫∫
Dq

|Eq(3 f )(t, µ, λ) e−k(t)− S̃Nq (Eq(3 f ))(t, µ, λ) e−k(t)| dt dµ dλ.

Thus, there exist a constant c4 such that for all τ ∈N, N := [Nq : q ∈ Zτ ] ∈Nτ , k ∈N0 and f ∈ Y m(�),

(5-15) ϕ(k)≤ c4
∑
q∈Zτ

2−2q
‖Eq(3 f )− S̃Nq (Eq(3 f ))‖∞.

Thus, applying Lemma 5.1 to the right-hand side of (5-15) yields that there exist a constant c5 such that
for all τ ∈ N, N := [Nq : q ∈ Zτ ] ∈ Nτ , k ∈ N0 and f ∈ Y m(�),

(5-16) ϕ(k)≤ c5
∑
q∈Zτ

N 2
q 2−m Nq−2q

‖ f ‖Ym(�).

By substituting (5-15) and (5-16) into (5-8), we obtain the desired estimate (5-7). �

We next present the main result of this section.

Theorem 5.3. Let m ∈N be fixed. Suppose that τ and N are chosen as in (3-30) and let Qm,n := Qτ,N . If
∂� satisfies Hypothesis 4.1, then there exists a constant c such that for all n ∈ N, |k| ∈ N0, f ∈ Y m(�),

(5-17) |N̂ f ◦ r(k)−Qm,n(3 f, k)| ≤ cn−m log3 n‖ f ‖Y m(�).
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Proof. We prove this theorem by using Proposition 5.2 with τ and N chosen as in (3-30). Let N ′q :=
dlog n− q/me. By Proposition 5.2, there exits a positive a constant c1 such that for all n ∈ N, |k| ∈ N0,
f ∈ Y m(�),

(5-18) |N̂ f ◦ r(k)−Qm,n(3 f, k)| ≤ c1

(
dm log ne2−2dm log ne

+

∑
q∈Zτ

N ′2q 2−m N ′q

)
‖ f ‖Y m(�).

It can be verified that there exists a constant c2 such that for n ∈ N,

(5-19) dm log ne2−2dm log ne
≤ c2n−2m log n.

Also, there exists a constant c3 such that for n ∈ N,

(5-20)
∑
q∈Zτ

N ′2q 2−m N ′q ≤ c3 n−m log3 n.

Substituting (5-19) and (5-20) into (5-18) establishes estimate (5-17). �

6. Numerical results

We present two numerical examples to demonstrate the accuracy of the proposed algorithm over its
computational costs. In example 1, we calculate the kth Fourier coefficient of the Newton potential
N̂ f ◦ r(k) defined in (3-1) by using Algorithm 1 to verify the computational complexity in Theorem 3.3
and the error estimate in Theorem 5.3. In example 2, we solve the BIE of the Dirichlet problem for the
Poisson equation defined in (2-5) with applying the Algorithm 1 to compute the Newton potential in the
right-hand side. We present the convergence order of the solution of BIE (2-5) and the accuracy of the
PDE solution u at some chosen points. We compute these examples by using Algorithm 1 with τ and N
chosen as in (3-30). All programs are run on a workstation with 2.10 GHz Intel(R) Xeon(R) E5-2620 v2
CPU and 96 GB memory.

For the purpose of evaluating the proposed algorithm, we define the computed error of the algorithm
by

EF(N ) :=max
k∈F
{|N̂ f ◦ r(k)− Q2N ,m(3 f, k)|},

where F⊂ Z is the index set to be specified later, N denotes the level of the sparse approximation and
Q2N ,m(3 f, k) is defined in Theorem 5.3. The accuracy order with respect to EF,N is defined by

AOF(N ) := log2
EF(N )

EF(N + 1)
.

According to Theorem 5.3, we estimate the accuracy order as

IAOm(N ) := log2
N 3 2−m N

(N + 1)3 2−m(N+1) = m− 3 log2(1+ 1/N ).

We see that IAOm(N )≈ m, when N is big enough.
Example 1: We compute the kth Fourier coefficient of the Newton potential N̂ f ◦ r(k) defined in (3-1)

with
f (x, y) := ex cos(y),



320 WENCHAO GUAN, YING JIANG AND YUESHENG XU

m = 1
n # mesh points time (s) EL1

64
AOL1

64
IAO1

25 1023 0.01 1.64E-00
26 2815 0.02 1.04E-00 0.65 0.21
27 7423 0.02 6.70E-01 0.63 0.33
28 18943 0.04 4.78E-01 0.48 0.42
29 47103 0.07 2.94E-01 0.70 0.49
210 114687 0.15 1.93E-01 0.60 0.54
211 274431 0.32 1.10E-01 0.81 0.58
212 647167 0.71 7.05E-02 0.64 0.62
213 1507327 1.37 4.16E-02 0.76 0.65
214 3473407 2.75 2.39E-02 0.79 0.67
215 7929855 6.24 1.39E-02 0.78 0.70
216 17956863 13.61 7.75E-03 0.84 0.72
217 40370175 29.24 4.44E-03 0.80 0.73

Table 1. Results of Algorithm 1 with the piecewise constant interpolation.

m = 2
n # mesh points time (s) EL1

64
AOL1

64
IAO2

25 8184 0.03 5.04E-02
26 22520 0.06 2.94E-02 0.71 1.21
27 59384 0.12 1.38E-02 1.06 1.33
28 151544 0.26 5.60E-03 1.29 1.42
29 376824 0.53 2.04E-03 1.44 1.49
210 917496 1.10 7.01E-04 1.61 1.54
211 2195448 2.39 2.29E-04 1.61 1.58
212 5177336 5.24 7.26E-05 1.65 1.62
213 12058616 11.60 2.23E-05 1.70 1.65
214 27787256 26.28 6.74E-06 1.72 1.67
215 63438840 58.35 1.99E-06 1.75 1.70
216 143654904 121.05 5.84E-07 1.76 1.72
217 322961400 265.69 1.68E-07 1.79 1.73

Table 2. Results of Algorithm 1 with the piecewise linear interpolation.

for each k ∈ F= L1
64 := {x ∈ Z : |x | ≤ 63}. For this case, the boundary is chosen to the circle with r(t)= 1

in (2-4). Numerical results of this example are shown in Tables 1 and 2. We also compare in Figure 5
the performance of the proposed algorithm with that of the fast multipole method (FMM).

We first use Algorithm 1 with the piecewise constant interpolation (m = 1) to compute approximate
values of the Newton potential N̂ f ◦ r(k). In this case, we have τ = 2dlog2 ne, Nq =max{dlog2 ne−q, 1},
for all q ∈ Zτ . Numerical results presented in Table 1 confirm the quasilinear accuracy order. We then
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Figure 5. Comparison with the fast multipole method with a uniform grid: errors over
the computing time (left) and errors over the number of grid points used (right).

use Algorithm 1 with the piecewise linear interpolation (m = 2) to compute approximate values of the
Newton potential N̂ f ◦ r(k). In this case, we have τ = dlog2 ne, Nq = max{dlog2 ne − 2q, 1}, for all
q ∈ Zτ . Numerical results presented in Table 2 confirm the quasiquadratic accuracy order. Moreover,
both Tables 1 and 2 show that the computing time of Algorithm 1 grows quasilinearly as n increases, as
estimated in Theorem 3.3.

The comparison of the proposed method with the FMM are shown in Figure 5. The red curve represents
the results of the proposed method with the linear interpolation on sparse grids (SPG m = 2) and the
yellow curve represents the results of the method with the cubic interpolation (SPG m = 4). We embed the
domain � to a larger square domain and apply the FMM on uniform grids. The green curve indicates the
FMM with the piecewise linear approximation. The black curve indicates the FMM with the piecewise
cubic approximation. Figure 5 shows that the proposed method outperforms FMM with uniform grids
in computing the Newton potential.

Example 2 We solve the Dirichlet problem of the Poisson equation (2-1) with the boundary curve
being an ellipse described by

r(t) :=
0.4√

0.16 cos2(t)+ sin2(t)

using the BIE method reviewed in Section 2 with the corresponding Newton potential computed by using
the quadrature method proposed in this paper. For the purpose of comparison, we choose the forcing
function as

f (x, y) := −ex y3
− 6ex y,

and the boundary value
u(x, y) := ex y3, (x, y) ∈ ∂�.

Specifically, we apply Algorithm 1 to compute the Newton potential in the right-hand side of the related
BIE (2-5) and solve this equation by the fast Fourier–Galerkin method described in (2-9). We then present
the convergence of the solution of BIE (2-5) and the accuracy of the value of PDE solution u on points
specified.
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n N0 L2 error accuracy order

32 8 1.15E-02
64 9 4.40E-03 1.38

128 10 1.64E-03 1.41
256 11 5.54E-04 1.56
512 12 1.78E-04 1.64

solution of the BIE (2-5)
n L2 error convergence order

32 2.08E-01
64 9.69E-02 1.10

128 6.24E-02 0.63
256 3.95E-02 0.66
512 2.35E-02 0.74

Table 3. Left: accuracy of the computed Newton potential by using Algorithm 1 with
m = 2. Right: errors and convergence orders of the BIE (2-5).

We first compute the Fourier coefficients of the Newton potential N̂ f ◦ r(k), where k ∈ L1
n , by using

Algorithm 1 with the linear interpolation. That is, we choose the parameters m = 2, τ = 2dlog2 ne and
Nq =max{dlog2 ne+ 3− q, 1} for all q ∈ Zτ . In Table 3, left, we present the L2 errors of the Newton
potential on the boundary computed by Algorithm 1.

We then solve the Dirichlet problem (2-1) with the computed values of the Newton potential. The
equation is solved is solved by the fast fully discrete Fourier–Galerkin methods (2-9) originally presented
in [18] with m = 2, N = dlog2 ne. We present the L2 errors and convergence orders of the approximate
solutions of BIE (2-5) in Table 3, right. According to [18], in this case the desired theoretical convergence
order for the fully discrete Fourier–Galerkin method is nearly 0.5. We observe from this example that the
BIE solutions with the Newton potential computed by using the proposed quadrature method preserve
the convergence order guaranteed by the theoretical estimate.

We further compute the approximate solutions of the Dirichlet problem of the Poisson equation by
using the fast Fourier–Galerkin method for its BIE with the proposed quadrature method for computing
the Newton potential. In Table 4, we present errors of the approximate solutions of the Dirichlet problem
at three points

Pα := α(cos(π/4), 0.4 sin(π/4)), α = 0.25, 0.5, 0.75.

These numerical results show that the approximate solutions of the Dirichlet problem obtained by using
the BIE with the proposed quadrature method for computing the resulting Newton potential have excellent
performance. This further confirms that the proposed quadrature method is accurate enough to serve as an
effective method for computing the Newton potential in the context of the fast Fourier–Galerkin method

α
n 0.25 0.5 0.75

32 8.57E-05 4.99E-04 2.15E-04
64 1.25E-05 1.51E-04 5.23E-05

128 8.99E-07 4.71E-05 9.84E-05
256 6.88E-06 3.15E-05 1.31E-05
512 8.90E-07 3.89E-06 1.77E-06

Table 4. Results of the Dirichlet problem (2-1).
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for solving the BIE for the Poisson equation. This overcomes the obstacle of applying the BIE to the
Poisson equation that the resulting Newton potential has to be efficiently and accurately computed. The
proposed quadrature method enables us to efficiently solve the Poisson equation by employing the fast
Fourier–Garlerkin method developed in [8; 21; 18].
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