1,080 research outputs found

    On the Complexity of Solving Quadratic Boolean Systems

    Full text link
    A fundamental problem in computer science is to find all the common zeroes of mm quadratic polynomials in nn unknowns over F2\mathbb{F}_2. The cryptanalysis of several modern ciphers reduces to this problem. Up to now, the best complexity bound was reached by an exhaustive search in 4log2n2n4\log_2 n\,2^n operations. We give an algorithm that reduces the problem to a combination of exhaustive search and sparse linear algebra. This algorithm has several variants depending on the method used for the linear algebra step. Under precise algebraic assumptions on the input system, we show that the deterministic variant of our algorithm has complexity bounded by O(20.841n)O(2^{0.841n}) when m=nm=n, while a probabilistic variant of the Las Vegas type has expected complexity O(20.792n)O(2^{0.792n}). Experiments on random systems show that the algebraic assumptions are satisfied with probability very close to~1. We also give a rough estimate for the actual threshold between our method and exhaustive search, which is as low as~200, and thus very relevant for cryptographic applications.Comment: 25 page

    The F5 Criterion revised

    Get PDF
    The purpose of this work is to generalize part of the theory behind Faugere's "F5" algorithm. This is one of the fastest known algorithms to compute a Groebner basis of a polynomial ideal I generated by polynomials f_{1},...,f_{m}. A major reason for this is what Faugere called the algorithm's "new" criterion, and we call "the F5 criterion"; it provides a sufficient condition for a set of polynomials G to be a Groebner basis. However, the F5 algorithm is difficult to grasp, and there are unresolved questions regarding its termination. This paper introduces some new concepts that place the criterion in a more general setting: S-Groebner bases and primitive S-irreducible polynomials. We use these to propose a new, simple algorithm based on a revised F5 criterion. The new concepts also enable us to remove various restrictions, such as proving termination without the requirement that f_{1},...,f_{m} be a regular sequence.Comment: Originally submitted by Arri in 2009, with material added by Perry since 2010. The 2016 editions correct typographical issues not caught in previous editions bring the theory of the body into conformity with the published version of the pape

    A survey on signature-based Gr\"obner basis computations

    Full text link
    This paper is a survey on the area of signature-based Gr\"obner basis algorithms that was initiated by Faug\`ere's F5 algorithm in 2002. We explain the general ideas behind the usage of signatures. We show how to classify the various known variants by 3 different orderings. For this we give translations between different notations and show that besides notations many approaches are just the same. Moreover, we give a general description of how the idea of signatures is quite natural when performing the reduction process using linear algebra. This survey shall help to outline this field of active research.Comment: 53 pages, 8 figures, 11 table

    On formulas for decoding binary cyclic codes

    Get PDF
    We adress the problem of the algebraic decoding of any cyclic code up to the true minimum distance. For this, we use the classical formulation of the problem, which is to find the error locator polynomial in terms of the syndroms of the received word. This is usually done with the Berlekamp-Massey algorithm in the case of BCH codes and related codes, but for the general case, there is no generic algorithm to decode cyclic codes. Even in the case of the quadratic residue codes, which are good codes with a very strong algebraic structure, there is no available general decoding algorithm. For this particular case of quadratic residue codes, several authors have worked out, by hand, formulas for the coefficients of the locator polynomial in terms of the syndroms, using the Newton identities. This work has to be done for each particular quadratic residue code, and is more and more difficult as the length is growing. Furthermore, it is error-prone. We propose to automate these computations, using elimination theory and Grbner bases. We prove that, by computing appropriate Grbner bases, one automatically recovers formulas for the coefficients of the locator polynomial, in terms of the syndroms

    On the Complexity of the F5 Gr\"obner basis Algorithm

    Get PDF
    We study the complexity of Gr\"obner bases computation, in particular in the generic situation where the variables are in simultaneous Noether position with respect to the system. We give a bound on the number of polynomials of degree dd in a Gr\"obner basis computed by Faug\`ere's F5F_5 algorithm~(Fau02) in this generic case for the grevlex ordering (which is also a bound on the number of polynomials for a reduced Gr\"obner basis, independently of the algorithm used). Next, we analyse more precisely the structure of the polynomials in the Gr\"obner bases with signatures that F5F_5 computes and use it to bound the complexity of the algorithm. Our estimates show that the version of~F5F_5 we analyse, which uses only standard Gaussian elimination techniques, outperforms row reduction of the Macaulay matrix with the best known algorithms for moderate degrees, and even for degrees up to the thousands if Strassen's multiplication is used. The degree being fixed, the factor of improvement grows exponentially with the number of variables.Comment: 24 page

    Moment Varieties of Gaussian Mixtures

    Full text link
    The points of a moment variety are the vectors of all moments up to some order of a family of probability distributions. We study this variety for mixtures of Gaussians. Following up on Pearson's classical work from 1894, we apply current tools from computational algebra to recover the parameters from the moments. Our moment varieties extend objects familiar to algebraic geometers. For instance, the secant varieties of Veronese varieties are the loci obtained by setting all covariance matrices to zero. We compute the ideals of the 5-dimensional moment varieties representing mixtures of two univariate Gaussians, and we offer a comparison to the maximum likelihood approach.Comment: 17 pages, 2 figure

    Polynomial-Time Algorithms for Quadratic Isomorphism of Polynomials: The Regular Case

    Get PDF
    Let f=(f_1,,f_m)\mathbf{f}=(f\_1,\ldots,f\_m) and g=(g_1,,g_m)\mathbf{g}=(g\_1,\ldots,g\_m) be two sets of m1m\geq 1 nonlinear polynomials over K[x_1,,x_n]\mathbb{K}[x\_1,\ldots,x\_n] (K\mathbb{K} being a field). We consider the computational problem of finding -- if any -- an invertible transformation on the variables mapping f\mathbf{f} to g\mathbf{g}. The corresponding equivalence problem is known as {\tt Isomorphism of Polynomials with one Secret} ({\tt IP1S}) and is a fundamental problem in multivariate cryptography. The main result is a randomized polynomial-time algorithm for solving {\tt IP1S} for quadratic instances, a particular case of importance in cryptography and somewhat justifying {\it a posteriori} the fact that {\it Graph Isomorphism} reduces to only cubic instances of {\tt IP1S} (Agrawal and Saxena). To this end, we show that {\tt IP1S} for quadratic polynomials can be reduced to a variant of the classical module isomorphism problem in representation theory, which involves to test the orthogonal simultaneous conjugacy of symmetric matrices. We show that we can essentially {\it linearize} the problem by reducing quadratic-{\tt IP1S} to test the orthogonal simultaneous similarity of symmetric matrices; this latter problem was shown by Chistov, Ivanyos and Karpinski to be equivalent to finding an invertible matrix in the linear space Kn×n\mathbb{K}^{n \times n} of n×nn \times n matrices over K\mathbb{K} and to compute the square root in a matrix algebra. While computing square roots of matrices can be done efficiently using numerical methods, it seems difficult to control the bit complexity of such methods. However, we present exact and polynomial-time algorithms for computing the square root in Kn×n\mathbb{K}^{n \times n} for various fields (including finite fields). We then consider \\#{\tt IP1S}, the counting version of {\tt IP1S} for quadratic instances. In particular, we provide a (complete) characterization of the automorphism group of homogeneous quadratic polynomials. Finally, we also consider the more general {\it Isomorphism of Polynomials} ({\tt IP}) problem where we allow an invertible linear transformation on the variables \emph{and} on the set of polynomials. A randomized polynomial-time algorithm for solving {\tt IP} when f=(x_1d,,x_nd)\mathbf{f}=(x\_1^d,\ldots,x\_n^d) is presented. From an algorithmic point of view, the problem boils down to factoring the determinant of a linear matrix (\emph{i.e.}\ a matrix whose components are linear polynomials). This extends to {\tt IP} a result of Kayal obtained for {\tt PolyProj}.Comment: Published in Journal of Complexity, Elsevier, 2015, pp.3
    corecore