804 research outputs found

    Recommender Systems

    Get PDF
    The ongoing rapid expansion of the Internet greatly increases the necessity of effective recommender systems for filtering the abundant information. Extensive research for recommender systems is conducted by a broad range of communities including social and computer scientists, physicists, and interdisciplinary researchers. Despite substantial theoretical and practical achievements, unification and comparison of different approaches are lacking, which impedes further advances. In this article, we review recent developments in recommender systems and discuss the major challenges. We compare and evaluate available algorithms and examine their roles in the future developments. In addition to algorithms, physical aspects are described to illustrate macroscopic behavior of recommender systems. Potential impacts and future directions are discussed. We emphasize that recommendation has a great scientific depth and combines diverse research fields which makes it of interests for physicists as well as interdisciplinary researchers.Comment: 97 pages, 20 figures (To appear in Physics Reports

    Privacy preserving recommender systems

    Get PDF
    The recommender systems help users find suitable and interesting products and contents from the huge amount of information that are available in the internet. There are various types of recommender systems available which have been providing recommendation services to users. For example Collaborative Filtering (CF) based recommendations, Content based (CB) recommendations, context aware recommendations and so on. Despite the fact that these recommender systems are very useful to solve the information overload problem by filtering interesting information, they suffer from huge privacy issues. In order to generate user personalized recommendations, the recommendation service providers need to acquire the information related to attributes, preferences, experiences as well as demands, which are related to users' confidential information. Usually the more information available to the service providers, the more accurate recommendations can be generated. However, the service providers are not always trustworthy to share personal information for recommendation purposes since they may cause serious privacy threats to users' privacy by leaking them to other parties or providing false recommendations. Therefore the user information must be protected prior to share them to any third party service provider to ensure the privacy of users. To overcome the privacy issues of recommender systems several techniques have been proposed which can be categorized into decentralization, randomization and secure computations based approaches. In decentralization based approach, the central service providers are removed and the main controls of recommendation services are given to participant users. The main issue with this kind of approach is that to generate recommendations, the users need to be dependant to other users' availability in online services. If any user becomes offline, her information can not be used in the system. The randomization based techniques add noises to users data to obfuscate them from learning the true information. However the main issue is that adding noise affects recommendation accuracy. On the contrary, the secure computations preserve user information while providing accurate recommendations. In this thesis we preserve user privacy by means of encrypting user information, specifically their ratings and other related information using homomorphic encryption based techniques to provide recommendations based on the encrypted data. The main advantage of homomorphic encryption based technique is that it is semantically secure and computationally it is hard to distinguish the true information from the given ciphertext. Using the homomorphic based encryption tools and techniques we build different privacy preserving protocols for different types of recommendation approaches by analyzing their privacy requirements and challenges. More specifically, we focus on different key recommendation techniques and differentiate them into centralized and partitioned dataset based recommendation techniques. From available recommendation techniques, we found that some of the existing and popular recommendation techniques like user based recommendation, item based recommendation and context aware recommendation can be grouped into centralized recommendation approach. In partitioned dataset based recommendation, the user information can be partitioned into different organizations and these organizations can collaborate with each other by gathering sufficient information in order to provide accurate recommendations without revealing their own confidential information. After categorizing the recommendation techniques we analyze the problems and requirements in terms of privacy preservation. Then for each type of recommendation approach, we develop the privacy preserving protocols to generate recommendations taking their specific privacy requirements and challenges into consideration. We also investigate the problems and limitations of existing privacy preserving recommendations and found that the current solutions suffer from huge computation and communication overhead as well as privacy of users. In the thesis we identify the related problems and solve the issues using our proposed privacy preserving protocols. As an overall idea, our proposed recommendation protocols work as follows. The users encrypt their ratings using homomorphic encryption and send them to service providers. We assume the service providers are semi honest but curious, they follow the protocol but at the same time try to find new information from the available data. The service provider has the ability to perform homomorphic operations and it performs certain computations over encrypted data without learning any true information and returns the results to the query users who ask for recommendations. The system models of our privacy preserving protocols for different recommendation techniques differ from each other because of their different privacy requirements. The proposed privacy preserving protocols are tested on various real world datasets. Based on the application areas of different recommendation approaches our gathered datasets are also different such as movie rating, social network, checkin information for different locations and quality of service of web services. For each proposed privacy preserving protocols we also present the privacy analysis and describe how the system can perform the computations without leaking the private information of users. The experimental and privacy analysis of our proposed privacy preserving protocols for different types of recommendation techniques show that they are private as well as practical

    Recommender Systems and their Security Concerns

    Get PDF
    Instead of simply using two-dimensional User × Item features, advanced recommender systems rely on more additional dimensions (e.g. time, location, social network) in order to provide better recommendation services. In the first part of this paper, we will survey a variety of dimension features and show how they are integrated into the recommendation process. When the service providers collect more and more personal information, it brings great privacy concerns to the public. On another side, the service providers could also suffer from attacks launched by malicious users who want to bias the recommendations. In the second part of this paper, we will survey attacks from and against recommender service providers, and existing solutions

    Modeling, Predicting and Capturing Human Mobility

    Get PDF
    Realistic models of human mobility are critical for modern day applications, specifically for recommendation systems, resource planning and process optimization domains. Given the rapid proliferation of mobile devices equipped with Internet connectivity and GPS functionality today, aggregating large sums of individual geolocation data is feasible. The thesis focuses on methodologies to facilitate data-driven mobility modeling by drawing parallels between the inherent nature of mobility trajectories, statistical physics and information theory. On the applied side, the thesis contributions lie in leveraging the formulated mobility models to construct prediction workflows by adopting a privacy-by-design perspective. This enables end users to derive utility from location-based services while preserving their location privacy. Finally, the thesis presents several approaches to generate large-scale synthetic mobility datasets by applying machine learning approaches to facilitate experimental reproducibility

    New Fundamental Technologies in Data Mining

    Get PDF
    The progress of data mining technology and large public popularity establish a need for a comprehensive text on the subject. The series of books entitled by "Data Mining" address the need by presenting in-depth description of novel mining algorithms and many useful applications. In addition to understanding each section deeply, the two books present useful hints and strategies to solving problems in the following chapters. The contributing authors have highlighted many future research directions that will foster multi-disciplinary collaborations and hence will lead to significant development in the field of data mining

    A survey of multiple classifier systems as hybrid systems

    Get PDF
    A current focus of intense research in pattern classification is the combination of several classifier systems, which can be built following either the same or different models and/or datasets building approaches. These systems perform information fusion of classification decisions at different levels overcoming limitations of traditional approaches based on single classifiers. This paper presents an up-to-date survey on multiple classifier system (MCS) from the point of view of Hybrid Intelligent Systems. The article discusses major issues, such as diversity and decision fusion methods, providing a vision of the spectrum of applications that are currently being developed

    Towards designing AI-aided lightweight solutions for key challenges in sensing, communication and computing layers of IoT: smart health use-cases

    Get PDF
    The advent of the 5G and Beyond 5G (B5G) communication system, along with the proliferation of the Internet of Things (IoT) and Artificial Intelligence (AI), have started to evolve the vision of the smart world into a reality. Similarly, the Internet of Medical Things (IoMT) and AI have introduced numerous new dimensions towards attaining intelligent and connected mobile health (mHealth). The demands of continuous remote health monitoring with automated, lightweight, and secure systems have massively escalated. The AI-driven IoT/IoMT can play an essential role in sufficing this demand, but there are several challenges in attaining it. We can look into these emerging hurdles in IoT from three directions: the sensing layer, the communication layer, and the computing layer. Existing centralized remote cloud-based AI analytics is not adequate for solving these challenges, and we need to emphasize bringing the analytics into the ultra-edge IoT. Furthermore, from the communication perspective, the conventional techniques are not viable for the practical delivery of health data in dynamic network conditions in 5G and B5G network systems. Therefore, we need to go beyond the traditional realm and press the need to incorporate lightweight AI architecture to solve various challenges in the three mentioned IoT planes, enhancing the healthcare system in decision making and health data transmission. In this thesis, we present different AI-enabled techniques to provide practical and lightweight solutions to some selected challenges in the three IoT planes

    Advances in Public Transport Platform for the Development of Sustainability Cities

    Get PDF
    Modern societies demand high and varied mobility, which in turn requires a complex transport system adapted to social needs that guarantees the movement of people and goods in an economically efficient and safe way, but all are subject to a new environmental rationality and the new logic of the paradigm of sustainability. From this perspective, an efficient and flexible transport system that provides intelligent and sustainable mobility patterns is essential to our economy and our quality of life. The current transport system poses growing and significant challenges for the environment, human health, and sustainability, while current mobility schemes have focused much more on the private vehicle that has conditioned both the lifestyles of citizens and cities, as well as urban and territorial sustainability. Transport has a very considerable weight in the framework of sustainable development due to environmental pressures, associated social and economic effects, and interrelations with other sectors. The continuous growth that this sector has experienced over the last few years and its foreseeable increase, even considering the change in trends due to the current situation of generalized crisis, make the challenge of sustainable transport a strategic priority at local, national, European, and global levels. This Special Issue will pay attention to all those research approaches focused on the relationship between evolution in the area of transport with a high incidence in the environment from the perspective of efficiency
    corecore