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The ongoing rapid expansion of the Internet greatly increases the necessity of effective
recommender systems for filtering the abundant information. Extensive research for rec-
ommender systems is conducted by a broad range of communities including social and
computer scientists, physicists, and interdisciplinary researchers. Despite substantial the-
oretical andpractical achievements, unification and comparison of different approaches are
lacking, which impedes further advances. In this article, we review recent developments in
recommender systems and discuss the major challenges. We compare and evaluate avail-
able algorithms and examine their roles in the future developments. In addition to algo-
rithms, physical aspects are described to illustrate macroscopic behavior of recommender
systems. Potential impacts and future directions are discussed. We emphasize that recom-
mendation has great scientific depth and combines diverse research fields which makes it
interesting for physicists as well as interdisciplinary researchers.
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1. Introduction

Thanks to computers and computer networks, our society is undergoing rapid transformation in almost all aspects.
We buy online, gather information by search engines and live a significant part of our social life on the Internet. The fact
that many of our actions and interactions are nowadays stored electronically gives researchers the opportunity to study
socio-economical and techno-social systems at much better level of detail. Traditional ‘‘soft sciences’’, such as sociology
or economics, have their fast-growing branches relying on the study of these newly available massive data sets [1,2].
Physicists, with their long experience with data-driven research, have joined this trend and contributed to many fields
such as finance [3,4], network theory [5–9] and social dynamics [10] which are outside their traditional realm. The study of
recommender systems and information filtering in general is no exceptionwith the interest of physicists steadily increasing
over the past decade. The task of recommender systems is to turn data on users and their preferences into predictions of
users’ possible future likes and interests. The study of recommender systems is at crossroads of science and socio-economic
life and its huge potential was first noticed by web entrepreneurs in the forefront of the information revolution. While
being originally a field dominated by computer scientists, recommendation calls for contributions from various directions
and is now a topic of interest also for mathematicians, physicists, and psychologists. For instance, it is not a coincidence that
an approach based on what psychologists know about human behavior scored high in a recent recommendation contest
organized by the commercial company Netflix [11].
When computing recommendations for a particular user, the very basic approach is to select the objects favored by other

users that are similar to the target user. Even this simple approach can be realized in a multitude of ways—this is because
the field of recommendation lacks general ‘‘first principles’’ from which one could deduce the right way to recommend. For
example, how best to measure user similarity and assess its uncertainty? How to aggregate divergent opinions from various
users? How to handle users for whom little information is available? Should all data be trusted equally or can one detect
reckless or intentionally misleading opinions? These and similar issues arise also when methods more sophisticated than
those based on user similarity are used. Fortunately, there exist a number of real data sets that can be used to measure and
compare performance of individual methods. In consequence, similarly to physics, it is the experiment what decides which
recommendation approach is good and which is not.
It would be verymisleading to think that recommender systems are studied only because suitable data sets are available.

While the availability of data is important for empirical evaluation of recommendation methods, the main driving force
comes from practice: electronic systems give us toomuch choice to handle by ourselves. The interest from industry is hardly
surprising—an early book on the nascent field of recommendation, Net Worth by John Hagel III and Marc Singer [12], clearly
pointed out the enormous economic impact of ‘‘info-mediaries’’ who can greatly enhance individual consumers’ information
capabilities. Most e-commerce web sites now offer various forms of recommendation—ranging from simply showing the
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most popular items or suggesting other products by the same producer to complicated data mining techniques. People soon
realized that there is no unique best recommendationmethod. Rather, depending on the context and density of the available
data, different methods adapting to particular applications are most likely to succeed. Hence there is no panacea, and the
best one can do is to understand the underlying premises and recommender mechanisms, then one can tackle many diverse
application problems from the real life examples. This is also reflected in this review where we do not try to highlight any
ultimate approach to recommendation. Instead, we review the basic ideas, methods and tools with particular emphasis on
physics-rooted approaches.
Themotivation forwriting this review ismultifold. Firstly,while extensive reviews of recommender systemsby computer

scientists already exists [13–15], the view of physicists is different from that of computer scientists by using more the
complex networks approach and adapting various classical physics processes (such as diffusion) for information filtering.
We thus believe that this review with its structure and emphasis on respective topics can provide a novel point of view.
Secondly, the past decade has already seen a growing interest of physicists in recommender systems and we hope that
this review can be a useful source for them by describing the state of the art in language which is more familiar to the
physics community. Finally, the interdisciplinary approach presented here might provide new insights and solutions for
open problems and challenges in the active field of information filtering.
This review is organized as follows. To better motivate the problem, In Section 2 we begin with a discussion of real

applications of recommender systems. Next, in Section 3 we introduce basic concepts – such as complex networks,
recommender systems, and metrics for their evaluation – that form a basis for all subsequent exposition. Then we proceed
to description of recommendation algorithms where traditional approaches (similarity-based methods in Section 4 and
dimensionality reduction techniques in Section 5) are followed by network-based approaches which have their origin in
the random walk process well known to all physicists (in Section 6). Methods based on external information, such as social
relationships (in Section 7), keywords or time stamps (in Section 8), are also included. We conclude with a brief evaluation
of methods’ performance in Section 9 and a discussion on the outlook of the field in Section 10.

2. Real applications of recommender systems

Thanks to the ever-decreasing costs of data storage and processing, recommender systems gradually spread tomost areas
of our lives. Sellers carefully watch our purchases to recommend us other goods and enhance their sales, social web sites
analyze our contacts to help us connect with new friends and get hooked with the site, and online radio stations remember
skipped songs to serve us better in the future (see more examples in Table 1). In general, whenever there is plenty of diverse
products and customers are not alike, personalized recommendation may help to deliver the right content to the right
person. This is particularly the case for those Internet-based companies that try to make use of the so-called long-tail [16]
of goods which are rarely purchased yet due to their multitude they can yield considerable profits (sometimes they are
referred to as ‘‘worst-sellers’’). For example on Amazon, between 20% and 40% of sales is due to products that do not belong
to the shop’s 100,000 most sold products [17]. A recommender system may hence have significant impact on a company’s
revenues: for example, 60% of DVDs rented by Netflix are selected based on personalized recommendations.1

As discussed in [18], recommender systems not only help decide which products to offer to an individual customer,
they also increase cross-sell by suggesting additional products to the customers and improve consumer loyalty because
consumers tend to return to the sites that best serve their needs (see [19] for an empirical analysis of the impact of
recommendations and consumer feedback on sales at Amazon.com).
Since no recommendation method serves best all customers, major sites are usually equipped with several distinct

recommendation techniques ranging from simple popularity-based recommendations to sophisticated techniques many
of which we shall encounter in the following sections. Further, new companies emerge (see, for example, string.com) which
aim at collecting all sorts of user behavior (ranging from pages visited on the web and music listened on a personal player
to ‘‘liking’’ or purchasing items) and using it to provide personalized recommendations of different goods or services.

2.1. Netflix prize

In October 2006, the online DVD rental company Netflix released a data set containing approximately 100 million
anonymous movie ratings and challenged researchers and practitioners to develop recommender systems that could beat
the accuracy of the company’s recommendation system, Cinematch [20]. Although the released data set represented only a
small fraction of the company’s rating data, thanks to its size and quality it fast became a standard in the data mining and
machine learning community. The data set contained ratings in the integer scale from 1 to 5 which were accompanied by
dates. For eachmovie, title and year of release were provided. No information about users was given. Submitted predictions
were evaluated by their rootmean squared error (RMSE) on a qualifying data set containing over 2817,131 unknown ratings.
Out of 20,000 registered teams, 2000 teams submitted at least one answer set. On 21 September 2009, the grand prize of
$1000,000 was awarded to a team that overperformed the Cinematch’s accuracy by 10%. At the time when the contest

1 As presented by Jon Sanders (Recommendation Systems Engineering, Netflix) during the talk ‘‘Research Challenges in Recommenders’’ at the 3rd ACM
Conference on Recommender Systems (2009).
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Table 1
Popular sites using recommender systems. Besides, there are
also some companies devoting themselves to recommendation
techniques, such as Baifendian (www.baifendian.com), Baynote
(www.baynote.com), ChoiceStream (www.choicestream.com),
Goodrec (www.goodrec.com), and others.

Site What is recommended

Amazon Books/other products
Facebook Friends
WeFollow Friends
MovieLens Movies
Nanocrowd Movies
Jinni Movies
Findory News
Digg News
Zite News
Meehive News
Netflix DVDs
CDNOW CDs/DVDs
eHarmony Dates
Chemistry Dates
True.com Dates
Perfectmatch Dates
CareerBuilder Jobs
Monster Jobs
Pandora Music
Mufin Music
StumbleUpon Web sites

was closed, there were two teams that achieved the same precision. The prize was awarded to the team that submitted
their results 20 min earlier than the other one. (See [11] for a popular account on how the participants struggled with the
challenge.)
There are several lessons that we have learned in this competition [21]. Firstly, the company gained publicity and

a superior recommendation system that is supposed to improve user satisfaction. Secondly, ensemble methods showed
their potential of improving accuracy of the predictions.2 Thirdly, we saw that accuracy improvements are increasingly
demanding when RMSE drops below a certain level. Finally, despite the company’s effort, anonymity of its users was not
sufficiently ensured [25]. As a result, Netflixwas sued by one of its users and decided to cancel a planned second competition.

2.2. Major challenges

Researchers in the field of recommender systems face several challenges which pose danger for the use and performance
of their algorithms. Here we mention only the major ones:

1. Data sparsity. Since the pool of available items is often exceedingly large (major online bookstores offer several millions
of books, for example), overlap between two users is often very small or none. Further, even when the average
number of evaluations per user/item are high, they are distributed among the users/items very unevenly (usually
they follow a power-law distribution [26] or a Weibull distribution [27]) and hence majority of users/items may have
expressed/received only a few ratings. Hence, an effective recommender algorithm must take the data sparsity into
account [28].

2. Scalability. While the data is mostly sparse, for major sites it includes millions of users and items. It is therefore essential
to consider the computational cost issues and search for recommender algorithms that are either little demanding or
easy to parallelize (or both). Another possible solution is based on using incremental versions of the algorithms where,
as the data grows, recommendations are not recomputed globally (using the whole data) but incrementally (by slightly
adjusting previous recommendations according to the newly arrived data) [29,30]. This incremental approach is similar
to perturbation techniques that are widely used in physics and mathematics [31].

3. Cold start. When new users enter the system, there is usually insufficient information to produce recommendation for
them. The usual solutions of this problemare based onusing hybrid recommender techniques (see Section 8.4) combining
content and collaborative data [32,33] and sometimes they are accompanied by asking for some base information (such
as age, location and preferred genres) from the users. Anotherway is to identify individual users in differentweb services.

2 The ensemble methods deal with the selection and organization of many individual algorithms to achieve better prediction accuracy. In fact, the
winning team, called BellKor’s Pragmatic Chaos, was a combined team of BellKor [22], Pragmatic Theory [23] and BigChaos [24] (of course, it was not a
simple combination but a sophisticated design), and each of them consists of many individual algorithms. For example, the Pragmatic Theory solution
considered 453 individual algorithms.
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For example, Baifendian developed a technique that could track individual users’ activities in several e-commerce sites,
so that for a cold-start user in site A, we could make recommendation according to her records in sites B, C , D, etc [34].

4. Diversity vs. accuracy. When the task is to recommend items which are likely to be appreciated by a particular user, it
is usually most effective to recommend popular and highly rated items. Such recommendation, however, has very little
value for the users because popular objects are easy to find (often they are even hard to avoid) without a recommender
system. A good list of recommended items hence should contain also less obvious items that are unlikely to be reached
by the users themselves [35]. Approaches to this problem include direct enhancement of the recommendation list’s
diversity [36–38] and the use of hybrid recommendation methods [39].

5. Vulnerability to attacks. Due to their importance in e-commerce applications, recommender systems are likely targets of
malicious attacks trying to unjustly promote or inhibit some items [40]. There is a wide scale of tools preventing this
kind of behavior, ranging from blocking the malicious evaluations from entering the system to sophisticated resistant
recommendation techniques [41]. However, this is not a easy task since the strategies of attackers also getmore andmore
advanced as the developing of preventing tools. As an example, Burke et al. [42] introduced eight attacking strategies,
which are further divided into four classes: basic attack, low-acknowledge attack, nuke attack and informed attack.

6. The value of time.While real users have interestswithwidely diverse time scales (for example, short term interests related
to a planned trip and long term interests related to the place of living or political preferences), most recommendation
algorithms neglect the time stamps of evaluations. It is an ongoing line of researchwhether and howvalue of old opinions
should decay with time and what are the typical temporary patterns in user evaluations and item relevance [43,44].

7. Evaluation of recommendations. While we have plenty of distinct metrics (see Section 3.4), how to choose the ones best
corresponding to the given situation and task is still an open question. Comparisons of different recommender algorithms
are also problematic because different algorithms may simply solve different tasks. Finally, the overall user experience
with a given recommendation system – which includes user’s satisfaction with the recommendations and user’s trust in
the system – is difficult to measure in ‘‘offline’’ evaluation. Empirical user studies thus still represent a welcome source
of feedback on recommender systems.

8. User interface. It has been shown that to facilitate users’ acceptance of recommendations, the recommendations need to
be transparent [45,46]: users appreciate when it is clear why a particular item has been recommended to them. Another
issue is that since the list of potentially interesting items may be very long, it needs to be presented in a simple way
and it should be easy to navigate through it to browse different recommendations which are often obtained by distinct
approaches.

Besides the above long-standing challenges, many novel issues appear recently. Thanks to the development of
methodology in related branches of science, especially the new tools in network analysis, scientists started to consider
the effects of network structure on recommendation and how to make use of known structural features to improve
recommendation. For example, Huang et al. [47] analyzed the consumer–product networks and proposed an improved
recommendation algorithm preferring edges that enhance the local clustering property, and Sahebi et al. [48] designed an
improved algorithm making use of the community structure. Progress and propagation of new techniques also bring new
challenges. For example, the GPS equipped mobile phones have become mainstream and the Internet access is ubiquitous,
hence the location-based recommendation is now feasible and increasingly significant.3 Accurate recommendation asks for
both the high predictability of human movements [49,50] and quantitative way to define similarities between locations
and people [51,52]. Lastly, intelligent recommender systems should take into account the different behavioral patterns
of different people. For example, new users tend to visit very popular items and select similar items, while old users
usually havemore specific interests [53,54], and users behavemuchdifferently between low-risk (e.g., collecting bookmarks,
downloading music, etc.) and high-risk (e.g., buying a computer, renting a house, etc.) activities [55,56].

3. Definitions of subjects and problems

We briefly review in this chapter basic concepts that are useful in the study of recommender systems.

3.1. Networks

Network analysis is a versatile tool in uncovering the organization principles of many complex systems [5–9]. A network
is a set of elements (called nodes or vertices) with connections (called edges or links) between them. Many social, biological,
technological and information systems can be described as networks with nodes representing individuals or organizations
and edges capturing their interactions. The study of networks, referred to as graph theory in mathematical literature, has a
long history that begins with the classical Königsberg bridge problem solved by Euler in 18th century [57]. Mathematically
speaking, a network G is an ordered pair of disjoint sets (V , E)where V is the set of nodes and the set of edges, E, is a subset
of V × V [58]. In an undirected network, an edge joining nodes x and y is denoted by x ↔ y, and x ↔ y and y ↔ x mean
exactly the same edge. In a directed network, edges are ordered pairs of nodes and an edge from x to y is denoted by x → y.

3 Websites like Foursquare, Gowalla, Google Latitude, Facebook, Jiapang, and others already provide location-based services and show that many people
want to share their location information and get location-based recommendations.
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Edges x → y and y → x are distinct andmay be present simultaneously. Unless stated otherwise, we assume that a network
does not contain a self-loop (an ‘‘edge’’ joining a node to itself) or amulti-edge (several ‘‘edges’’ joining the samepair of nodes).
In amultinetwork both loops and multi-edges are allowed.

In an undirected network G(V , E), two nodes x and y are said to be adjacent to each other if x ↔ y ∈ E. The set of nodes
adjacent to a node x, the neighborhood of x, is denoted byΓx. Degree of node x is defined as kx = |Γx|. The degree distribution,
P(k), is defined as the probability that a randomly selected node is of degree k. In a regular network, every node has the same
degree k0 and thus P(k) = δk,k0 . In the classical Erdös–Rényi random network [59] where each pair of nodes is connected
by an edge with a given probability p, the degree distribution follows a binomial form [60]

P(k) =
(
N − 1

k

)
pk(1− p)N−1−k, (1)

whereN = |V | is the number of nodes in the network. This distribution has a characterized scale represented by the average
degree k̄ = p(N − 1). At the end of the last century, researchers turned to investigation of large-scale real networks where
it turned out that their degree distributions often span several orders of magnitude and approximately follow a power-law
form

P(k) ∼ k−γ , (2)

with γ being a positive exponent usually lying between 2 and 3 [5]. Such networks are called scale-free networks as they lack
a characteristic scale of degree and the power-law function P(k) is scale-invariant [61]. Note that detection of power-law
distributions in empirical data requires solid statistical tools [62,63]. For a directed network, the out-degree of a node x,
denoted by kout, is the number of edges starting at x, and the in-degree kin is the number of edges ending at x. The in- and
out-degree distribution of a directed network in general differ from each other.

Generally speaking, a network is said to be assortative if its high-degree nodes tend to connect with high-degree nodes
and the low-degree nodes tend to connect with low-degree nodes (it is said to be disassortative if the situation is opposite).
This degree–degree correlation can be characterized by the average degree of the nearest neighbors [64,65] or a variant of
Pearson coefficient called assortativity coefficient [66,67]. The assortativity coefficient r lies in the range −1 ≤ r ≤ 1. If
r > 0 the network is assortative; if r < 0, the network is disassortative. Note that this coefficient is sensitive to degree
heterogeneity. For example, r will be negative in a network with very heterogeneous degree distribution (e.g., the Internet)
regardless to the network’s connecting patterns [68].

The number of edges in a path connecting two nodes is called length of the path, and distance between two nodes is
defined as the length of the shortest path that connects them. The diameter of a network is the maximal distance among all
node pairs and the average distance is the mean distance averaged over all node pairs as

d̄ = 1

N(N − 1)
∑
x�=y

dxy, (3)

where dxy is the distance between x and y.
4 Many real networks display a so-called small-world phenomenon: their average

distance does not grow faster than the logarithm of the network size [70,71].

The importance of triadic clustering in social interaction systems has been realized for more than 100 years [72]. In
social network analysis [73], this kind of clustering is called transitivity, defined as three times the ratio of the total number
of triangles in a network to the total number of connected node triples. In 1998, Watts and Strogatz [71] proposed a similar
index to quantify the triadic clustering, called clustering coefficient. For a given node x, this coefficient is defined as the ratio
of the number of existing edges between x’s neighbors to the number of neighbor pairs,

cx = ex
1
2
kx(kx − 1) (4)

where ex denotes the number of edges between kx neighbors of node x (this definition is meaningful only if kx > 1). The
network clustering coefficient is defined as the average of cx over all xwith kx > 1. It is also possible to define the clustering
coefficient as the ratio of 3 × number of triangles in the network to the number of connected triples of vertices, which is
sometimes referred to as ‘‘fraction of transitive triples’’ [7]. Note that the two definitions can give substantially different
results.

Fig. 1 illustrates the above definitions for a simple undirected network. For more information about network
measurements, readers are encouraged to refer an extensive review article [74] on characterization of networks.

4 Whenno path exists between twonodes,we say that their distance is infinitewhichmakes the average distance automatically infinite too. This problem
can be avoided either by excluding such node pairs from averaging or by using the harmonic mean [7,69].
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Fig. 1. A simple undirected network with 6 nodes and 7 edges. The node degrees are k1 = 1, k2 = k5 = 3 and k3 = k4 = k6 = 2, corresponding to the
distribution P(1) = 1/6, P(2) = 1/2 and P(3) = 1/3. The diameter and average distance of this network are dmax = 3 and d̄ = 1.6, respectively. The
clustering coefficients are c2 = 1

6
, c3 = c4 = 0, c5 = 1

3
and c6 = 1, and the average clustering coefficient is C = 0.3.

3.2. Bipartite networks and hypergraphs

A network G(V , E) is a bipartite network if there exists a partition (V1, V2) such that V1 ∪ V2 = V , V1 ∩ V2 = ∅, and every
edge connects a node of V1 and a node of V2. Many real systems are naturally modeled as bipartite networks: the metabolic
network [75] consists of chemical substances and chemical reactions, the collaboration network [76] consists of acts and
actors, the Internet telephone network consists of personal computers and phone numbers [77], etc.We focus on a particular
class of bipartite networks, called web-based user–object networks [53], which represent interactions between users and
objects in online service sites, such as collections of bookmarks in delicious.com and purchases of books in amazon.com. As
we shall see later, these networks describe the fundamental structure of recommender systems. Web-based user–object
networks are specific by their gradual evolution where both nodes and links are added gradually. By contrast, this cannot
happen in, for example, act–actor networks (e.g., one cannot add authors to a scientific paper after its publication).
Mostweb-based user–object networks share some structural properties. Their object-degree distributions obey a power-

law-like form P(k) ∼ k−γ , with γ ≈ 1.6 for the Internet Movie Database (IMDb) [78], γ ≈ 1.8 for the music-sharing site
audioscrobbler.com [79], γ ≈ 2.3 for the e-commerce site amazon.com [53], and γ ≈ 2.5 for the bookmark-sharing site
delicious.com [53]. The form of the user-degree distribution is usually between an exponential and a power law [53], and
can be well fitted by the Weibull distribution distribution [27] (also called the stretched exponential distribution in the
literature [80])

P(k) ∼ kμ−1 exp
[−(k/k0)

μ
]

(5)

where k0 is a constant and μ is the stretching exponent. Connections between users and objects exhibit a disassortative
mixing pattern [53,78].
A straightforward extension of the definition of bipartite network is the so-called multipartite network. For an r-partite

network G(V , E), there is an r-partition V1, V2, . . . , Vr such that V = V1 ∪ V2 ∪ · · · ∪ Vr , Vi ∩ Vj = ∅whenever i �= j, and no
edge joins two nodes in the same set Vi for all 1 ≤ i ≤ r . The tripartite network representation has found its application in
collaborative tagging systems (also called folksonomies in the literature) [81–84], where users assign tags to online resources,
such as photographs in flickr.com, references in CiteULike.com and bookmarks in delicious.com.
Note that some information is lost in the tripartite representation. For example, given an edge connecting a resource and

a tag, we do not know which user (or users) contributed to this edge. To resolve this, hypergraph [85] can be used to give an
exact representation of the full structure of a collaborative tagging system. In a hypergraph H(V , E), the hyperedge set E is a
subset of the power set of V , that is the set of all subsets of V . Link e can therefore connect multiple nodes. Analogously to
ordinary networks, node degree in a hypergraph is defined as the number of hyperedges adjacent to a node and the distance
between two nodes is defined as the minimal number of hyperedges connecting these nodes. The clustering coefficient [82,
86] and community structure [86,87] can also be defined and quantified following the definitions in ordinary networks.
Notice that there is a one-to-one correspondence between a hypergraph and a bipartite network. Given a hypergraph
H(V , E), the corresponding bipartite network G(V ′, E ′) contains two node sets, as V ′ = V ∪ E, and x ∈ V is connected
with Y ∈ E if and only if x ∈ Y (see Fig. 2 for an illustration).
Hypergraph representation has already found applications in ferromagnetic dynamics [88,89], population stratifica-

tion [90], cellular networks [91], academic team formation [92], and many other areas. Here we are concerned more about
the hypergraph representation of collaborative tagging systems [86,93,94] where each hyperedge joins three nodes (repre-
sented by a triangle-like in Fig. 3), user u, resource r and tag t , indicating that u has given t to r . A resource can be collected
by many users and given several tags by a user, and a tag can be associated with many resources, resulting in small-world
hypergraphs [86,94] (Fig. 3 shows both the basic unit and extensive description). Moreover, hypergraphs for collaborative
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a b

Fig. 2. An illustration of the one-to-one correspondence between a hypergraph (a) and a bipartite network (b). There are three hyperedges, X = {1, 2, 4},
Y = {4, 5, 6} and Z = {2, 3, 5, 6}.

Fig. 3. A hypergraph illustration of collaborative tagging networks. (left) A triangle-like hyperedge [93], which contains three types of vertices, depicted
by one blue circle, one green rectangle and one brown triangle which respectively represent a user, a resource and a tag. (right) A descriptive hypergraph
consists of two users, four resources and three tags. Take user U2 and resource R1 for example, the measurements are denoted as: (i) U2 has participated
in six hyperedges, which means its hyperdegree is 6; (ii) U2 has directly connected to three resources and three tags. As defined by Eq. (6), it suggests it
possibly has 3× 3 = 9 hyperedges in maximal. Thus its clustering coefficient equals 6/9 ≈ 0.667, where 6 is its hyperdegree; Comparatively, as defined
by Eq. (7), its clustering coefficient is Dh(U2) = 12−6

12−4 = 0.75; (iii) the shortest path from U2 to R1 is U2–T1–R1, which indicates the distance between U2
and R1 is 2. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

tagging systems have been shown to be highly clustered, with heavy-tailed degree distribution5 and of community struc-
ture [86,94]. A model for evolving hypergraphs can be found in [94].
Generally, to evaluate a hypergraph from the perspective of complexity science, the following quantities (Fig. 3 gives a

detailed description of these quantities) can be applied:
(i) hyperdegree: The degree of a node in a hypergraph can be naturally defined as the number of hyperedges adjacent

to it.
(ii) hyperdegree distribution: defined as the proportion that each hyperdegree occupies, where hyperdegree is defined as

the number of hyperedges that a regular node participates in.
(iii) clustering coefficients: defined as the proportion of real number of hyperedges to all the possible number of

hyperedges that a regular node could have [82]. e.g., the clustering coefficient for a user, Cu, is defined as

Cu = ku

RuTu
, (6)

where ku is the hyperdegree of user u, Ru is the number of resources that u collects and Tu is the number of tags that
u possesses. The above definition measures the fraction of possible pairs present in the neighborhood of u. A larger Cu

indicates that u has more similar topic of resources, which might also show that u has more concentrated on personalized
or special topics, while smaller Cu might suggest that s/he has more diverse interests. Similar definitions can also be defined
for measuring the clustering coefficient of resources and tags.
An alternative metric, named hyperedge density, is proposed by Zlatić et al. [86]. Taking a user node u again as an

example, they define the coordination number of u as z(u) = Ru + Tu. Given k(u), the maximal coordination number is

5 The degrees of users, resources and tags are usually investigated separately. For flickr.com and CiteULike.com, the user and tag degree distributions are
power-law-like, while the resource degree distributions are much narrower because in flickr.com, a photograph is only collected by a single user and in
CiteULike.com, a reference is rarely collected by many users [86]. By contrast, in delicious.com, a popular bookmark can be collected by thousands of users
and thus the resource degree distribution is of a power-law kind [94].
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Fig. 4. Illustration of a recommender system consisted of five users and four books. The basic information contained by every recommender system is
the relations between users and objects that can be represented by a bipartite graph. This illustration also exhibits some additional information frequently
exploited in the design of recommendation algorithms, including user profiles, object attributes and object content.

zmax(u) = 2k(u), while the minimal coordination number is zmin(u) = 2n for n(n − 1) < k(u) ≤ n2 and zmin(u) = 2n + 1
for n2 < k(u) ≤ n(n + 1), with n some integer. Obviously, a local tree structure leads to maximal coordination number,
while themaximumoverlap corresponds to theminimal coordination number. Therefore, they define the hyperedge density
as [86]:

Dh(u) = zmax(u) − z(u)

zmax(u) − zmin(u)
, 0 ≤ Dh(u) ≤ 1. (7)

The definition of hyperedge density for resources and tags is similar. Empirical analysis indicates a high clustering behavior
under bothmetrics [82,86]. The study of hypergraph for the collaborative tagging networks has just been unfolding, and how
to properly quantify the clustering behavior, the correlations and similarities between nodes, and the community structure
is still an open problem.
(iv) average distance: defined as the average shortest path length between two random nodes in the whole network.

3.3. Recommender systems

A recommender system uses the input data to predict potential further likes and interests of its users. Users’ past
evaluations are typically an important part of the input data. Let M be the number of users and let N be the number of
all objects that can be evaluated and recommended. Note that object is simply as a generic termwhich can represent books,
movies, or any other kind of consumed content. To stay in linewith standard terminology, we sometimes use itemwhich has
the same meaning. To make the notation more clear, we restrict to Latin indices i and jwhen enumerating the users and to
Greek indicesα and β when enumerating the objects. Evaluation/rating of objectα by user i is denoted as riα . This evaluation
is often numerical in an integer rating scale (think of Amazon’s five stars)—in this case we speak of explicit ratings. Note that
the common case of binary ratings (like/dislike or good/bad) also belongs to this category. When objects are only collected
(as in bookmark sharing systems) or simply consumed (as in online newspaper or magazine without rating systems) or
when ‘‘like’’ is the only possible expression (as on Facebook), we are left with unary ratings. In this case, riα = 1 represents
a collected/consumed/liked object and riα = 0 represents a non-existing evaluation (see Fig. 4). Inferring users’ confidence
levels of ratings is not a trivial task, especially from the binary or unary ratings. Accessorial information about users’ behavior
may be helpful, for example, the users’ confidence levels can be estimated by their watching time of television shows and
with the help of this information, the quality of recommendation can be improved [95]. Even if we have explicit ratings, it
does not mean we know how and why people vote with these ratings—do they have standards of numerical ratings or they
just use ratings to present orders? Recent evidence [96] to some extent supports the latter ansatz.
The goal of a recommender system is to deliver lists of personalized ‘‘recommended’’ objects to its users. To this end,

evaluations can be predicted or, alternatively, recommendation scores can be assigned to objects yet unknown to a given
user. Objects with the highest predicted ratings or the highest recommendation scores then constitute the recommendation
list that is presented to the target user. There is an extensive set of performance metrics that can be used to evaluate the
resulting recommendation lists (see Section 3.4). The usual classifications of recommender systems is as follows [15]:

1. Content-based recommendations: Recommended objects are those with content similar to the content of previously
preferred objects of a target user. We present them in Section 4.2.3.
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Table 2
Recommendation process in a nutshell: to estimate the potential favorable opinion
of Carol about Casablanca, one can use the similarity of her with those of Alice.
Alternatively, one can note that ratings of Titanic and Casablanca follow a similar
pattern, suggesting that people who liked the former might also like the latter.

Alice Bob Carol

Titanic 5 1 5
2001: A Space Odyssey 1 5 2
Casablanca 4 2 ?

2. Collaborative recommendations: Recommended objects are selected on the basis of past evaluations of a large group of
users. An example is given in Table 2. They can be divided into:
(a) Memory-based collaborative filtering: Recommended objects are those that were preferred by users who share similar
preferences as the target user, or, those that are similar to the other objects preferred by the target user. We present
them in Sections 4 (Standard similarity-based methods) and 7 (methods employing social filtering).

(b) Model-based collaborative filtering: Recommended objects are selected onmodels that are trained to identify patterns
in the input data. We present them in Sections 5 (dimensionality reduction methods) and 6 (diffusion-based
methods).

3. Hybrid approaches: Thesemethods combine collaborativewith content-basedmethods or with different variants of other
collaborative methods. We present them in Section 8.4.

3.4. Evaluation metrics for recommendation

Given a target user i, a recommender system will sort all i’s uncollected objects and recommend the top-ranked objects.
To evaluate recommendation algorithms, the data is usually divided into two parts: The training set ET and the probe set
EP . The training set is treated as known information, while no information from the probe set is allowed to be used for
recommendation. In this section we briefly review basic metrics that are used to measure the quality of recommendations.
How to choose a particular metric (or metrics) to evaluate recommendation performance depends on the goals that the
system is supposed to fulfill. Of course, the ultimate evaluation of any recommender system is given by the judgment of its
users.

3.4.1. Accuracy metrics

Rating accuracy metrics. The main purpose of recommender systems is to predict users’ future likes and interests. A
multitude ofmetrics exist tomeasure various aspects of recommendation performance. Two notablemetrics,Mean Absolute
Error (MAE) and Root Mean Squared Error (RMSE), are used to measure the closeness of predicted ratings to the true ratings.
If riα is the true rating on object α by user i, r̃iα is the predicted rating and EP is the set of hidden user–object ratings, MAE
and RMSE are defined as

MAE = 1

|EP |
∑

(i,α)∈EP

|riα − r̃iα|, (8)

RMSE =
( 1

|EP |
∑

(i,α)∈EP

(riα − r̃iα)2
)1/2

. (9)

Lower MAE and RMSE correspond to higher prediction accuracy. Since RMSE squares the error before summing it, it tends
to penalize large errors more heavily. As these metrics treat all ratings equally no matter what their positions are in the
recommendation list, they are not optimal for some common tasks such as finding a small number of objects that are likely
to be appreciated by a given user (Finding Good Objects). Yet, due to their simplicity, RMSE and MAE are widely used in the
evaluation of recommender systems.

Rating and ranking correlations. Another way to evaluate the prediction accuracy is to calculate the correlation between
the predicted and the true ratings. There are three well-known correlation measures, namely the Pearson product-moment
correlation [97], the Spearman [98] correlation and Kendall’s Tau [99]. The Pearson correlationmeasures the extent towhich
a linear relationship is present between the two sets of ratings. It is defined as

PCC =
∑
α

(r̃α − ¯̃r)(rα − r̄)√∑
α

(r̃α − ¯̃r)2
√∑

α

(rα − r̄)2
, (10)

where rα and r̃α are the true and predicted ratings, respectively. The Spearman correlation coefficient ρ is defined in the
same manner as the Pearson correlation, except that rα and r̃α are replaced by the ranks of the respective objects. Similarly
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to the Spearman correlation, Kendall’s Tau also measures the extent to which the two rankings agree on the exact values of
ratings. It is defined as τ = (C − D)/(C + D) where C is the number of concordant pairs—pairs of objects that the system
predicts in the correct ranked order and D is the number of discordant pairs—pairs that the system predicts in the wrong
order. τ = 1 when the true and predicted ranking are identical and τ = −1 when they are exactly opposite. For the case
when objects with equal true or predicted ratings exist, a variation of Kendall’s Tau was proposed in [13]

τ ≈ C − D√
(C + D + ST )(C + D + SP)

, (11)

where ST is the number of object pairs for which the true ratings are the same, and SP is the number of object pairs for
which the predicted ratings are the same. Kendall’s Tau metric applies equal weight to any interchange of successively
ranked objects, no matter where it occurs. However, interchanges at different places, for example between top 1 and 2, and
between 100 and 101, may have different impacts. Thus a possible improved metric could give more weight to object pairs
at the top of the true ranking.
Similar to Kendall’s Tau, the normalized distance-based performance measure (NDPM) was originally proposed by

Yao [100] to compare two different weakly ordered rankings. It is based on counting the number of contradictory pairs
C− (for which the two rankings disagree) and compatible pairs Cu (for which one ranking reports a tie while the other
reports strict preference of one object over the other). Denoting the total number of strict preference relationships in the
true ranking as C , NDPM is defined as

NDPM = 2C− + Cu

2C
. (12)

Since this metric does not punish the situation where the true ranks are tied, it is more appropriate than correlation metrics
for domains where users are interested in objects that are good-enough.

Classification accuracy metrics. Classification metrics are appropriate for tasks such as ‘‘Finding Good Objects’’, especially
when only implicit ratings are available (i.e., we know which objects were favored by a user but not how much they were
favored). When a ranked list of objects is given, the threshold for recommendations is ambiguous or variable. To evaluate
this kind of systems, one popular metric is AUC (Area Under ROC Curve), where ROC stands for the receiver operating
characteristic [101] (for how to draw a ROC curve see [13]). AUC attempts to measure how a recommender system can
successfully distinguish the relevant objects (those appreciated by a user) from the irrelevant objects (all the others). The
simplest way to calculate AUC is by comparing the probability that the relevant objects will be recommended with that of
the irrelevant objects. For n independent comparisons (each comparison refers to choosing one relevant and one irrelevant
object), if there are n′ times when the relevant object has higher score than the irrelevant and n′′ times when the scores are
equal, then according to [102]

AUC = n′ + 0.5n′′

n
. (13)

Clearly, if all relevant objects have higher score than irrelevant objects, AUC = 1 which means a perfect recommendation
list. For a randomly ranked recommendation list, AUC = 0.5. Therefore, the degree of which AUC exceeds 0.5 indicates
the ability of a recommendation algorithm to identify relevant objects. Similar to AUC is a so-called Ranking Score proposed
in [103]. For a given user, wemeasure the relative ranking of a relevant object in this user’s recommendation list: when there
are o objects to be recommended, a relevant object with ranking r has the relative ranking r/o. By averaging over all users
and their relevant objects, we obtain the mean ranking score RS—the smaller the ranking score, the higher the algorithm’s
accuracy, and vice versa.
Since real users are usually concerned only with the top part of the recommendation list, a more practical approach is to

consider the number of a user’s relevant objects ranked in the top-L places. Precision and recall are themost popularmetrics
based on this. For a target user i, precision and recall of recommendation, Pi(L) and Ri(L), are defined as

Pi(L) = di(L)

L
, Ri(L) = di(L)

Di

(14)

where di(L) indicates the number of relevant objects (objects collected by i that are present in the probe set) in the top-L
places of the recommendation list, and Di is the total number of i’s relevant objects. Averaging the individual precision and
recall over all users with at least one relevant object, we obtain the mean precision and recall, P(L) and R(L), respectively.
These values can be compared with precision and recall resulting from random recommendation, leading to precision and
recall enhancements as defined in [39]

eP(L) = P(L)
MN

D
, eR(L) = R(L)

N

L
, (15)

where M and N are the number of users and objects, respectively, and D is the total number of relevant objects. While
precision usually decreases with L, recall always grows with L. One may combine them into a less L-dependent metric
[104,105]

ht
tp

://
do

c.
re

ro
.c

h



F1(L) = 2PR

P + R
(16)

which is called F1-score. Many other measurements which combine precision and recall are used to evaluate the
effectiveness of information retrieval, but rarely applied to evaluate recommendation algorithms: Average Precision,
Precision-at-Depth, R-Precision, Reciprocal Rank [106], Binary PreferenceMeasure [107]. A detailed introduction and discussion
of each combination index can be found in [108].

3.4.2. Rank-weighted indexes

Since users have limited patience on inspecting individual objects in the recommended lists, user satisfaction is best
measured by taking into account the position of each relevant object and assign weights to them accordingly. Here we
introduce three representative indexes that follow this approach. For a detailed discussion of their strengths andweaknesses
see [13].

Half-life utility. The half-life utility metric attempts to evaluate the utility of a recommendation list to a user. It is based
on the assumption that the likelihood that a user examines a recommended object decays exponentially with the object’s
ranking. The expected utility of recommendations given to user i hence becomes [109]

HLi =
N∑

α=1

max(riα − d, 0)

2(oiα−1)/(h−1) , (17)

where objects are sorted by their recommendation score r̃iα in descending order, oiα represents the predicted ranking of
object α in the recommendation list of user i, d is the default rating (for example, the average rating), and the ‘‘half-life’’ h is
the rank of the object on the list for which there is a 50% chance that the user will eventually examine it. This utility can be
further normalized by the maximum utility (which is achieved when the user’s all known ratings appear at the top of the
recommendation list). When HLi is averaged over all users, we obtain an overall utility of the whole system.

Discounted cumulative gain. For a recommendation list of length L, DCG is defined as [110]

DCG(b) =
b∑

n=1
rn +

L∑
n=b+1

rn

logb n
, (18)

where rn indicates the relevance of the n-th ranked object (rn = 1 for a relevant object and zero otherwise) and b is a
persistence parameter which was suggested to be 2. The intention of DCG is that highly ranked relevant objects give more
satisfaction and utility than badly ranked ones.

Rank-biased precision. This metric assumes that users always check the first object and progress from one object to
the next one with certain (persistence) probability p (with a complementary probability 1 − p, the examination of the
recommendation list ends). For a list of length L, the rank-biased precision metric is defined as [108]

RBP = (1− p)
L∑

n=1
rnp

n−1, (19)

where rn is the same as inDCG. RBP is similar toDCG, the difference is that RBP discounts relevance via a geometric sequence,
while DCG does so using a log-harmonic form.

3.4.3. Diversity and novelty

Even a successfully recommended relevant object has little value to a userwhen it is notorious. To complement the above
accuracy-probing metrics, several diversity- and novelty-probing metrics have been proposed recently [35,39,111] and we
introduce them here.

Diversity. Diversity in recommender systems refers to how different the recommended objects are with respect to each
other. There are two levels to interpret diversity: one refers to the ability of an algorithm to return different results to
different users—we call it Inter-user diversity (i.e., the diversity between recommendation lists). The other one measures
the extent to which an algorithm can provide diverse objects to each individual user—we call it Intra-user diversity (i.e.,
the diversity within a recommendation list). Inter-user diversity [112] is defined by considering the variety of users’
recommendation lists. Given users i and j, the difference between the top L places of their recommendation lists can be
measured by the Hamming distance

Hij(L) = 1− Qij(L)

L
, (20)

whereQij(L) is the number of commonobjects in the top-Lplaces of the lists of users i and j. If the lists are identical,Hij(L) = 0,
while if their lists are completely different, Hij(L) = 1. Averaging Hij(L) over all user pairs, we obtain the mean Hamming
distance H(L). The greater its value, the more diverse (more personalized) recommendation is given to the users.
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Denoting the recommended objects for user i as {o1, o2, . . . , oL}, similarity of these objects s(oα, oβ) can be used to
measure the intra-user diversity (this similarity can be obtained either directly from the input ratings or from object meta-
data) [113]. The average similarity of objects recommended to user i,

Ii(L) = 1

L(L − 1)
∑
α �=β

s(oα, oβ), (21)

can be further averaged over all users to obtain the mean intra-similarity of the recommendation lists, I(L). The lower is
this quantity, the more diverse objects are recommended to the users. Notably, intra-list diversity can be used to enhance
improve recommendation lists by avoiding recommendation of excessively similar objects [37]. The rank-sensitive version
can be obtained by introducing a discount function of the object’s rank in recommendation list [111].

Novelty and surprisal. The novelty in recommender systems refers to how different the recommended objects are with
respect to what the users have already seen before. The simplest way to quantify the ability of an algorithm to generate
novel and unexpected results is to measure the average popularity of the recommended objects

N(L) = 1

ML

M∑
i=1

∑
α∈Oi

R

kα, (22)

where Oi
R is the recommendation list of user i and kα denotes the degree of object α (i.e., the popularity of object α). Lower

popularity indicates higher novelty of the results. Another possibility to measure the unexpectedness is using the self-
information (surprisal) [114] of recommended objects. Given an object α, the chance that a randomly-selected user has
collected it is kα/M and thus its self-information is

Uα = log2(M/kα). (23)

A user-relative novelty variant can be defined by restricting the observations to the target user, namely calculating the
mean self-information of target user’s top-L objects. Averaging over all users we obtain the mean top-L surprisal U(L). With
a similar resulting formula, a discovery-based novelty was proposed in [111] by considering the probability that an object
is known or familiar to a random user.

3.4.4. Coverage

Coverage measures the percentage of objects that an algorithm is able to recommend to users in the system. Denoting
the total number of distinct objects in top L places of all recommendation lists as Nd, the L-dependent coverage is defined as

COV (L) = Nd/N. (24)

Low coverage indicates that the algorithm can access and recommend only a small number of distinct objects (usually the
most popular ones) which often results in little diverse recommendations. On the contrary, algorithms with high coverage
are more likely to provide diverse recommendations [115]. From this viewpoint, coverage can be also considered as a
diversitymetric. In addition, coverage is helpful to better evaluate results of accuracymetrics [116]: recommending popular
objects is likely to be of high accuracy but of low coverage. A good recommendation method is expected to be of both high
accuracy and coverage.
The choice of a particular metric (or metrics) to evaluate a recommender system depends on the goals that the system

is supposed to fulfill. In practice, one may specify different goals for new and experienced users which further complicates
the evaluation process. For a better overview, Table 3 summarizes the described metrics for evaluation of recommender
systems.

4. Similarity-based methods

Similarity-based methods represent one of the most successful approaches to recommendation. They have been studied
extensively and found various applications in e-commerce [117,118]. This class of algorithms can be further divided into
methods employing user and item similarity, respectively. The basic assumption of a method based on user similarity is
that people who agree in their past evaluations tend to agree again in their future evaluations. Thus, for a target user, the
potential evaluation of an object is estimated according to the ratings from users (‘‘taste mates’’) who are similar to the
target user (see Fig. 5 for a schematic illustration). Different from user similarity, an algorithm based on item similarity
recommends a user the objects that are similar to what this user has collected before. Note that, sometimes the opinions
from dissimilar users [119] or the negative ratings [120,121] can play a significant (even positive) role in determining the
recommendation, especially when the data set is very sparse and thus the information about relevance is more important
than that about correlation [122]. For additional information see the recent review articles [123,124], and [125] is a nice
survey that contains a number of similarity indices.
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Table 3
Summary of the presented recommendation metrics. The third column represents the preference of the metric (e.g., smaller MAE means higher rating
accuracy). The fourth column describes the scope of the metric. The last two columns show whether the metric is obtained from a ranking and whether it
depends on the length of the recommendation list L.

Name Symbol Preference Scope Rank L

MAE MAE Small Rating accuracy No No
RMSE RMSE Small Rating accuracy No No
Pearson PCC Large Rating correlation No No
Spearman ρ Large Rating correlation Yes No
Kendall’s Tau τ Large Rating correlation Yes No
NDPM NDPM Small Ranking correlation Yes No
Precision P(L) Large Classification accuracy No Yes
Recall R(L) Large Classification accuracy No Yes
F1-score F1(L) Large Classification accuracy No Yes
AUC AUC Large Classification accuracy No No
Ranking score RS Small Ranking accuracy Yes No
Half-life utility HL(L) Large Satisfaction Yes Yes
Discounted Cumulative Gain DCG(b, L) Large Satisfaction and precision Yes Yes
Rank-biased Precision RBP(p, L) Large Satisfaction and precision Yes Yes
Hamming distance H(L) Large Inter-diversity No Yes
Intra-similarity I(L) Small Intra-diversity No Yes
Popularity N(L) Small Surprisal and novelty No Yes
Self-information U(L) Large Unexpectedness No Yes
Coverage COV (L) Large Coverage and diversity No Yes

Fig. 5. A schematic representation of the collaborative-filtering (CF) recommendation method: rating prediction for a given user–object pair is based on
the user’s and object’s past ratings.

4.1. Algorithms

Here we briefly introduce the conventional similarity-based algorithms which are often referred to as memory-based
collaborative filtering techniques. The term ‘‘collaborative filtering’’ was introduced by creators of the first commercial
recommender system, Tapestry [126], derives from the fact that it requires collaboration of multiple agents who share their
data to obtain better recommendation. In the following sections, we describe basic algorithms as well as main approaches
to the computation of similarity which is a critical component of the recommendation process.
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4.1.1. User similarity

The goal is to make automated prediction of user preferences by collecting evaluation data from many other users,
especially those whose evaluations are similar to evaluations from the target user. Denote the rating from user u on object
α as ruα and let Γu be the set of objects that user u has evaluated. The average rating given by u is r̄u = 1

|Γu|
∑

α∈Γu
ruα .

According to the standard collaborative filtering, the predicted rating of user u on object α is

r̃uα = r̄u + κ
∑
v∈Ûu

suv(rvα − r̄v) (25)

where Ûu denotes the set of users that are most similar to user u, suv denotes the similarity between user u and user v and
κ = 1∑

v |suv | is a normalization factor. If instead of explicit ratings, only the sets of objects collected by individual users
are known (implicit ratings), we aim at predicting the objects which are most likely to be collected by a user in the future.
According to [119], Eq. (25) should be replaced with

puα =
∑
v∈Ûu

suvavα (26)

where puα is the recommendation score of objectα for user u and avα is an element of the adjacencymatrix of the user–object
bipartite network (avα = 1 if user v has collected object α and avα = 0 otherwise).
As has already been made explicit by Eqs. (25) and (26), only users most similar to given user u are usually considered.

To obtain Ûu, two neighborhood selection strategies are usually applied: (i) correlation threshold [127] is based on selecting
all users v whose similarity suv surpasses a given threshold, (ii) maximum number of neighbors [128] consists of selecting
those k users that are most similar to u (here k is a parameter of the algorithm). Restricting computation to the most similar
users is not only computationally advantageous but in general it leads to superior results [129].

4.1.2. Item similarity

In this case, item–item similarity sαβ is employed instead of user–user similarity suv . The simplest way is to estimate
unknown ratings using the weighted average [130]

r̃uα =
∑

β∈Γu

sαβruβ∑
β∈Γu

|sαβ | (27)

where Γu is the set of items evaluated by user u. Techniques limiting the computation of r̃uα to items that are most similar
to α can be applied similarly as described above for user similarity. One of the advantages of this approach is that similarity
between items tends to bemore static than similarity between users, allowing its values and neighborhoods to be computed
offline (i.e., before recommendation for a particular user is requested—this allows to shorten the time needed to obtain
the recommendation). Hybrid collaborative filtering algorithms combining user-, item- or attribute-based similarity were
proposed [131,132]. Their results show that this approach not only improves the prediction accuracy but it is also more
robust to data sparsity.

4.1.3. Slope One predictor

Slope One predictor with the form f (x) = x+b, where b is a constant and x is a variable representing the rating values, is
the simplest form of item-based collaborative filtering based on ratings [133]. It subtracts the average ratings of two items
to measure how much more, on average, one item is liked than another. This difference is used to predict another user’s
rating of one of these two items, given his rating of the other. For example, consider a case where user i gave score 1 to
item α and score 1.5 to item β while user j gave score 2 to item α. Slope One then predicts that user jwill rate item β with
2+ (1.5− 1) = 2.5 (see Fig. 6 for an illustration).
The Slope One scheme takes into account both information from other users who rated the same item and from the other

items rated by the same user. In particular, only ratings by users who have rated some common items with the target user
and only ratings of items that the target user has also rated are involved in the prediction process. Denoting the set of users
who rated items α and β as S(α, β), the average deviation of item β with respect to item α is defined as

devβα =

∑
i∈S(α,β)

riβ − riα

|S(α, β)| . (28)

Given a known rating ruα , Slope One predicts u’s rating on item β as ruα +devβα . By varying α in Eq. (28), we obtain different
predictions. A reasonable overall predictor is their average value

r̃uα = 1

|R(u, α)|
∑

α∈R(u,α)

(ruβ + devαβ), (29)

ht
tp

://
do

c.
re

ro
.c

h



Fig. 6. In the depicted case, the Slope One prediction would be x = 2+ (1.5− 1) = 2.5.

where R(u, α) is the set of items that have been both rated by u and co-rated with item β . Note that predictions obtained
from different items α have equal weight no matter how many users have co-rated α with β . To take into account the fact
that the credibility of devαβ depends crucially on |S(α, β)| (the larger the overlap, the more trustful the value), one can
introduce a Weighted Slope One prediction as

r̃w
uα =

∑
α

|S(α, β)|(ruβ + devαβ)∑
α

|S(α, β)| . (30)

Another improvement of the basic Slope One algorithm is based on dividing the set of all items into items liked and disliked
by a given user (a straightforward criterion to identify liked and disliked items is to check whether their rating were higher
or lower than the average rating awarded by the given user). From these liked and disliked items, two separate predictions
are then derived which are combined into one prediction at the very end. Denote by S+1(α, β) and S−1(α, β) the sets of
users who like and dislike, respectively, both α and β . The deviations for liked and disliked items are

dev+1βα = 1

|S+1(β, α)|
∑

i∈S+1(β,α)

(riβ − riα), dev−1βα = 1

|S−1(β, α)|
∑

i∈S−1(β,α)

(riβ − riα). (31)

The prediction for the rating of itemβ based on the rating of itemα is either rjα +dev+1βα or rjα +dev−1βα depending onwhether
the target user j likes or dislikes item α respectively. The Bi-Polar Slope One is thus given by

pbijβ =
∑
α

|S+1(β, α)|(rjα + dev+1βα) + ∑
α

|S−1(β, α)|(rjα + dev−1βα)∑
α

|S+1(β, α)| + ∑
α

|S−1(β, α)| (32)

where the weights are chosen similarly as for Weighted Slope One.
It was shown that Slope One can outperform linear regression (i.e., estimation by f (x) = ax + b) while having half the

number of regressors [116,133]. This simple approach also reduces storage requirements and latency of the recommender
system. Slope One has been used as a building block to improve other algorithms [134–136]. For instance, it can be combined
with user-based collaborative filtering to address the data sparsity problem via filling the vacant ratings of the user–item
matrix by the Slope One scheme, and thus improving the prediction accuracy [134].

4.2. How to define similarity

The keyproblemof similarity-based algorithms is how todefine similarity betweenusers or objects.Whenexplicit ratings
are available, similarity is usually defined using a correlation metric such as Pearson, for example (two users are considered
as similar when they tend to give similar ratings to the objects they rate). When there is no rating information available,
similarity can be inferred from the structural properties of the input data (two users are considered as similar when they
liked/bought many objects in common). Besides, external information such as users’ attributes, tags and objects’ content
meta information can be utilized to estimate similarity better.

4.2.1. Rating-based similarity

In many online e-commerce services, users are allowed to evaluate the consumed objects by ratings. For example, in
Yahoo Music, users vote each song with one to five stars representing ‘‘Never play again’’ (
), ‘‘It is ok’’ (

), ‘‘Like it’’ (
 
 
),
‘‘Love it’’ (
 
 

) and ‘‘Can’t get enough’’ (
 
 
 
 
). With explicit rating information we can measure the similarity between
two users or between two objects by Cosine index [15,137] which is defined as

scosxy = rx · ry
|rx||ry| . (33)

For quantifying the similarity between users, rx, ry are rating vectors in the N-dimensional object space while for similarity
between objects, rx, ry are vectors inM-dimensional user space. Note that, in the calculation of rating-based similarity, it is
necessary to eliminate the rating tendencies of users and/or on items, otherwise the similarity is less meaningful. Actually,

ht
tp

://
do

c.
re

ro
.c

h



according to a recently reported smart method, in some rating systems, via proper usage of rating tendencies, one could
predict the unknown ratings with remarkably higher accuracy than the simply similarity-based methods [116].
The rating correlation can also be measured by Pearson coefficient (PC) [15,137]. To quantify similarity between users u

and v, it reads

sPCuv =
∑

α∈Ouv

(ruα − r̄u)(rvα − r̄v)√ ∑
α∈Ouv

(ruα − r̄u)2
√ ∑

α∈Ouv

(rvα − r̄v)2
, (34)

where Ouv = Γu ∩ Γv indicates the set of objects rated by both u and v. A constrained Pearson coefficient proposed by
Shardanand and Maes [127] consists of substituting the user mean in Eq. (34) with a ‘‘central’’ rating (for example, in the
scale from 1 to 5, one can set the central rating to be 3). The idea is to take into account the difference between positive
(above the central rating) and negative ratings (below the central rating). Aweighted Pearson coefficient is based on the idea
of capturing the confidence that can be placed on similarity values (when two users evaluated only a few objects in common,
their potentially high similarity should not be trusted as much as for a pair of users with many overlapping objects). It was
proposed [138] to weight the Pearson coefficient as

sWPC
uv =

{
sPCuv

|Ouv|
H

for |Ouv| ≤ H,

sPCuv otherwise
(35)

where H is a threshold, determined experimentally, beyond which the correlation measure can be trusted.
Analogically, Pearson similarity between objects α and β reads

sPCαβ =

∑
u∈Uαβ

(ruα − r̄α)(ruβ − r̄β)

√ ∑
u∈Uαβ

(ruα − r̄α)2
√ ∑

u∈Uαβ

(ruβ − r̄β)2
, (36)

where Uαβ is the set of users who rated both α and β , and r̄α is the average rating of object α. Experiments have shown that
the Pearson coefficient performs better than the cosine vector index [109]. When only binary ratings are available (like or
dislike, purchase or no purchase, click or no click, etc.), the cosine and Pearson coefficient can still be applied to quantify the
similarity of vectors with binary elements. For example, Amazon’s patented algorithm [117] computes the cosine similarity
between binary vectors representing users’ purchases and use it in item-based collaborative filtering.

4.2.2. Structural similarity

Aswe havementioned above, similarity can be defined using the external attributes such as tag and content information.
However, the required data is usually very difficult to collect. Another simple and effective way to quantify the similarity,
structural similarity [139], is based solely on the network structure of the data. Recent research shows that the structural-
based similarity can produce better recommendations that the Pearson correlation coefficient, especially when the input
data is very sparse [122].
To calculate the structural similarity between users or objects, we generally project the user–object bipartite network

which contains the complete information about the system into a monopartite user–user or object–object network (for
more information on this aspect of similarity see [103]). In the simplest case, two users are considered similar if they have
voted at least one common object (analogically, two objects are considered similar if they have been co-voted by at least
one user). More refined similarity metrics that can be roughly categorized as node-dependent vs. path-dependent, local vs.
global, parameter-free vs. parameter-dependent, and so on—here we review some of them.
(i) Node-dependent similarity. The simplest weighted similarity index is Common Neighbors (CN) where the similarity of

two nodes is directly given by the number of common neighbors (think of the number of users who bought both objects
α and β or the number of objects shared by users u and v). By considering degrees of the two target nodes, six variations
of CN were derived: Salton Index [140], Jaccard Index [141], Sørensen Index [142], Hub Promoted Index (HPI) [143], Hub
Depressed Index (HDI) and Leicht–Holme–Newman Index (LHN16) [144]. One can further take into account degrees of
respective common neighbors to reward less-connected neighborswith a higherweight as in Adamic–Adar Index (AA) [145]
and Resource Allocation Index (RA) [102]. Note that since AA uses a logarithmicweighting, it penalizes high-degree common
neighbors less than RA. Finally, Preferential Attachment Index (PA) builds on the classical preferential attachment rule in
network science [146]. This index has been used to quantify the functional significance of links subject to various network-
based dynamics, such as percolation [147], synchronization [148] and transportation [149]. Note that these similarity can
be computed also for a bipartite network where common neighbors are objects and users when considering user and object
similarity, respectively. A summary of mathematical definitions of these similarity indices is shown in Table 4.

6 We use the abbreviation LHN1 to distinguish this index to another index named as LHN2 also proposed by Leicht, Holme and Newman.
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Table 4
Mathematical definitions of the described node-dependent similarity
indices.Γx denotes the set of neighbors of node x (which can be either
a user or an object node) and kx is the degree of node x.

Index Definition

CN sxy = |Γx ∩ Γy|
Salton sxy = |Γx ∩ Γy|/

√
kxky

Jaccard sxy = |Γx ∩ Γy|/|Γx ∪ Γy|
Sørensen sxy = 2|Γx ∩ Γy|/(kx + ky)
HPI sxy = |Γx ∩ Γy|/min{kx, ky}
HDI sxy = |Γx ∩ Γy|/max{kx, ky}
LHN1 sxy = |Γx ∩ Γy|/(kxky)
AA sxy = ∑

z∈Γx∩Γy
1/ ln kz

RA sxy = ∑
z∈Γx∩Γy

1/kz
PA sxy = kxky

(ii) Path-dependent similarity. The basic assumption here is that twonodes are similar if they are connected bymanypaths.
Since elements of an n-th power of the adjacency matrix, An, are equal to the number of distinct paths between respective
pairs of nodes, path-dependent similarity metrics can be usually written in a compact form such as

sLPxy = (A2)xy + ε(A3)xy (37)

for the Local Path Index [150] where only paths of length two and three count and ε is a damping parameter. (Note that in a
bipartite network, only paths of an even length can exist between nodes of the same kind.) By including paths of all lengths,
we obtain the classical Katz similarity [151] which is defined as

sKatzxy = βAxy + β2(A2)xy + β3(A3)xy + · · · , (38)

where β is a damping factor controlling the path weights. This can be written as sKatz = (I − βA)−1 − I . A variant of the
Katz index, Leicht–Holme–Newman Index (LHN2) [144], was proposedwhere the term (Al)xy is replaced with (Al)xy/E[(Al)xy]
where E[X] is the expected value of X .
(iii) Random-walk-based similarity. Another group of methods is based on random walks on networks.
Average commute time: The average commute time between nodes x and y is defined as the average number of steps

required by a random walker starting from node x to reach node y plus that from y to x. It can be obtained in terms of the
pseudoinverse of the network’s Laplacian matrix, L+, as [152,153]

n(x, y) = (
(L+)xx + (L+)yy − 2(L+)xy

)
E, (39)

where E is the number of edges in the network. Assuming that two nodes are similar if they have small average commute
time, similarity between nodes x and y can be defined as the reciprocal of their average commute time

sACTxy = 1

(L+)xx + (L+)yy − 2(L+)xy
(40)

where the constant factor E has been removed.
Cosine-based on L+: This index is an inner-product-based measure. In the Euclidean space spanned by vx = Λ

1
2UT ex

where U is an orthonormal matrix composed of the eigenvectors of L+ ordered in a decreasing order of their eigenvalues
λx, Λ = diag(λx), ex is a column base vector ((ex)y = δxy) and T is matrix transposition, elements of the pseudoinverse of

the Laplacian matrix are the inner products of the node vectors, (L+)xy = vT
x vy. Consequently, cosine similarity is defined

as [153]

scos+xy = vT
x vy

|vx||vy| = (L+)xy√
(L+)xx(L+)yy

. (41)

Randomwalkwith restart: This index is a direct application of the PageRank algorithm [154]. Consider a randomwalker
starting from node x recursivelymoves to a random neighbor with probability c and returns to node xwith probability 1−c.
Denoting by qxy the resulting stationary probability that the walker is located at node y, we can write

qx = cPTqx + (1− c)ex (42)

where P is the transition matrix with elements Pxy = 1/kx if x and y are connected and Pxy = 0 otherwise. The solution to
this equation is

qx = (1− c)(I − cPT )−1 �ex. (43)
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Finally, the similarity index is defined as

sRWR
xy = qxy + qyx. (44)

A fast algorithm to calculate this indexwas proposed [155] and the application to recommender systemswas studied in [122]
where it was found that this similarity performs better than the Pearson correlation coefficient.

SimRank: This index is defined based on the assumption that two nodes are similar if they are connected to similar
nodes. This allows us to define SimRank in a self-consistent way [156] as

sSimRank
xy = C

∑
z∈Γx

∑
z′∈Γy

sSimRank
zz′

kxky
, (45)

where sxx = 1 and C ∈ [0, 1] is a free parameter. SimRank can also be interpreted by the random-walk process: sSimRank
xy

measures how fast are two random walkers, who respectively start at nodes x and y, expected to meet at a certain node.
Matrix forest index: This index introduces similarity between x and y as the ratio of the number of spanning rooted

forests such that nodes x and y belong to the same tree rooted at x to all spanning rooted forests of the network (for details
see [157]). Its mathematical definition

sMFI = (I + L)−1 (46)

can be further parametrized to obtain a variant of MFI

sPMFI = (I + αL)−1, α > 0. (47)

According to the authors,α > 0 determines the proportion of accounting for long connections between vertices of the graph
versus short ones.

Local random walk: To measure similarity between nodes x and y, a random walker is introduced in node x and thus
the initial occupancy vector is πx(0) = ex. This vector evolves as πx(t + 1) = PTπx(t) for t ≥ 0. The LRW index at time step
t is defined [158] as

sLRWxy (t) = qxπxy(t) + qyπyx(t) (48)

where q is the initial configuration function and t denotes the time step. In [158] it was suggested to use a simple approach
where q is determined by node degree: qx = kx/M . Note that in bipartite networks, an even time stepmust be used to obtain
similarity between nodes of the same kind.

Superposed random walk: Similar to the RWR index, in [158] they proposed another index where the random walker
is continuously released at the starting point, resulting in a higher similarity between the target node and its nearby nodes.
The mathematical expression reads

sSRWxy (t) =
t∑

τ=1
sLRWxy (τ ) =

t∑
τ=1

[qxπxy(τ ) + qyπyx(τ )]. (49)

In [153], several random-walk-based similarity indices, such asACT, cos+ andMFI,were applied in collaborative filtering.
Their experimental results show that in general, Laplacian-based similarities perform well.

4.2.3. Similarity involving external information

Besides the fundamental user–object relations and the ratings, additional information can be exploited to define or
improve the node similarity.
(i) Attributes. The dimension and elements of the attribute vectors are defined in advance by some domain experts,

and is identical to all users (objects) in the system. The similarity between two users (objects) is obtained by calculating
the correlation of their corresponding attributes vectors. For example, user profiles, usually including age, sex, nationality,
location, career, etc., can be simply applied to quantify the similarity between users based on the assumption that two
users are similar when they have many common features. In [159], a hybrid method considering both attributes of objects
and the ratings was shown to provide better recommendations than when these two sources of information are used
independently. However, the application of attributes represents some risks to user privacy—as shown by a recent work
on de-anonymization of large data sets [25], collection and utilization of attribute data poses several sensitive issues. For
more information on the issues of user privacy see [160].
(ii) Contents. Modern information retrieval techniques allow us to automatically extract content and meta information

of the available objects. Object similarity can hence be calculated based on the content comparison of the given objects.
This is usually referred as content-based recommendation in literature [161]. Unlike collaborative filtering, in a content-
based algorithm, recommendations are made based solely on the profile built up by analyzing the content of objects that
the target user has rated in the past. The recommendation problem hence becomes a search for objects whose content is
most similar to the content of objects already preferred by the target user. The classical method to weigh content is TF–IDF
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(term frequency-inverse document frequency) [140], which is a weighing metric often used in information retrieval and
text mining. A term, t , in a given document, d, is weighted as,

Wt,d = tf(t, d) × log |D|
|d : t ⊆ d| , (50)

where tf(t, d) is the frequency of t in document d, |D| is number of all observed documents. ThenWt,d can be used tomeasure
the similarly of objects defined in Section 4.2.2. In addition, if two users have collected objects with similar content, wemay
assume that these two users are similar.
Since both content-based method and collaborative filtering have their individual limitations, such as CF systems

do not explicitly incorporate feature information and face the sparsity and cold-start problems, while content-based
systems do not necessarily incorporate the information in preference similarity across individuals (see summaries and
discussions in Refs. [15,123]), many hybrid algorithms are proposed to avoid certain weaknesses in each approach and
thereby improve the recommendation performance. The combination methods can be classified into four categories:
(i) implement separate collaborative and content-based methods and then combine their predictions [162,163]; (ii) add
content-based characteristics to collaborative models [164–166]; (iii) add collaborative characteristics to content-based
models [167] and (iv) develop a general unified model that integrate both content-based and collaborative characteristics
[32,168–171]. However, these methods are only effective if the objects contain rich content information that can be
automatically extracted. This is the case for recommendation of books, articles and bookmarks, but not for videos, music
tracks or pictures.
(iii) Tags. Collaborative tagging systems emerged with the advent of Web2.0 [94]. Different from traditional taxonomy

with hierarchical structure, tagging systems allow users to freely assign keywords (which are usually referred to as tags)
to manage their own collections without the limitation of a preset vocabulary. Tags provide a rich source of information
for recommendation purposes. With the tagging information, algorithms can be easily designed to calculate user similarity
and object similarity by considering tag vectors in user and object space, respectively. To alleviate the effects of spam and
magnify personalized user preferences, weighting techniques are often applied to measure the importance of each element
in a given tag vector.

5. Dimensionality reduction techniques

Dimensionality reduction aims at downsizing the amount of relevant data while preserving the major information
content. It is often applied in areas such as data mining, machine learning and cluster analysis. Most techniques of
dimensionality reduction involve feature extraction which makes use of hidden variables, or so called latent variables, to
describe the underlying causes of co-occurrence data. In the context of movie selection, potential viewers may consider
genres such as action, romance or comedy features in a movie, which constitute the latent variables. These latent variables
are usually represented by multi-dimensional vectors. A simplified picture of two-dimensional vectors of action and
romance is shown in Fig. 7, which shows that user Peter has a preference in actionmovies, while userMary prefers romantic
content. Given these vectors and the corresponding vectors of movies, we can define the expected rating of a user on a
move as the scalar product of their vectors. For instance, we expect Peter prefers movie β rather than α, while the opposite
is true for Mary. Recommendations can thus be made once the vectors are computed. If K hidden variables are used, the
latent vectors are K -dimensional and dimensionality reduction is achieved if K(N +M) < NM , since the number of relevant
variables is reduced. In practice, these techniques are particularly suitable for large data sets which are costly to store and
manipulate.
Instead of introducing latent variables which describe interests and genres, users and objects can also be assigned to

individual classes which leads to reduction of data dimension. In this case, the co-occurrence of a user–object pair is
explained by the relation between the classes to which the user and the object belong to. Though the original intention
for such classification is not to reduce the data dimension, the number of classes used is usually significantly smaller than
the number of users and objects, which then results in reduction of dimensionality.
Dimensionality reduction is in particular well applicable in collaborative filtering (it is sometimes referred to as model-

based collaborative filtering), as for most applications only a small fraction of user–object pairs are observed such that the
number of relevant variables can be significantly reduced. Reductions in dimensionality effectively preserve the information
content while drastically decreasing the computation complexity andmemory requirements for making recommendations.
In this section, several techniques of dimensionality reductionwith implementation to recommender systems are discussed,
including singular value decomposition (SVD) [172], Bayesian clustering [173], probabilistic latent semantic analysis
(pLSA) [174] and latent Dirichlet allocation (LDA) [175].

5.1. Singular value decomposition (SVD)

We start with a N ×M matrix Rwhose element riα corresponds to the rating of user i to object α (if the rating has not yet
been given, the corresponding element of R is zero). In the case without numeric ratings, R becomes the adjacency matrix as
riα = 0, 1 for connected and unconnected user–object pair, respectively. Recommendation process then aims to determine
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Fig. 7. An example of a user’s movie selection process with hidden variables.

which presently zero entries of R have high chance to be non-zero in the future. Note that R is a sparse matrix for most
applications because only a small fraction of all its elements are different from zero.
Dimensionality reduction is achieved by introducing K hidden variables which categorize tastes of users and attributes

of objects. The original R is approximated as the product of two matrices

R ≈ WV (51)

whereW and V are respectively matrices with dimension N × K and K × M . They contain the taste information for users
and content information for objects, respectively, expressing them in terms of K hidden variables. Because of these hidden
variables, SVD belongs to a broad class of latent semantic analysis (LSA) techniques. From the product of W and V in
Eq. (51), we see that objects are selected by users based on the overlap between a user’s tastes and a movie’s attributes.
When the number of hidden variables is smaller than N and M , the number of parameters needed to describe the system
reduces from NM for the original R to NK + KM for the product WV . This approach is also known as matrix factorization
(MF) as R is factorized into a product of matrices.
To obtainW and V , singular value decomposition (SVD) is a common algebraic tool in LSA which results in downsizing

of relevant variables and, at the same time, finding a good approximation of R. In SVD, R is factorized as

R = WΣV (52)

where Σ is a K × K diagonal matrix, and equality in the above factorization holds with K = min(N,M). The matrix Σ

contains the so-called singular values of R, which are indeed the square root of the eigenvalues of RR∗ (or R∗R). To benefit from
dimensionality reduction, we put K < min(N,M)which corresponds to the K -rank approximation in SVD and include only
the K largest singular values inΣ and replace the others by zero. Equality in Eq. (52) no longer holds and R is approximated

with R̃ given by

R ≈ R̃ = W Σ̃V (53)

where Σ̃ is the K -rank approximation ofΣ . Given certain conditions on the matrix R, for instance a low-rank R, quantities
include the lower and the upper bound of the prediction errors, and the smallest number of non-zero entries in R to achieve
an accurate prediction have been studied and proved analytically [176–179]. An estimate of the rank K is also given in [180].
These works also lead to useful algorithms. We refer readers to [176–180] and the references therein for details.

Here we show schematically the approach of SVD following [172]. First of all, it can be shown that R̃ can be found by

minimizing the Frobenius norm of the matrix R − R̃, that is

R̃ = argmin
{R̃′}

‖R − R̃′‖ (54)

with the rank of R̃′ restricted to be K . The Frobenius norm is given by

‖R − R̃‖ =
√∑

iα

(riα − r̃iα)2, (55)

which corresponds to the root square error of R̃with respect to R, with r̃iα denoting the element (i, α) in R̃. SVD thus provides

a simple cost function for measuring the agreement between R and R̃. To obtain R̃ explicitly for a particular R, an simple
iterative approach [172] based on gradient descent can be employed. Σ in Eq. (53) is first absorbed into eitherW or V to

obtain R̃ = WV as in Eq. (51). Our task is to obtain the optimalW and V for which R̃ = WV minimizes the norm in Eq. (55).
We now express r̃iα as

r̃iα =
K∑

k=1
wikvkα. (56)
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After substitution of the above expression, we minimize the difference between riα and r̃iα for an observed pair (iα) by
differentiation of (riα − r̃iα)2, namely

∂

∂wik

(riα − r̃iα)2 = −2wik

(
riα −

K∑
k=1

wikvkα

)
, (57)

∂

∂vkα

(riα − r̃iα)2 = −2vkα

(
riα −

K∑
k=1

wikvkα

)
. (58)

Since the norm is non-negative by definition, we minimize the norm square which leads to the same result while
encountering simpler expressions in the process. The obtained gradients can be used to write a gradient descent-based
updating procedure forwik and vkα in the form

wik(t + 1) = wik(t) + 2ηwik(t)eiα(t), (59)

vkα(t + 1) = vkα(t) + 2ηvkα(t)eiα(t), (60)

where t denotes the iteration step and

eiα(t) = riα −
K∑

k=1
wik(t)vkα(t). (61)

The learning rate η > 0 should be small to avoid big jumps in the solution space. With random initial conditions on wik

and vkα , these equations are iterated until the squared norm shows no further decrease. Other procedures such as the
variants of stochastic gradient descent may be applied to improve computational efficiency [181]. As suggested by [172],
subtracting a small term from the gradient canprevent large resultingweights ofwik and vkα (this is equivalent tominimizing

‖R− R̃‖2+ λ
2
‖W‖2+ λ

2
‖V‖2, or similar to using the Tikhonov regularization which gives preference to solutions with small

norms in ill-posed problems), which leads to the following update rule

wik(t + 1) = wik(t) + η
(
2wik(t)eiα(t) − λwik(t)

)
, (62)

vkα(t + 1) = vkα(t) + η
(
2vkα(t)eiα(t) − λvik(t)

)
(63)

where a new parameter λ ≥ 0 is introduced to this end; λ > 0 usually leads to better accuracy of the results. Using the

resulting wik and vkα , we can compute R̃ = WV which has non-zero values on entries where the input matrix R are zero
(representing unexpressed evaluations)—element r̃iα then predicts the possible rating given by user i to object α.

Note that while ‖R − R̃‖measures the ‘‘error’’ of R̃ with respect to R, it is usually very different from (greater than) the
error of the ultimate rating estimates. The reason for this, of course, lies in the fact that ‖R− R̃‖ is minimized while knowing
R, and the K(N +M) free parameters usually allow us to achieve very low value of ‖R− R̃‖. To measure performance of this
method correctly, the available data must be divided into a training set (which is used to ‘‘learn’’ W and V ) and a test set
(see Section 3.3 for details). Increasing K does not automatically improve the results: over-fitting the data (providing too
many free parameters) can lead to inferior accuracy. The use of this and other machine-learning methods hence requires a
certain amount of tests and/or experience.
In addition to a simple iteration procedure, SVD also enjoys a flexibility in dealing with additional data. For instance,

one can easily include the influence of individual rating bias in the framework. Suppose user i tends to give an average of bi
more score for all his items when compared to other users, while object α tends to receive bα more scores when compared
to other items, the predicted scores can be expressed as [182]

r̃iα = μ + bi + bα +
K∑

k=1
wikvkα, (64)

where μ is the average value among all user–object pairs. In this case, ‖R − R̃‖ is minimized with respect to bi, bα , wik

and vkα for all i, k and α. Other than individual bias, there are other variants of SVD which utilizes the relations between
users in social network, for instance the similarity in taste between friends, to improve the recommendation accuracy by
the factorized matrices [183].
Apart from the case with user–object ratings as the only input data, the above-described procedure can be generalized

to incorporate additional information [172]. Suppose diα is the additional information (e.g. date) associated with a given
user–object pair. Transforming diα into positive integers l with 1 ≤ l ≤ L, the elements ykl in the K × L matrix Y contain
the relation between each of these additional data and the hidden variables. For example, a large number of movies with
romantic content are reviewed on the Valentine day, leading to a large value in the corresponding entries of romance and

Valentine day in Y . With the additional information, the matrix R̃ can be expressed as

r̃iα =
K∑

k=1
wikvkαykdiα . (65)

Similar derivations based on gradient descent provide updating procedures forwik, vkα and yk,diα which can then be used to

obtain R̃with the smallest error with respect to R.
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5.2. Bayesian clustering

Before describing a probabilistic version of LSA, we first introduce the Bayesian clustering method which is also
probabilistic but simpler in formulation. In Bayesian networks, the value of a variable depends only on the value of its
parent variables. For example, the probability of a variable x is described by the conditional probability P(x|pax) where
pax is the parent variable of x. The joint probability of several independent variables can be factorized as P(x1, . . . , xN) =∏N

i=1 P(xi|paxi) which represents the dependency structure of the variables. However, obtaining the most relevant
dependency structure, i.e. the dependency relation between different nodes in the Bayesian network, is not a trivial task.
For the purpose of personalized recommendation, we describe a two-sided clustering [173,184] which is easy to

implement. To obtain the rating for an unobserved user–object pair, one classifies users and objects respectively into Kuser
and Kobject classes. The values of Kuser and Kobject are parameters on the algorithm, similarly to K which was a parameter of
SVD. We assume that there is a simple Bayesian network that underlies the input data—the simplest assumption is that riα
depends only on the user’s class ci and the object’s class cα . The probability of riα can then be written as

P(riα) =
Kuser∑
ci=1

Kobject∑
cα=1

P(riα|ci, cα)P(ci)P(cα).

To obtain an estimate of riα , we need to find P(ci), P(cα) and P(riα|ci, cα), which is effectively P(r|x, y) as the rating r is
dependent merely on the user class x and the object class y. This can be done by applying the inference methods including
the marginal estimation by belief propagation [185,186] and likelihood maximization by expectation maximization [187].
Here we describe another simple scheme, known as the Gibbs sampling method [188], which is similar to the heat bath
algorithm in statistical physics [189,190]. Gibbs sampling is useful when the joint distribution of all variables is difficult
to sample (in our case, P({r|(x, y)}, {ci}, {cα})), while sampling the conditional probability of individual variables given all
other variable is comparatively easy (e.g., P(ci′ |{r|(x, y)}, {ci}−i′ , {cα})). It is similar to the heat bath algorithm as it models
the state of a system moving in a phase space and samples at certain time intervals the required (physical) quantities.
Here we describe the Gibbs sampling scheme suggested in [173] to sample the state ({r|(x, y)}, {ci}, {cα}) of the system

which allows us to evaluate the predicted ratings for any unobserved user–object pair. This schemewas developed to sample
binary ratings so we assume that riα = 1 when user i has collected α or rated object by a score above a certain threshold;
riα = 0 otherwise. In this case, one can represent P(r|x, y) by a single value variable Pxy corresponding to the probability
that a user from category x likes an object from category y.
We start the algorithm with a random latent class assignment for all users and objects and evaluate Nx, Ny and Nxy,

respectively correspond to the number of users in class x, the number of objects in class y, and the number of observed
user–object pairs (i.e., riα = 1) for all pairs of classes. We then draw values of Pxy from the beta distribution with parameters
(Nxy+1,NxNy−Nxy+1), or simply approximate Pxy by itsmean Pxy = Nxy/NxNy. Similarly, the variables Px and Py, respectively
defined as the probability that a random user or object is classified in class x or y, are drawn from Dirichlet distributions or
simply approximated by Px = Nx/N and Py = Ny/M . All these values of Pxy, Px and Py are used to evaluate the transition
probability of the system from the present state to another state in the phase space. We then successively pick either a
random user or a random object and update its latent class as [173]

P(ci = x) ∝ Px

Kobject∏
y=1

P
∑

α riαδcα,y
xy (1− Pxy)

∑
α(1−riα)δcα,y , (66)

for users, and

P(cα = y) ∝ Py

Kuser∏
x=1

P

∑
i riαδci,x

xy (1− Pxy)
∑

i(1−riα)δci,x (67)

for objects. These equations involve large powers of probability values and may lead to inaccurate numerics during the
computation. Instead of computating the probability directly, one can first compute the powers and convert them to
probability during the update of latent classes. The values of Nx, Ny and Nxy, and thus of Px, Py and Pxy, are updated after
each update of user class or object class. After a sufficient number of iterations, we can start sampling estimated ratings
of unobserved user–object pairs at regular time intervals which should be long enough to ensure low correlation between
consecutive sampled states. For instance, the predicted rating for user i on object α can be obtained by

r̃iα =
∑
t

Pxy(tc + tT )δx,ci(tc+tT )δu,cα(tc+tT ), (68)

where tc and T are respectively the convergence time and the sampling time interval. We can also store the state
({Pxy}, {ci}, {cα}) at each sampling time and use the above equation to obtain the predictions afterward.
We remark that the above two-sided Bayesian network corresponds to the simplest dependency structure which relates

ratings to merely user and object classes. More comprehensive Bayesian relation can be derived, for instance, to include
the individual rating preference for objects [191] or to model the possibility of mixed membership [192]. Another class of
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extensions is to build a probabilistic relational model (PRM) [184] to predict ratings by utilizing other meta-data including
age, occupation and gender of users, or category, price and origin of objects. Although this comprehensive information
generally improves recommendation results, to determine a valid dependency structure of meta-data is a non-trivial task
in PRM.

5.3. Probabilistic latent semantic analysis (pLSA)

Probabilistic latent semantic analysis (pLSA) is similar to LSA in the sense that hidden variables are introduced in to
explain the co-occurrence pairs of data. Unlike the algebraic SVD employed in LSA, pLSA is a statistical technique based on a
probabilistic model. Well developed inference methods including likelihood maximization [187] and Gibbs sampling [188]
can thus be employed in pLSA. pLSA models the relations between users and objects through the implicit overlap of genres,
as compared to the two-sided Bayesian clustering where each user and object belong to a single specific category. In pLSA,
the co-occurrence probability P(i, α) of user i and object α is expressed using the conditional probability given a hidden
variable k

P(i, α) =
K∑

k=1
P(i|k)P(α|k)P(k). (69)

Since P(i|k)P(k) = P(k|i)P(i), this can be written as

P(i, α) = P(i)
K∑

k=1
P(α|k)P(k|i) (70)

which leads to the conditional probability P(α|i) of an object α to be collected given the user i,

P(α|i) =
K∑

k=1
P(α|k)P(k|i), (71)

which is already a quantity useful for personalized recommendation. Unlike the Bayesian clustering approach where the
co-occurrences of users and objects are characterized by the coupled probability Pxy between the classes, users and objects
are rendered independent in pLSA given the hidden variables—the co-occurrence probabilities are factorized. Our task is
to obtain suitable forms of P(α|k) and P(k|i) which provide accurate predictions of collected and recommended objects
through P(α|i). We note that instead of P(α|i), P(i, α) can also be expressed as

P(i, α) = P(α)

K∑
k=1

P(i|k)P(k|α) (72)

to obtain P(i|α)which can be of interest for some purposes.
To obtain P(α|k) and P(k|i), one can adopt a variational approach described in [174] to maximize the per-link log-

likelihood of the observed data set which is given by

L(φ, θ) = 1

E

∑
(i,α)

log P(α|i) = 1

E

∑
(i,α)

log

( K∑
k=1

P(α|k)P(k|i)
)

(73)

with respect to vectors φ and θ which parametrize P(α|k) and P(k|i) by P(α|k) = φ(k)
α and P(k|i) = θ

(i)
k . Here E is the total

number of user–object links. We remark that the sum over (i, α) includes only the observed user–object pairs. We then
employ the expectation maximization (EM) algorithms [187] to find the value of θ that maximize L(φ, θ). To achieve the
goal, one can introduce the variational probability distribution Q (k|i, α) in Eq. (73) for each observed pair (i, α), with the

constraint
∑K

k=1 Q (k|i, α) = 1, which allows us to rewrite L(φ, θ) as

L(φ, θ) = 1
E

∑
(i,α)

log

(
K∑

k=1
Q (k|i, α)

P(α|k)P(k|i)
Q (k|i,α)

)
(74)

≥ 1
E

∑
(i,α)

K∑
k=1

Q (k|i, α) log P(α|k)P(k|i)
Q (k|i,α)

:= F (Q , φ, θ) (75)

with the inequality is justified by Jensens’ inequality. F (Q , φ, θ) can be written as

F (Q , φ, θ) = 1

E

∑
(i,α)

{ K∑
k=1

Q (k|i, α) log[P(α|k)P(k|i)] + Siα(Q )

}
(76)
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with Siα(Q ) being the entropy of the probability distribution Q for the pair (i, α)which is

Siα(Q ) = −
K∑

k=1
Q (k|i, α) logQ (k|i, α). (77)

SinceF serves as the lower bound of likelihood function L(φ, θ), wemaximizeF with respect toQ ,φ and θ. The expectation
maximization algorithm thus maximizes F by finding the optimal Q , φ, θ alternatively. We first obtain the distribution Q
which maximizes F by assuming a particular form of P(α|k) and P(k|i), i.e. holding φ and θ constant. Maximization of F in
this step is subject to the normalization of Q (k|i, α) for every observed user–object pair which leads us to the Lagrangian

L(Q , φt , θt) = F (Q , φt , θt) +
∑
(i,α)

λiα

( K∑
k=1

Q (k|i, α) − 1
)

(78)

where φt and θt denotes respectively φ and θ after t iteration steps, or equivalently, Pt(α|k) and Pt(k|i). L(Q , φt , θt) can
then be differentiated to obtain the optimal Q for every observed user–object pair in the form

Qt(k|i, α) = Pt(α|k)Pt(k|i)
K∑

k′=1
Pt(α|k′)Pt(k′|i)

= φ
(k)
α,tθ

(i)
k,t

K∑
k′=1

φ
(k′)
α,t θ

(i)

k′,t

. (79)

This optimal Q is obtained from θt and φt , thus we label it as Qt .

We then proceed to obtain the distributions P(α|k) and P(k|i), i.e. the value of φ(k)
α and θ

(i)
k , by assuming Q is held fixed

at Q = Qt obtained from Eq. (79). Due to the normalization of P(α|k) for all α and P(k|i) = 1 for all i, the corresponding
Lagrangian has the form

L(Qt , θ) = F (Qt , θ) +
∑
k

λk

( M∑
α=1

P(α|k) − 1
)

+
∑

i

λi

( K∑
k=1

P(k|i) − 1
)

. (80)

After differentiation, the optimal P(α|k) and P(k|i) can be found

Pt+1(α|k) = φ
(k)
i,t+1 =

∑
i

Qt(k|i, α)∑
α′

∑
i

Qt(k|i, α′)
, (81)

Pt+1(k|i) = θ
(i)
k,t+1 =

∑
α

Qt(k|i, α)∑
k′

∑
α

Qt(k′|i, α)
(82)

where the summation involving i and α runs only over the observed user–object pairs. The optimal P(α|k) and P(k|i) are
obtained from Q = Qt . We label them as Pt+1(α|k) and Pt+1(k|i), respectively, because they constitute the basis for the next
iteration step where Qt+1 is found. After stationary values of Qt , φt and θt are found, Eq. (71) is used to obtain personalized
recommendations.
As the above pLSA model considers a multinomial distribution φ(k)

α which can be used to model only binary preferences,
one may consider the generalized pLSA [193] which allows for numeric ratings. The fast increasing number of independent
variables used by pLSA (there are K(N + M) of them) and the cold-start problem for new objects can be alleviated by
assuming prior distributions on φ(k) and θ(i), such as Dirichlet priors discussed in the following section [175].

5.4. Latent Dirichlet Allocation (LDA)

Latent Dirichlet Allocation (LDA) [175] is similar to pLSA in the sense that hidden variables are present in a probabilistic
way. While pLSA does not assume a specific prior distribution over P(k|i), LDA assumes that priors that have the form of
the Dirichlet distribution. LDA was applied to predict review scores based on the content of reviews [194] and to uncover
implicit community structures in a social network [195]. It can be also extended to include general meta-data of users and
objects [196].

For each user i there is a distribution P(k|θ(i)) where θ(i) is a K -dimensional multinomial distribution with θ
(i)
k is the

probability of user i belonging to the latent class k, i.e. P(k|i) = θ
(i)
k . Unlike pLSA, the variable θ(i) in LDA has a Dirichlet prior

distribution with a K -dimensional parameter a. The probability of observing user iwith the collected object set {α}i is

P({α}i|a, φ) =
∫
dθ(i)P(θ(i)|a)

[ ki∏
μ=1

K∑
k=1

P(αi,μ|k)P(k|θ(i))

]
(83)
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Fig. 8. A so-called plate notation representing the LDA recommendation model: a and b represent the model’s parameters at the system level, which
characterize respectively the Dirichlet distribution of θ

(i)
k and φ(k)

α , where P(k|i) = θ
(i)
k and P(α|k) = φ(k)

α .

where ki is the number of objects collected by user i and αi,μ is theμ-th object collected by i. The Dirichlet prior distribution

P(θ(i)|a) is

P(θ(i)|a) =
Γ

( K∑
k=1

ak
)

K∏
k=1

Γ (ak)

K∏
k=1

(
θ

(i)
k

)ak−1
, (84)

where Γ (x) is the Gamma function, the constraint
∑K

k=1 θ
(i)
k = 1 holds and θi,k > 0 for all i and k. Prior distributions for all

θ(i) share the same parameter a. The LDA model can be represented by a so-called plate notation which is shown in Fig. 8.
The probability of the observed data {(i, α)},

P({(i, α)}|a, φ) =
∏
i

∫
dθ(i)P(θ(i)|a)

[ ki∏
μ=1

K∑
k=1

P(αi,μ|k)P(k|θ(i))

]
, (85)

depends on the parameter vectors a and b.
In the original formulation of LDA [175], P(α|k) is given by a multinomial distribution parametrized by φ such that

P(α|k) = φ(k)
α as in the case of pLSA. Some variants of LDA consider P(α|k) following a Dirichlet prior distribution, which

is known as a smoothed version of LDA [197]. In this case, b which characterizes the prior distribution of P(α|k) = φ(k)
α in

Eq. (83) corresponds to aM-dimensional parameter of the Dirichlet prior distribution

P(φ(k)|b) =
Γ

(
M∑

α=1
bα

)

M∏
α=1

Γ (bα)

M∏
α=1

(
φ(k)

α

)bα−1
. (86)

Prior distributions for all φ(k) share the same parameter b.
In order to obtain rating predictions for unobserved user–object pairs, one has to find P({φ(k)}, {θ(i)}|{(iα)}, a, b) and

use {φ(k)} and {θ(i)} to make personalized predictions for user i. For instance, the predicted score for an unobserved pair
(i, α) is given by r̃iα = ∑K

k=1 φ(k)
α θ

(i)
k . Since the distribution of {φ(k)}, {θ(i)} is in general intractable, one can follow [175] and

adopt a variational approach to maximize likelihood—similarly as we did in the case of pLSA. Here we describe the Gibbs
sampling for the smoothed LDA as an alternative inference method [189]. The procedures are similar to the Gibbs sampling
in Bayesian networks, except that one assigns a latent class for each user–object pair, instead of classes for individual users
and objects.
To derive an equation for Gibbs sampling in LDA, we first assign an index μ for each observed user–object pair (i, α) so

that kμ is a latent variable drawn from the multinomial distribution θ(iμ) and αμ is an object drawn from the multinomial

distribution φ(kμ). As shown in [189,198], the inference method is much simplified by assuming a symmetry Dirichlet prior
with homogeneous a and b, i.e. a1 = · · · = aK := a and b1 = · · · = bM := b. Then one can show that the conditional
probability for an observed user–object pair μ′ characterized by kμ′ is given by

P
(
kμ′ = k|{kμ}−μ′ , {(iμ, αμ)}) ∝ P

(
αμ′ |kμ′ = k, {kμ}−μ′ , {(iμ, αμ)}−μ′

)
P

(
kμ′ = k|{kμ}−μ′

)

∝
n

(k)

−μ′,αμ′ + b

n
(k)

−μ′ + Mb

n
(iμ′ )
−μ′,k + a

n
(iμ′ )
−μ′ + Ka

(87)
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where all n−μ′ ’s are evaluated in the absence of pair μ′: n(k)

−μ′ is the number of observed pairs characterized by latent class

k, n
(k)

−μ′,α is the number of observed pairs of object α characterized by latent class k, n
(i)

−μ′ is the number of observed pairs of

user i (degree of i) and n
(i)

−μ′,k is the number of observed pairs with user i characterized by latent class k.
The Gibbs sampling process runs as follows. We first start with a random assignment of latent class to each observed

user–object pair and successively pick a random user–object pair to update its latent class according to Eq. (87). This

corresponds to a shift of the system state from one to another; n(k), n(k)
αμ′ , n

(iμ′ ) and n
(iμ′ )
k are updated after each new

assignment of the latent class. After a sufficient number of iterations, one can sample φ(k) and θ(i) at a regular time interval

φ(k)
α = n(k)

α + b

n(k) + Mb
, θ

(i)
k = n

(i)
k + a

n(i) + Ka
. (88)

With these samples of φ(k) and θ(i), the predicted score for an unobserved user–object pair can be computed as

r̃iα =
∑
t

K∑
k=1

φ(k)
α (tc + tT )θ

(i)
k (tc + tT ), (89)

where tc and T are respectively the convergence time and the sampling time interval. As in the Gibbs sampling of Bayesian
clustering, states of φ(k) and θ(i) can be stored and use to compute the predicted scores later. When the input data is large,
one can distribute the Gibbs sampling to several processors to shorten the computation time [199].

6. Diffusion-based methods

Similarly as the classical PageRank algorithm [154] brought the order to the Internet by analyzing the directed network
of links among web pages, one could aim to obtain recommendations using a network representation of the input data with
user preferences. The algorithms presented in this section are all based on specific transformations (projections) of the input
data to object–object networks. Personalized recommendations for an individual user are then obtained by using this user’s
past preferences as ‘‘sources’’ in a given network and propagating them to yet unevaluated objects.

6.1. Heat diffusion algorithm (HDiff)

This algorithm is based on projecting the input data on a simple object network characterized by a symmetric adjacency
matrixAwith elements either one (for similar objects) or zero (for dissimilar objects). It recommends objects to an individual
user by a process motivated by heat diffusion: objects liked and disliked by this user are represented as hot and cold spots
respectively, and recommendation is made according to the equilibrium ‘‘temperature’’ of the nodes in the networks [200].
The discrete Laplace operator of the network has the form L = 1N − D−1Awhere D is the network’s diagonal degree matrix
with elements Dαβ = kαδαβ . This operator is a discrete analog of the heat diffusion operator −∇2 which is well-known in
physics. The resulting temperature vector for user i, hi, is the solution of the heat diffusion equation

Lhi = fi (90)

and has both variable part (which we seek) and fixed part. Fixed elements of hi correspond to objects already evaluated by
user i; they are set to 1 (objects liked by the user—they act as heat sources) or 0 (objects disliked by the user—they act as
heat sinks). Mathematically this corresponds to the Dirichlet boundary condition. The external flux vector fi is non-zero only
for objects evaluated by user i and allows for fixed values attributed to sources and sinks. Eq. (90) can be solved using the
Green’s function method and the involved computational cost can be lowered by utilizing various algebraical properties of
L [200]. At the same time, it is straightforward to find the equilibrium hi iteratively by setting the initial temperature vector

h(0)
i to contain only the fixed heat sources and sinks and iterate

h(n+1)
i = L′h(n)

i (91)

where L′
i is the same as the Laplace operator above except that it keeps elements in hi corresponding to i’s evaluated objects

unchanged.
Given this mathematical framework, it is still an open question how exactly to apply it to a given rating matrix R. The

procedure adopted in [200] is that the Pearson’s correlation coefficient for ratings of objects α and β , Cαβ , is compared with
a specified threshold Ct and Aαβ = 1 when Cαβ ≥ Ct and it is zero otherwise. The threshold Ct is set so that the resulting

number of links is the same as the number of non-zero entries in RTR (which is equivalent to the number of object pairs
co-evaluated by at least one user). The boundary condition for user i is composed of the ratings given by this user to different
objects (note that the heat diffusion equations above are not constrained to the binary case like/dislike-hot/cold and can be
used to arbitrary-valued ratings).
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Fig. 9. Graphical representation of the links created by a user who has rated only objects 1 (rating 5), 2 (rating 3) and 3 (rating 4).

6.2. Multilevel spreading algorithm (MultiS)

This algorithmcanbe appliedwhen ratings riα are given in a discrete scale.
7 For example, Amazon.comemploys a five-star

scale where one and five stars correspond to the worst and best rating, respectively. For the sake of simplicity, we assume
a five-level rating scale in the rest of this subsection (generalization to a different number of levels is straightforward).
As in other diffusion-based methods, the recommendation process starts with the preparation of a particular object–object
projection of the rating data. To eliminate the loss of information in the projection, instead ofmerely creating a link between
two objects, in this multilevel spreading algorithms, links are created between ratings given to a pair of objects [201]. As
a result we obtain 52 = 25 separate connections (channels) for each object pair. This is illustrated in Fig. 9 on an example
of a user who has rated three movies; as a result, three links are created between the given movies. When all data are
processed, contributions from all users accumulate and a weighted object–object network is created. Note that splitting
the connection between two objects into multiple separate channels aggravates the data sparsity problem and can lead to
inferior performance of this algorithm in some cases.
Between a given pair of objects we create multiple links which are conveniently stored in a 5×5matrix. By representing

integer ratings riα with column vectors in 5 dimensional space (unknown rating with viα = (0, 0, 0, 0, 0)T , rating riα = 1
with viα = (1, 0, 0, 0, 0)T , rating riα = 2 with viα = (0, 1, 0, 0, 0)T , etc.), connection matrix for objects α and β has the
form

Wαβ =
M∑
i=1

viαvT
iβ

ki − 1 . (92)

Weights of individual users are inversely proportional to their number of evaluations—this aims to compensate the
quadratically growing number of links created by an individual user, ki(ki − 1)/2, hence in total we get a linear relation
between user’s number of evaluations and the cumulative weight of user’s ratings.8

MatricesWαβ form a symmetric matrix W with dimensions 5N × 5N . By the column normalization ofW we obtain an
asymmetric matrixΩ which describes a diffusion process on the underlying network with the outgoing weights from any
node in the graph normalized to unity (if one chooses the row normalization instead, the resulting process is equivalent to
heat conduction in the network; for a mathematically-oriented review of flows in networks see [202]). Elements with large
weights in Ω represent strong patterns in user ratings (e.g., most of those who rated movie X with 5 gave 3 to movie Y).
Similarly as for other diffusion-based methods, we obtain personal recommendations for user i by combining the aggregate

matrixΩ with opinions already expressed by i. This opinions are stored in a 5N-dimensional vector h(0)
i (the first 5 elements

correspond to object 1, next 5 elements to object 2, etc.). As in Section 6.1, we seek the stationary solution of the equation

Ωihi = hi, (93)

where Ωi is the same as Ω except it keeps the elements corresponding to the objects evaluated by user i unchanged.

Resulting vectors h(n)
i contain information about objects unrated by user i. This information can be used to obtain

rating predictions by the standard weighted average. For example, if for a given object in hi we obtain the 5-tuple
(0.0, 0.2, 0.4, 0.4, 0.0)T , the rating prediction is 0.2 × 2 + 0.4 × 3 + 0.4 × 4 = 3.2. Numeric tests presented in [201]

7 It is also possible to apply a binning procedure to continuous-valued ratings and hence transform them into an integer scale but that has not been used
in practice yet.
8 Since the users who have evaluated only one object add no links to the object–object network, the divergence of the weight 1/(ki − 1) at ki = 1 is not
an obstacle.
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suggest that h(1)
i is a good enough predictor. Sophisticated techniques to avoidmultiple iterations in Eq. (93) [201] are hence

not fundamental for practical applications of this algorithm. An alternative way is to map each object to several channels
with the number of channels being equal to the number of different ratings. So that if a user i has collected an object α
with rating 2, her will only connect to α(2). After that, one can directly apply the probabilistic spreading process (see the
next subsection) to obtain the similarity and then integrate it into the collaborative filtering framework to obtain better
recommendation [203].

6.3. Probabilistic spreading algorithm (ProbS)

This algorithm is suitable for data without explicit ratings, i.e. only the sets of object collected/visited by each user is
known. Elements of the ratingmatrix R are hence riα = 1 (when user i has collected/visited object α) or riα = 0 (otherwise).
More explicit preference indicators can be easily mapped to this form, albeit losing information in the process, whereas the
converse is not so.
The spreading recommendation algorithm proposed in [103] is based on a projection of the input data (which can be

represented by an unweighted user–object network) to an object–object network. In this projection, the weightWαβ can be
considered as the importance of node αwith respect to node β and in general it differs fromWβα . A suitable form ofWαβ can
be obtained by studying the original bipartite networkwhere a certain amount of a resource (a scalar quantitywhich reflects,
for example, social influence in a recommender system) is assigned to each object node. Since the network is unweighted,
the unbiased allocation of the initial resource is split equally among all its neighboring user-nodes. Consequently, resources
collected by user-nodes are equally redistributed back to their neighboring object-nodes. This is equivalent to randomwalk
from the initial source nodes to a distance of two in the user–object bipartite graph. An illustration of this resource-allocation
process for a simple bipartite network is shown in Fig. 10.
Denoting the initial object resource values as xα , the two resource-distribution steps can be merged to one and the final

resource values read x̃α = ∑N
β=1W

P
αβxβ where

WP
αβ = 1

kβ

M∑
i=1

riαriβ

ki
. (94)

The superscript P stands for ‘‘probabilistic’’ and serves to distinguish the current spreading process from its modifications
that we shall discuss later. Note that the resulting N ×N transition matrix is column normalized withWP

αβ representing the
fraction of the initial β ’s resource transferred to α. Recommendations for a given user i are obtained by setting the initial
resource vector hi in accordancewith the objects the user has already collected, that is, by setting hi

β = riβ . Recommendation
scores of objects are then obtained by

h̃i
α =

N∑
β=1

WP
αβh

i
β .

Objects recommended to user i are then selected according to h̃i
α (the higher the value, the better).

The original ProbS algorithm has been later improved in various directions. In [112], the authors suggested a
heterogeneous distribution of the initial resources among the nodes, hα = aiαk

θ
α , and showed that when the parameter

θ is tuned appropriately, it can help increase the accuracy of recommendations and it also makes the recommendations
more personalized. The optimal value of θ is close to −1 (e.g., −0.8 to −1.0 for MovieLens, depending on the size of the
selected data set [112,204]), indicating that each item should be assigned more or less the same amount of total initial
resource. In [113], it was proposed to construct the transition matrix asW+ ηW2 whereW is defined by Eq. (94) and η is a
free parameter. By effectively removing redundant correlations (the optimal value of η is usually negative), this method
succeeded in outperforming ProbS and other derived methods in terms of accuracy and diversity of recommendations.
Similar method can also be applied in designing more accurate similarity index for collaborative filtering [205] and link
prediction [150]. In [206], they proposed to increase the method’s accuracy by giving preference to objects with degree
similar to the average degree of objects collected by a given user. In addition, the degree correlation [207], users’ tastes [208],
user behavior patterns [54] can also be accounted to improve the recommendation accuracy.
Finally, we introduce a preferential diffusion method, which was proposed to enhance the algorithm’s ability to find

unpopular and niche objects [115]. The basic idea is that at the last step (i.e., diffusion from users to objects), the amount of
resource that object α receives is proportional to kε

α where ε ≤ 0 is a free parameter.When ε = 0, thismethod is identical to
ProbS. Itwas shown that PDnot only providesmore accurate recommendations than ProbS but it also generatesmore diverse
and novel recommendations by recommending relevant unpopular items. The authors further compared the intra-similarity
of recommended itemswith that of thewhole system. As shown in Fig. 11, they draw a line that divides the parameter space
into two phases: In the left region, especially the area corresponding to smaller ε and larger L, PD is like a concave lens that
broadens the user’s vision, while in the right region, corresponding to larger ε and smaller L, PD likes a convex lens that
narrows the user’s vision. Of course, we prefer the former case since it embodies the merit of personalization.
Note that the resource-allocation process can also be applied in unipartite networks. Considering a pair of nodes i and j, i

can send some resource to jwith their common neighbors playing the role of transmitters. In the simplest case, we assume
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Fig. 10. Illustration of the ProbS’s resource-allocation process in a simple bipartite network. The assigned resources first flow from object-nodes (circles)
to user-nodes (squares) and then return back to object-nodes.
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Fig. 11. (Color online) Intra-similarity I(L) (see Eq. (21)) for MovieLens and Netflix. With the parameter combination (ε, L) along this line, the intra-
similarity equals the value of the system.

that each transmitter has a unit of resource, and will equally distribute it to all neighbors. This defines a similarity index
(called resource allocation index [102]) between nodes:

sij =
∑

l∈Γi∩Γj

1

kl
, (95)

whereΓi denotes the set of i’s neighboring nodes. Recentworks showed that despite its simplicity, this index performs better
than many known local similarity indices in link prediction [102], community detection [209], and the characterization of
weighted transportation networks [210].
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Fig. 12. (Color online) Comparison of ProbS and HeatS, where the target user is marked by a star and the collected objects are of initial resource 1. The
final scores after ProbS and HeatS are listed in the right sides of plots (c) and (e).

6.4. Hybrid spreading-relevant algorithms

To answer the need of diversity in algorithm-based recommendation (see Section 2.2 for a discussion of this problem
and possible solutions), a hybrid algorithm was proposed in [39] which combines accuracy-focused ProbS with diversity-
favoring heat spreading. As in probabilistic spreading, heat spreadingworks by assigning objects an initial level of ‘‘resource’’

denoted by the vector h, and then redistributing it via the transformation h̃ = WHh. The transition matrix of heat spreading
reads

WH
αβ = 1

kα

M∑
i=1

riαriβ

ki
(96)

which, in contrast toWP obtained with Eq. (94), is row-normalized and corresponds to a heat diffusion process (thus named
HeatS) on the given user–object network.
Fig. 12 illustrates the procedures of ProbS and HeatS. According to the final scores, ProbSwill recommend the third object

to the target user, while HeatS will recommend the second. Generally speaking, HeatS is able to find out unpopular (i.e., of
low degree) objects, yet ProbS tends to recommend popular objects and thus lacks diversity and novelty. On the other hand,
recommendations obtained by HeatS are too peculiar to be useful.9 To integrate the advantages from both two algorithms,
in [39] they proposed an elegant hybrid ofWH andWP (named HybridS) in the form

WH+P
αβ = 1

k1−λ
α kλ

β

M∑
i=1

riαriβ

ki
, (97)

where λ = 0 gives pure heat spreading and λ = 1 gives pure probabilistic spreading. As before, the resulting

recommendation scores for user i are computed as h̃i
α = ∑N

β=1W
H+P
αβ hi

β where the initial resource values are set as h
i
β = riβ .

Results shown in [39] show that this combination of two different algorithms allows us not merely to compromise between
diversity and accuracy but to simultaneously improve both aspects. By tuning the degree of hybridization, represented by
the parameter λ, the algorithms can be tailored to many custom situations and requirements. Note that, the parameter λ
is not necessarily to be the same for different users and objects, namely each user i can have her own parameter λi or each
object α can have its own parameter λα , in this way, the algorithmic performance can be further improved [213]. And the
initial resource distribution is not necessarily to be homogeneous, and by introducing the heterogeneity, the algorithmic
performance can be improved [214].

9 Compared with the similarity-based methods and ProbS, the AUC value and precision of HeatS are considerably lower. Therefore, using HeatS alone
seems not proper. Recent works [211,212] indicate that some weighted version of HeatS could also give highly accurate recommendation.
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Similar to the Hybrid spreading algorithm, B-Rank combines a randomwalk process with heat diffusion but it does so for
data containing explicit ratings [215]. The transition matrix is introduced in the form

Pαβ = 1− δαβ

nα

M∑
i=1

wixiαxiβ (98)

where xiα = 1 if user i has rated object α and xiα = 0 otherwise,wi is the weight of user i and nα is a term which makes the
matrix P row-normalized. User weightswi are set all identical but can be potentially set heterogeneous, for example, to give
more weight to reliable users or suppress spammers (these possibilities have not been studied yet). Due to the term 1−δαβ ,
Pαα = 0 and the corresponding randomwalk on theweighted object–object network is thus non-lazy (there is no possibility
to return to the initial node after one step). Using the vector with ratings of user i, hi

α = riα , object scores corresponding to

the forward and backward propagation of hi are computed as F i = PThi and Bi = Phi (forward and backward propagation
correspond to randomwalk and heat diffusion, respectively—for details see [202]). The final score of object α is obtained as
f iα = F i

αB
i
α (the higher, the better). Note that this algorithm does not aim at predicting missing scores (hence the traditional

measures of recommender systems, MAE and RMSE cannot be applied to evaluate it). Instead, it provides a personalized
ranking (hence the name, ‘B-Rank’) of objects for each user.
The above-mentioned diffusion processes can be applied in computing the similarity between users or items, and then

integrated into the similarity-based methods. Liu et al. [206] defined the similarity between users according to ProbS,10 and
showed that based on the routine collaborative filtering algorithm, the proposed similarity index improved the algorithmic
performance compared with the Pearson similarity index. Pan et al. [216] applied the HybridS process to define similarity,
which outperforms the cosine similarity under the framework of collaborative filtering.

7. Social filtering

Recommendations made by a recommender system are often less appreciated than those coming from our friends [217]
and social influences may play a more important role than similarity of past activities [218,219]. In addition, accuracy
of recommendation can be improved by analyzing social relationships, such as coauthorships in academic literature
recommendation [220] and friendships and memberships in product recommendation [221]. Many real systems, such as
Delicious.com and Facebook.com, allow users to recommend objects to their friends. Similarly, users can subscribe to articles
from selected bloggers in blogging sites (Twitter.com and others) as well as to news alerts from information dissemination
systems (Elesvier.com and others). In this chapter, we will first present empirical evidences that demonstrate the presence
of social influences on information filtering. Then we will introduce two basic ways social filtering are employed in
recommendation: by quantifying andutilizing trust relationships betweenusers and byusing the opinion from ‘‘tastemates’’
to select the content to be recommended.

7.1. Social influences on recommendations

Social influences, also called the word-of-mouth effects in the literature, are known to be crucial to many sociometric
processes, such as decisionsmaking, opinions spreading and the propagation of innovation and fashion [222–225]. Scientists
have been aware of the commercial values of social influences for a long time [226], yet large-scale applications for
commercial purpose only emerged when the Internet era began. Besides, the availability and the great variety of data
provide us good opportunities to quantitatively understand social influences [227]. This section focuses on the social
recommendations, whose effects can be roughly divided into two classes: one is on users’ prior expectations, leading to
the increase of sales; another is on users’ posterior evaluations, resulting in the enhancement of the user loyalty.
Positive effects of social recommendations on prior expectation have already been demonstrated in a number of real

examples. They are found in a wide range of systems, including product reviews [228,229], e-mails [230], blogs [231]
and microblogs [232]. In [233], the authors studied the effects of social influences on purchase preference: users of an
e-commerce system were given the option to recommend an item to their friends through e-mails after purchase. The
first person to purchase the same item through a referral link from e-mails got a 10% discount, and when this happens,
the recommender will receive a 10% credit. As shown in Fig. 13, the purchase probability for a DVD grows remarkably
with the increasing number of received recommendations from friends on this DVD. There is a saturation at about 10
recommendations, afterwhich the purchase probability does not increase anymore. In other examples, social influences can
be much more complicated. In [233], they reported a similar experiment with book sales where in contrast to the common
sense, recommendations had little or even negative effect on the purchase probability. Social influencesmay also vary across
topics and items: [234] showed that different tags and topics spread on Twitter differently and [235] found that strength
and direction of social influence are topic-dependent. A recent work shows that the mutual interaction between opinions
of past viewers and potential future viewers leads to a complex dynamics that agrees qualitatively with movie popularity
behavior seen in real systems [236].

10 Similar to Eq. (94), but the spreading process starts from user side and ends at user sides.

ht
tp

://
do

c.
re

ro
.c

h



10 20 30 40 50 60
Incoming Recommendations

Pr
ob

ab
ili

ty
 o

f 
B

uy
in

g

0

0.02

0.04

0.06

0.08

Fig. 13. Probability of buying a DVD given a number of incoming recommendations.
Source: Taken from [233].
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Fig. 14. The probability distributions of ratings, posted with (solid line) or without (dashed line) a word-of-mouth recommendation in Douban.
Source: Taken from [237].

In comparison, the issue about how social recommendations affect users’ posterior evaluation received less
attention. [237] empirically analyzed two web sites, Douban.com and Goodreads.com, where millions of users rate books,
music and movies, and share their ratings and reviews with friends and followers. On these social network sites,
the phenomenon that users recommend favorites to friends and followers plays an important role in shaping users’
behaviors and collections. Fig. 14 compares the probability distribution of ratings on items in Douban with and without
recommendations (the result is very similar in Goodreads). This demonstrates that an individual is more likely to give a high
rating to an item with word-of-mouth recommendations, compared with items without recommendations. Zhu et al. [329]
reported an experiment showing that people’s choices could be reversed with high probability ( 20%) under social influence
from others’ choices.
There are also indirect evidences about the positive social influences, for example, in Twitter, statistically a tweet will

spread to about 103 users if it gets retweeted [238], and in Taobao,11 the communication between buyers is a fundamental
driving force for purchasing activity [239].

11 Taobao.com is a Chinese consumer marketplace that is the world’s largest e-commerce website.
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Many ingredients could result in positive social influences in online recommendation. Firstly, the word-of-mouth
influences and role-model effects from social mates are very strong in offline society, for example, an experiment in
Nepal [240] shows that on average the probability of a woman to use a novel menstrual cup Take-Upwill increase by 18.6%
if one more of her friends has used Take-Up. Secondly, the friendship network and interest-based network are strongly
correlated with each other [241], and friends tend to visit the same items and vote them with similar ratings [242].

7.2. Trust-aware recommender algorithms

It is the basic paradigm of recommender systems that when computing recommendations for an individual user,
evaluations of the others are not weighed equally and preference is given to those who have similar rating patterns as the
given user. This approach neglects an important facet of the evaluation process: it is not only personal tastes but also social
relationships and the quality of evaluations that differs from one user to another. Tomake a better use of social relationships,
various recommendation algorithms relying explicitly on trust or user reputation [243,244] have been developed and
applied by many commercial web sites such as eBay.com [245]. Trust can be used instead of user similarity [246], in
combination with collaborative filtering to help deal with data sparsity and the cold start problem [247–249], or it can
help to further filter recommendations by prioritizing those approved by trusted sources (see [250] for a review). The use of
reputation in recommendation is further supported by the evidence that trust correlates with user similarity [251], meaning
that by introducing trustwe are unlikely to conflictwith users’ interests andpreferences. As noted in [252], even an imperfect
reputation systemmay be beneficial as (i) it provides an incentive for good behaviors, (ii) imposes costs on participants to get
established, and (iii) swiftly reacts to bad behavior. The use of trust and reputation has also its drawbacks, which includes:
(i) time consuming computation, (ii) low incentives for users to provide the required feedback, (iii) privacy concern for data
of trust relationship, and (iv) low availability of trust data sets for tests of algorithms. However, without algorithms for trust
and reputation, online transactions would be dramatically affected, if not halted.
The difference between reputation and trust is that while the former characterizes general beliefs about a user’s

trustworthiness, the latter concept is personal and relates to a user’s willingness to rely on the actions of a given user.
The terms local and global trust metric are sometimes used instead of trust and reputation, respectively. To establish trust
or reputation, onemay let the involved participants to rate each other and use these evaluations to derive trust or reputation
scores [244]. Whenmutual user evaluations are given, an initial seed of trusted users can be used to find all the trustworthy
users as in the classical Advogato trustmetric (see http://www.advogato.org/trust-metric.html). Other popular trustmetrics,
such as PageRank [154] and Eigentrust [253], use the spreading activation approach by which nodes are initially loaded and
then propagate their load within the network [254] (diffusion-based recommendation methods are presented in Section 6
also use this approach). When trust relations between the users are weighted (with trust values 1 and 0 representing total
trust and distrust, respectively), the plain trust propagation can be shown to be insufficient—the Appleseed algorithm solves
this problem by creating virtual trust edges for backward propagation [255].
It is a great disadvantage of reputation-aware recommender systems that they usually require substantial input on

the user side to evaluate trust and reputation. Some trust-aware reputation algorithms hence tried not to rely on explicit
evaluations of other users. In [256], they propose to detect noisy ratings by comparing the actual ratings with the predicted
ratings obtained by a recommendation algorithm, with data only from a set of implicitly trusted users. This ‘‘reputation of
ratings’’ can in turn be used to build reputation of users [250]. A different approachwas proposed by [257]where the authors
use the information contained in social relationships between the users (which may stem from users’ family or friendship
relations), the transitivity of trust (as in [258]), and the propagation of users’ queries in social networks. When computing
recommendations for a specific user i, the greatest weight is hence given to the userswho can be connectedwith user i in the
social network by a short path with high trust values along its edges. The proposed system is shown to assign correctly trust
values and self-organizes to a state producing highly accurate recommendations (when compared to a simple benchmark
strategy when one of the recommendations from peers is chosen at random).

7.3. Adaptive social recommendation models

While the above described trust-aware systems make use of existing social relationships, adaptive social
recommendation models build a network of users based on their evaluations. In [259], the authors proposed a model
where the recommended items spread over the network similarly as an epidemics [64,260] or rumor [10,261] spreads in
a society. Simultaneously with this spreading, the network of users evolves and adapts to best capture users’ similarities.
This epidemic-like spreading of a successful item is of particular importance in the case when individual items swiftly loose
their relevance [262] – as it is the case for news stories, for example – because it combines personalization with the speed of
access. It is very different from the currently popular services such as digg.com and reddit.comwhich still rely on centralized
distribution of items where only those of very general interest can become popular and be accessed by many. For a recent
review of approaches to news recommendation see [263].
Here we describe briefly the model introduced in [259]. In this model, users either ‘‘approve’’ or ‘‘disapprove’’ the

consumed items. Each user i has S sources (i.e., S other users from whom i receives news) and thus the system can be
described by a directed network with a constrained node in-degree S. When a news is approved by user i, it is added to the
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Fig. 15. Illustration of the news propagation in an adaptive networkmodel [259]. User i added a new news, which is automatically considered as approved
(A) and sent to users j1, j2, j3 who are i’s followers. While user j2 dislikes (D) the news, users j1 and j3 approve it and pass it further to their followers
k1, . . . , k5 who have not evaluated the news yet (which is denoted with question marks). User k4 receives the news from the authorities j1 and j3,
yielding the news’s recommendation score sj1k4 + sj3k4 . At the same time, user k5 receives the news only from the authority j3 and hence for this user,
the recommendation score is only sj3k5 .

recommendation lists to all i’s followers (i.e., all userswho have i as one of their sources). This spreading process is illustrated
in Fig. 15. Similarity between users i and j is defined according to the agreement of their past evaluations,

sij = nA

nA + nD

(
1− 1√

nA + nD

)
(99)

where nA and nD denote the number of news for which evaluations of i and j agree and disagree evaluations, respectively.
The term 1/

√
nA + nD aims at penalizing user pairs with little overlap of evaluated news as they may seem to be a great

match for each other simply because agreeing in evaluations of a few news. To summarize, items at the top of a user’s
recommendation list are probably recommended by multiple sources of this user or, at least, by a source whose similarity
with this user is high.
Apart from using user similarity in the recommendation process (the recommendation score of item α for user i is given

by the similarity between i and the sources of iwho approved this news), it is also crucial for updating the source–follower
network. This updating aims at maximizing the similarity of each user with their sources. As shown in [259] by agent-
based simulations, the system can evolve from a random initial state to a highly organized state where taste mates are
connected and news spread effectively. The original network can be improved by rewiring, through ineffective random
replacements or computationally demanding global optimization. One can also combine simple greedy optimization with
random assignment [264], repeated trials [265] or exploration of the directed user network both in the direction of followers
and sources [266]. Robustness of this recommendation approach can be enhanced by introducing the user reputation [264].
This adaptive evolution of the network of user–user interactions can be used to explain the widely observed scale-free
leadership structure in social recommender systems [267], and recent analysis suggested that users could get better
information by selecting proper leaders in social sharing websites [268].

8. Meta approaches

Input data for recommendation can be extended far behind the traditional user–item-rating scheme. In this section,
we briefly review the so-called meta approaches where additional information of various kind (tags assigned to items by
users or time stamps of past evaluations) enters the recommendation process or simply several recommendation methods
are combined together (either in an iterative self-evaluating way or by forming a hybrid algorithm). As possibilities for
extensions are relatively easy to find, this direction has seen high activity over the past years.

8.1. Tag-aware methods

In the past decade, the advent of Web 2.0 and its affiliated applications brought us a new paradigm to facilitate the
user-generated creation on the Internet. One such example are user-driven platforms that allow users to store resources
(bookmarks, images, documents, and others) and to associate them with personalized words, so-called tags. The resulting
ternary user–object–tags structure, so-called folksonomy, represents a rich data structure that is of interest for computer
scientists, sociologists, linguists, and also physicists [94]. When viewed from the perspective of an individual user, these
tags constitute a personalized folksonomy [269] where tags, although only simple words, contain highly abstracted yet
personalized information. Different from other kinds of meta-data (such as profile, attributes, and content), tags are not
predefined by domain experts or administrators. This approach has the advantage of being scalable and requiring no specific
skills, hence allowing every individual to participate and contribute. Despite the lack of imposed organization, shared
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Fig. 16. (Color online) Illustration of a user–item–tag tripartite graph consists of three users, five items and four tags, as well as the recommendation
process described in [286]. The tripartite graph is decomposed to user–item (black links) and item–tag (red links) bipartite graphs connected by items. This
is how the scoring process works for a given target user U1. (a) First, highlight the items, I1, I3, I5, collected by the target user U1 and mark them with unit
resource. In the depicted case we have: fI1 = fI3 = fI5 = 1, and fI2 = fI4 = 0. (b) Second, distribute the resources from items to their corresponding users
and tags, respectively: fU3 = fI1× 1
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vocabularies were shown to emerge in folksonomies [270], making them increasingly accessible to advanced information
filtering techniques. Tags therefore represent a simple yet promising tool to provide reasonable recommendations and
solve some outstanding problems in recommender systems, e.g. the cold-start problem [271]. The social impact [272]
and dynamical properties of folksonomies [273,274] are expected to be applied to obtain trustworthy and real-time
recommendations in tagging systems. In addition, the hypergraph [94] theory is considered to fully utilize the complete
network structure of tagging platformswithout using any hybridmethods and losing any information, which gives promises
for generally more reliable recommendations. At the same time, there are also drawbacks caused by the freedom of tags:
e.g. polysemy, synonymy, and ambiguity [275]. To alleviate these problems, advanced methods such as tag hierarchical
clustering [276], introduction of ontologies [277] and recommendation of tags [278] were proposed.
Unlike being used as a traditional filter, researches tend to apply more sophisticated theories and methods (e.g., social

impact) in designing tag-aware recommendation algorithms. The FolkRank [279], a modified PageRank algorithm, was
proposed to rank tags in folksonomies by assuming that important tags are given by important users. Due to the success of
collaborative filtering, many works were devoted to using tags to measure similarity among users or objects, and then fuse
with the standard memory-based collaborative filtering framework [280–282]. In [84], the present tag-aware algorithms
are classified as follows:

1. Topic-based models. They implement probability-based methods such as pLSA and LDA (see Sections 5.3 and 5.4) to
extract latent topics from the available tags in the user or object space and then produce recommendations using classical
probability-based models [283–285].

2. Network-based models. They implement graph theory-based methods such as ProbS (see Section 6.3) to represent tags
as nodes in a tripartite user–object–tag network and apply a diffusion process to generate recommendations [286] (see
Fig. 16).

3. Tensor-based models. They implement tensor factorization [287] to reduce the ternary relation into low-rank feature
matrices, alleviate the sparsity problem in large-scale data sets and ultimately provide personalized recommendations
[288,289].

8.2. Time-aware methods

Nowadays, huge quantities of information emerge every second. We receive news from various media, such as
newspapers, TV programs,websites, etc. Due to its timeliness and in particular its convenience,more andmore people prefer
to read news online (e.g., using RSS feeds) instead of from traditional media like newspapers. However, given the enormous
amount of online news, one challenging issue is the novelty of news recommendation, i.e., how to appropriately and
efficiently recommend news to readers, matching their reading preferences as much as possible. The analysis of data from a
popular platform for sharing news stories, Digg.com, byWu and Huberman [290] shows that the novelty of news half there
decays in a very short period. Another typical instance is the communication system of e-commercewebsites, which require
real-time feedback among various agents [291]. Such information updates so frequently that it is impossible for individuals
to evaluate each, or even read them in time. Consequently, an urgent question emerges: how to automatically filter out the
irrelevant information, receive timely news and perform immediate yet appropriate response? One promising solution lies
in time-aware recommender systems, which can hopefully help to address aforementioned issues. Collaborative filtering
(see Section 4), as the most widely adopted method in recommender systems, is the first one to be considered. Following
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Fig. 17. (Color online) Illustration of time based recommendation where the target user has collected three items, I1, I2 and I3, which are then used to
predict the newest item I4. f is the decay function to weight the time difference between I4 and other items that were collected before.
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Fig. 18. (Color online) Illustration of users’ interests changing with time in the MovieLens data. Shifts of user interests are represented by the average
similarity among item pairs of the target user within an observed time t (shown with gray circles). The dashed line represents the average similarity of all
users.

the classical collaborative filtering framework, most of the related work focuses on designing time factors to suppress old
evaluations or objects. Generally, such kind of weight is expressed by various decay functions (see Fig. 17), which suggests
that user interests in a single topic would decay with time (see Fig. 18). Ding and Li [292] weighed different items by putting
smaller weights on older ones. Similar methods used the time factor to adaptively choose temporal neighborhoods and then
obtain recommendations via the refined neighbors [293–295]. Another kind of attempts consider decaying time to weigh
user–item binary edges in bipartite networks. Liu and Deng [296] hypothesized the time effect decayed in a exponential
manner, which could also been found in other empirical studies [290] and models [297]. A broad picture of collaborative
filtering with time can be found in a recent Ph.D. thesis [298].

Another important issue in recommender systems is that of novelty. Although an itemwith the highest recommendation
score is the most possible candidate for a target user, it may fail to be picked due to the diversity of human tastes. In such
cases, these items should not always occupy the recommendation list and be recommended over and over again. Therefore,
temporal diversity [299] becomes crucial in designing time-based algorithms. Xiang et al. divided user interests into two
general categories: longer-term and short-term [44]. Longer-term interests govern the essential preferences of users and
would not easily change over time. By contrast, short-term interests are more likely to be effected by social environment
(Fig. 18 shows such difference). By identifying and making use of the differences between them using a time factor, in [44]
they successfully provided more reliable yet interesting recommendations, which can also be found in relative works [300].

Besides recommendation, time also plays an important role in various fields, such as network growth [262,301],
identification of original scientific contributions [302,303], selecting the backbone structure of citation networks [304], and
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aging effects in synchronization [305]. However, how to appropriately use the time information to discover the underlying
dynamics of user preferences and help us master the current information era still remains an important research challenge.

8.3. Iterative refinement

Iteratively solved self-consistent equations are widely applied in characterizing structural and functional features of
nodes and/or edges in networked systems. Their solution is usually used to describe a stable distribution of a certain quantity
in a system consisting of many interacting individuals, where the amount of this quantity assigned to individual i is affected
by both the interacting rules and the amounts of this quantity assigned to other individuals interacting with i. In a directed
network, the significance of a node is not only determined by its attributes (if applicable), but also contributed by the
significance of its downstream nodes. For example, the classical set of self-consistent equations for PageRank value G(i)
of the web page i has the form [154]

G(i) = c + (1− c)
∑
j∈Γi

G(j)

koutj

, (100)

where j runs over all the web pages that point to i, c is the return probability accounting for the random browsing, and
koutj is j’s out-degree. This set of equations represents a particular Markovian process on a network and can be successfully
solved using an iterative approach thanks to the fast convergence to a stationary solution observed in most cases [306].
Besides web pages, similar self-consistent equations are also successfully applied in ranking people [307], genes [308], and
so on. If instead of referring to nodes, the individuals refer to pairs of nodes, this approach can be used to quantify node
similarity [144,309]. In more complicated situations, the individuals can be users and items, or scientists and publications,
and similar iterative equations embodied in bipartite networks can be applied in building quantitative reputation systems,
namely simultaneously estimate people’s reputation and objects’ quality [310–315].
Besides the above-mentioned iterative equations, a closely related framework is that of the so-called self-consistent

refinement [316,317]. In the link prediction and personalized recommendation, the known information is the adjacency
matrix representing a unipartite or a bipartite network and the task is to estimate the likelihoods of link existence for
currently zero elements of the adjacency matrix. For recommender systems with ratings, the algorithms need to predict
unknown ratings according to the rating matrix. Denoting R the known matrix and R̃ the predicted matrix (i.e., output), the
procedure of many algorithms can be written in a generic form

R̃ = D(R), (101)

whereD is amatrix operator.12 Denoting the initial configuration as R(0) and the initial time step k = 0, a generic framework
of self-consistent refinement reads [317]: (i) Implement the operationD(R(k)); (ii) Set the elements of R(k+1) as

R
(k+1)
iα =

{
D(R(k))iα when R

(0)
iα = 0,

Riα when R
(0)
iα �= 0. (102)

Then, set k = k + 1. (iii) Repeat (i) and (ii) until the difference between R(k) and R(k−1) is smaller than a given terminating
threshold.
Considering the matrix series R(0),R(1), . . . ,R(T ) (T denotes the last time step) as a certain dynamics driven by the

operator D, all the elements corresponding to the known items (i.e., R
(0)
iα �= 0) can be treated as the boundary conditions

expressing to the known and fixed information.13 If R̃ is an ideal prediction, it should satisfy the self-consistent condition
R̃ = D(R̃). However, this equation is not hold for most known algorithms. In contrast, the convergent matrix R(T ) is self-
consistent.
As shown in [317], applying the self-consistent framework can lead to great improvements compared with non-iterative

methods employing Eq. (101). We next show a simple example for similarity-based recommendation. Taking into account
the different evaluation scales of different users [318], we subtract the corresponding user average from each evaluated
entry in the rating matrix R and get a new matrix R′. The predicted rating is calculated by using a weighted average, as:

R̃iα =
∑
β

Ωαβ · R′
iβ∑

β

|Ωαβ | , (103)

where the similarity between items α and β is defined by Eq. (34). As shown in Fig. 19, experiment on MovieLens verifies
the advantages of the iterative refinement, where the original similarity-based algorithm corresponds to the first iteration
step.

12 See [317] on how to use this generic form to represent the well-known similarity-based and spectrum-based algorithms for rating prediction.
13 This is the essential difference between the self-consistent refinement and the above-mentioned iterative equations like PageRank, since in the latter
case, every matrix element is free to be changed.
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Fig. 19. Prediction error (MAE) versus iterative step for MovieLens data. We use the MovieLens data that consists of N = 3020 users, M = 1809 movies,
and 2.24 × 105 discrete ratings from 1 to 5. All the ratings are sorted according to their time stamps with 90% earlier ratings as the training set, and the
remaining ratings (with later time stamps) as the testing set.

8.4. Hybrid algorithms

Even for a good recommender algorithms it is difficult to address diverse needs of its heterogeneous users. Hybrid
methods overcome this problem by aptly combining recommendations obtained by different methods [319,320].
Hybridization is hence often used in practical implementations of recommender systems, even in very early ones [164].
One of the most important applications of hybrid recommendation algorithms is to solve the cold-start problem, by
combining collaborative and content data in such a way that even a new object that has never been rated before can
be recommended [321] (similarly, a new user who has never rated anything can receive some recommendations). Since
hybrid algorithms combine different approaches to recommendation, they also have the potential to improve the diversity
of recommendations [39]. The following classification of hybridization methods is taken from [15]:

1. implement collaborative and content-based methods separately and combine their predictions,

2. incorporate some content-based characteristics into a collaborative approach,

3. incorporate some collaborative characteristics into a content-based approach, and

4. construct a general unifying model that incorporates both content-based and collaborative characteristics.

Now we can extend class 4 to include also unifying models that incorporate two or more collaborative methods (see
Section 6.4).

Hybrid methods range from simple, such as using a linear combination of ratings obtained by different methods [162], to
very complex, such as employing Markov chain Monte Carlo methods [322] to model combined collaborative and content
data. Recent Netflix prize (see Section 2.1) has provoked interest in sophisticated methods for combined predictions (also
called ensemble learning or blending) which were shown to be very successful in lowering the error of predictions [323].
The main idea of blending is that the prediction vectors of F distinct recommendation methods, denoted as x1, . . . , xF , are
combined by a functionΩ : R

F → R so that the prediction error on a test set (evaluated by RMSE, for example) isminimized.
The optimal weighting function Ω is obtained by linear regression, neural networks, or bagging predictors [324,325]. For
details and evaluation of different blending schemes on the extensive data set provided by Netflix for the competition
see [323]. Some challenges can also be partially solved by hybridization, for example, the link prediction algorithm can
be used to generate artificial links that could eventually improve the recommendation in very sparse data [125,326].
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Table 5
Data sets used for evaluation of recommendation methods. Data density is defined as the ratio of the available ratings to the maximum possible number
of ratings; kU and kO denote the average user and object degree, respectively.

Data set Users Objects Ratings Density (%) kU kO

Movielens 6040 3,706 1000,209 4.5 166 270
Netflix 8000 17,148 1632,172 1.2 204 95

a b

Fig. 20. User and object degree distribution for the two data sets used to evaluate recommendation methods.

9. Performance evaluation

In this section we briefly compare performance of individual algorithms presented in this review. To test the algorithms,
we use two standard data sets: Movielens 1M14 and Netflix.15 The Movielens data set, which contains ratings from 6040
users to 3706 movies (corresponding to the rating density of 4.5 · 10−2), is used in its original form. Our subset of the
original Netflix data set was created by randomly selecting 8000 users from the original data set released by Netflix for the
Netflix Prize and keeping all their evaluations (see 2.1 for details on the competition). In this way, a data set with 17,148
objects (DVDs rented by the company to its users) and 1632,172 ratings in the integer scale from one to five (corresponding
to the rating density of 1.2 · 10−2) was created. Both data sets use the integer rating scale from one to five. For methods
requiring no explicit ratings (binary data), we assume that all ratings greater or equal than three represent objects liked
by the users and hence constitute a corresponding user–object link (if the rating is less than three, no link is formed). As a
result, there are 1387,039 and 836,478 links in the Netflix and Movielens data set, respectively. Table 5 summarizes basic
properties of the data sets.
Our two data sets differ not only by their density and user/object ratio—histograms of user and object degrees in Fig. 20

reveal further differences. Firstly, Movielens data were originally prepared in such a way that all users rated at least twenty
movies. This constraint has not been applied to the Netflix data set, resulting in a considerable number of users with only
little data on their past preferences available. Secondly, Netflix data also contains a large portion of movies that have been
rated only a few times (this probably reflects the fact that the company rents a wide variety of DVDs, many of which are
of interest for only a small part of the customers). Unsurprisingly, all degree distributions are broad and right-skewed, as
similar to many other social systems [26].
To test a recommendation method, we employ the standard approach. First, a randomly selected small part of the input

data ismoved into a so-called probe. In our case, the probe contains 10%of ratings present in the input data set. The remaining
90% of the data is then given to the recommendation method and are used to estimate the missing ratings. The estimated
missing ratings are then compared with the true ratings present in the probe set. This comparison is done by means of root
mean square error (RMSE) andmean absolute error (MAE) in the case of datawith explicit ratings and bymeans of precision,
recall and the average relative rank in the case of data without explicit ratings (see Section 3.4 for a detailed description of
these performance metrics). For precision and recall, we take into account top 100 places of each user’s recommendation
list. To eliminate possible effects of the probe selection, we repeat the procedure for ten independent randomly selected
probe sets and present the averaged results.
Method overall average is used only as a benchmark; it uses the average rating in the input data as estimate for every

user–object pair. For similarity-based methods, we employ the Pearson correlation coefficient which slightly outperforms
cosine similarity in terms of RMSE and MAE. For SVD, we used parameter values D = 20, η = 0.001 and λ = 0.1 that result
in favorable performance (see Section sec:SVD for the meaning of these parameters). Note that a better founded approach
would be to learn ‘‘optimal’’ values of these parameters from the data itself. This can be achieved by choosing {D, η, λ}

14 This data set can be obtained at http://www.grouplens.org/node/73.
15 This data set can be obtained at www.netflixprize.com.
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Table 6
Performance of algorithms for data with explicit ratings (averaged
over 10 realizations).

Method Movielens Netflix

RMSE MAE RMSE MAE

Overall average 1.12 0.93 1.09 0.92
Object average 0.98 0.78 1.02 0.82
User average 1.04 0.83 1.00 0.80
Multilevel spreading 0.94 0.75 0.97 0.77
User similarity 0.91 0.72 0.93 0.72
Object similarity 0.89 0.70 0.96 0.74
SVD 0.85 0.67 0.87 0.68
Slope one 0.91 0.71 0.93 0.73
Slope one weighted 0.90 0.71 0.93 0.73

Table 7
Performance of algorithms for datawithout explicit ratings (averaged over 10 realizations).

Method Movielens Netflix

P100 R100 Rank P100 R100 Rank

Global rank 0.039 0.311 0.143 0.041 0.272 0.066
Bayesian clustering 0.028 0.276 0.137 0.045 0.262 0.069
pLSA 0.071 0.575 0.090 0.071 0.456 0.050
LDA 0.081 0.543 0.093 0.081 0.439 0.048
ProbS 0.052 0.422 0.112 0.053 0.359 0.051
HeatS 0.039 0.336 0.116 0.001 0.020 0.099
ProbS+ HeatS,
λ = 0.2

0.067 0.548 0.080 0.062 0.421 0.046

based on RMSE or MAE computed for a small test set of predictions (which could again be created by taking 10% of the input
data) and only then reporting the resulting method’s performance computed for the probe. However, with only three free
parameters to tune, the results are likely to differ little from the results obtained by our naive approach where {D, η, λ} are
chosen directly from performance observed for the probe.
While numerical performance values as shown in Table 6 may seem very close to each other across all the methods

(perhaps with the exception of overall average), differences between the methods from the user’s point of view are much
greater than onewould expect fromRMSE varying at the second decimal place. For example, user average outperforms object
average for the Netflix data set, yet in fact it has zero filtering ability. For a given user, estimated rating of all unrated objects
is the same (equal to this user’s average rating), this user is thus provided no useful information as to which object to select
in the future. Further, the performance of object average may seem appealing with respect to the method’s simplicity, yet
one can easily check that objects with the highest estimated score are likely those that received only a few ratings. This is
becausewhile a rarely viewedobjectmay easily receive the highest possible average rating of five, a popular object inevitable
receives some worse marks which result in a lower average rating. For example, top-rated movies in both tested data sets
have all received less than five ratings and scored 5.0 on average. This analysis shows that RMSE and MAE, while useful and
easy to understand, give only a very limited information about a method’s performance.
Table 7 summarizes performance of methods requiring data without explicit ratings (binary data). As performance

metrics we use precision P , recall R and the relative rank (marked as rank in the table) of probe objects (if probe object
α belonging to user i appears on place x of this user’s recommendation list and this user has collected ki objects, the relative
rank ofα is x/(M−ki)).Method global rank corresponds to recommendation of themost popular items that have not yet been
collected by a given user. The results of pLSA and LDA are obtained from K = 50, while a slight increase in performance is
observed when K increases further. Results of Bayesian clustering are obtained with (Kuser, Kitem) = (70, 35) for Movielens
and (Kuser, Kitem) = (70, 140) for Netflix, where Kuser/Kitems is in a rough proportion to the corresponding ratio of users to
items. Note that global rank and Bayesian clustering are able to yield low relative rank but they fail to score in precision and
recall.

10. Outlook

After reviewing extensively the past work in the field of recommender systems, we describe here a few challenges that
the field of recommendation needs to tackle in the future.
To begin with, let us take the conceptual question of the possibility of effective recommendation. For a long time, we

all thought that we know ourselves better than anyone else does. Without much fanfare and fuss about philosophical
implications, IT experts and online businesses continue in their exploration of the part of our knowledge that resides not on
in ourminds, but at crossroads of communities. This in effect has violated both our self-knowledge belief and an implicit, long
cherished notion: individuals are masters of themselves. Conceptually, this admitting is nothing short of a revolution. The

ht
tp

://
do

c.
re

ro
.c

h



potential of the newapproach is huge: the ‘‘extra-body’’ knowledge about our preferencesmanifests itself in communication
data and is thusmuch easier to analyze and decipher than the part hiding among our neurons and synapses.What Amazon or
Netflix does is just scratching on the surface of the huge potential, as they only take into account a tiny fraction of information
about us. Google’s Gmail gains more insight about what its users do in the hope that emails reveal more than what can be
obtained from data about searching, book-buying, and movie-rating, thereby matching ads more closely to our preferences
and hence increasing their efficiency. Some recent online communities go even a step further than Gmail. For example,
Facebook.com lets its members to create trusted relationships and keeps track of members’ activities and conversations,
obtaining the opportunity to infer intimate details about users’ preferences. Though most of this information is implicit
and not yet ready for recommendation, the huge data basis in principle can yield much more insight than hitherto seen. By
letting the users to reveal more andmore, the potential for inferring their future wants grows and we are still to knowwhat
the consequences will be. The induced danger of privacy violation calls for new, privacy preserving recommender systems
where no sensitive data leave users’ computers, yet users can enjoy the benefit of collaborative filtering.
IMDB (Internet Movie Database) and similar web sites aggregate millions of votes for a wide range of movies, and online

sellers of movies use some degree of collaborative filtering to make recommendations given one’s past purchasing history.
However, an open reputation-sharing mechanism remains to become widespread. One can project forward to imagine
innovative applications, such as ‘‘MoviesWanted’’: a systemwhere plot descriptions are collaboratively developed and voted
on, to highlight movies desired by a constituency. The net effect of reputation filtering will be to bring more old, foreign,
and niche movies to light, with similar effects for music and other culture. Cultural opportunities that languish for want
of attention due to high search costs will reach audiences that did not know what they were missing. Many recommender
systemsprovide suggestions based on expressed or observedpreferences. But reputations could also encode other properties
of media, such as ‘‘ethicalness’’ of lyrics (and indeed of the performers’ lives and aims if one desires), or specific legal or
reproduction rights. Licensing schemes like Creative Commons certify an artistic work as having particular legal properties;
it is then feasible to provide both recommendations and direct access just within the set of freely available music.
Beyondmusic andmovies, numerous cultural areas and experience goods are ripe for recommendation services provided

by reputations. Book ratings and suggestions provide a navigation tool through humanity’s ever-growing literary output—
most notably fromAmazon, but also from a variety of small-scale services and personal lists. Travel guidebooks aid in getting
the insider view of an unfamiliar locale, but interpreted experiences of natives and previous travelers could be even better.
Whether for festivals, museums, opera, or the thousands of other shared activities which enrich our social landscape, the
cultural sector is fertile ground for development.
In the age of Internet andWorldWideWeb, ICT tools allows information to spread faster andwider than ever before, and

dominates the way we form our opinions and knowledge. While there has been an undeniable progress in the information
availability, a fundamental question remains elusive: do we get more diverse information than in the past? Although the
ICT Revolution was expected to allow people to access ever more diversified information sources and products, one often
sees that this is not the case. Popular viral videos copy the strategy of blockbuster films and target the tastes of the general
audience, giving rise to global hits. On the Internet, a few sites attire a huge part of web traffic. A similar process is in action
in science where disproportional attention is given to a small fraction of all new and exciting works [302]. The problem is
that search engines and recommender systems fall prey to a self-reinforcing rich-get-richer phenomenon: items that were
popular in the past tend to be served to even more users in the future. The natural outcomes of such defective dynamics are
the narrowing of people tastes and opinions together with a general cultural flattening. To address this issue, we need to
consider the long-term impacts of information filtering systems on the information ecology and study information filtering
tools that favor diversity without sacrificing their overall performance [39].
Another interesting facet of the mentioned diversity challenge is related to a concept of ‘‘crowd-avoidance’’. There are

situationswhere the generated data naturally fits the paradigmof recommender systems, yet using a standard recommender
system may result in poor outcomes. For example, when given data of user preferences for restaurants, it is natural to
recommend a user a new place to eat. However, if too many users are recommended the same place, it gets crowded
and nobody enjoys their meal. Similarly, when given data of industrial sectors active in various countries (which can be
effectively represented by a bipartite network [327], so much discussed and utilized in this review), one may recommend
a country a new sector on the basis of its similarity with already active sectors. However, if the country faces a strong
competition from its neighbors, it may do better by choosing a less similar sectorwhere the competition isweaker. The same
happens on a smaller scalewhere companies routinely competewith products of other companies, yet avoiding a direct clash
may be very beneficial. The concept of crowd avoidance in recommender systems could yield benefits in situations similar to
those described above, where resources cannot be shared by an arbitrary number of parties due to constraints of geographic
space or limited interest of customers.
The crowd avoidance phenomenon ranges from practically non-existing (in the case of e-book distribution, for example)

to very strong (no two customers can share an item) where it approaches the classical assignment problem [328]. The
most challenging seems to be the moderate case where recommending an item to a small number of consumers does not
create a problem yet (which fits well the above-described product and restaurant recommendation, for example). Note
that this whole problem is in principle similar to quantum physics systems where occupation numbers are confined by
constraints (such as the Pauli exclusion principle which says that two identical fermions cannot simultaneously occupy the
same quantum state) or where mutual repulsion among particles sharing the same site exists. Analogies with physics can
thus prove useful in studying this kind of systems.
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The science of recommendation is just starting—despite impressive progresses, much remains to be understood. For
further advances intuition alone is no longer enough and a multidisciplinary approach will surely bring powerful tools that
may help innovative matchmakers to turn the immense potential of recommendations into real life applications.
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