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Resumo

Atualmente as pessoas andam com smartphones quase todo o dia, e interagem com eles constan-
temente. Embora estes sejam usados principalmente para comunicação, redes sociais e naveg-
ação na web, eles estão equipados com uma ampla variedade de sensores incorporados e têm
muitas capacidades de conectividade. Eles podem, portanto, ser considerados sensores pessoais e
onipresentes, que por meio da agregação de dados de vários dispositivos, podem fornecer conjun-
tos de dados dinâmicos em grande escala para uma área geográfica ampla. Isto é conhecido como
crowdsensing. No entanto, a recolha massiva de dados usando dispositivos móveis pessoais, como
smartphones, apresenta muitos desafios, como capacidade de processamento e bateria limitadas, e
por vezes custos de conectividade. O crowdsourcing impacta ainda mais a qualidade dos dados de-
vido à heterogeneidade de dispositivos, do sistema operativo e restante software, e devido à baixa
regularidade de uso e retenção dos utilizadores. Esta tese propõe um desenho e implementação de
uma plataforma de crowdsensing móvel e oportunista, chamada SenseMyCity (SMC), que é um
sensor urbano móvel da Internet of Things (IOT).

A plataforma foi melhorada iterativamente, aproveitando as lições aprendidas de várias recol-
has de dados transdisciplinares ao longo de 9 anos. A aplicação cliente evoluiu naturalmente de
notebooks para smartphones, e a arquitetura de software, o modelo de dados e o protocolo de
comunicação baseados na cloud foram capazes de dar resposta às crescentes exigências de pro-
jetos de sensorização de várias áreas interdisciplinares como biomedicina, psicologia, transportes
e telecomunicações. A usabilidade do sistema foi também melhorada de forma iterativa, supor-
tando novos sensores e fontes de dados, por ex. integração de questionários, de novos algoritmos
que minimizam a interação necessária com o dispositivo móvel, e novas técnicas de extração de
informações. Apresentamos uma avaliação completa da plataforma, incluindo os custos de sen-
sorização e a identificação e correção de problemas na qualidade de dados tipicamente existentes
em recolhas não controladas.

A utilidade da plataforma foi validada por mais de 8 campanhas de recolha de dados com
mais de 1000 utilizadores e para varias áreas de investigação distintas. Por exemplo, a plataforma
foi utilizada para recolher 145h de viagens de trabalho de 36 condutores de autocarros, incluindo
os seus sinais cardíacos, facilitando a memória de situações de stress e com o objetivo de car-
acterizar as fontes de stress cardíaco dos condutores de autocarros. Noutro caso, utilizámos a
plataforma SenseMyCity para recolher dados veiculares georreferenciados de 27 utilizadores e
veículos, permitindo-nos treinar um modelo de regressão para estimar o consumo de combustível
instantâneo e a pegada de carbono dos veículos, utilizando apenas os seus dados de localização
recolhidos. A capacidade da plataforma recolher automaticamente dados de sensores de alta fre-
quência apenas durante as viagens dos utilizadores permitiu-nos caracterizar a mobilidade de uma
população e monitorizar a sua evolução de ano para ano. Questionários lançados automaticamente
no final de cada viagem forneceram-nos um valioso feedback humano, permitindo-nos treinar um
classificador para detetar automaticamente os modos de transporte utilizados em cada viagem,
enriquecendo as matrizes de destino de origem extraída (OD) com informação multimodal.
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Por último, aproveitamos informação "escondida" e mostramos que é possível extrair mapas
urbanos 3D de dados comuns GNSS, como por exemplo, dos conjuntos de dados já recolhidos
pela nossa plataforma. Isto é conseguido analisando a atenuação dos sinais recebidos vindos
dos satélites, e tendo em consideração as imprecisões no sistema de localização, enquanto que a
diversidade das condições de recolha atenua o enviesamento e o ruído. Um modelo de classificação
binária é treinado e avaliado em múltiplos cenários urbanos usando dados crowdsourced de mais
de 900 utilizadores distintos. O classificador Random Forest em ambientes urbanos típicos obteve
uma precisão entre 79% e 91% a classificar voxels de 4m de largura entre edifício ou espaço vazio,
demonstrando o potencial do método proposto para a construção de mapas 3D para áreas urbanas.

A plataforma SenseMyCity contribuiu diretamente para 10 publicações científicas em revistas
e conferências conceituadas, contando com mais de 120 citações, e muitas outras contribuições
científicas resultantes dos conjuntos de dados recolhidos e partilhados.



Abstract

People carry smartphones nearly 24/7 and constantly interact with them. This thesis unleashes
their potential as personal but ubiquitous sensors that through aggregation of data from multiple
devices can provide large-scale datasets for a widespread geographic area. This is widely known
as mobile crowdsensing. However, massive data-gathering using personal mobile devices such
as smartphones poses many challenges, such as limited battery and processing power, and pos-
sibly connectivity costs. Crowdsourcing further impacts data quality both due to device and OS
heterogeneity, and due to low user retention and consistency. This thesis proposes a design and im-
plementation for a mobile opportunistic crowdsensing platform, SenseMyCity (SMC), an Internet
of Things mobile urban sensor.

The platform was iteratively designed, leveraging the lessons learned from transdisciplinary
data collections over 9 years. The mobile application evolved naturally from notebooks to smart-
phones, and the cloud-based software architecture, data model and communication protocol were
able to meet the increasing requirements of multiple sensing projects from varied interdisciplinary
fields such as biomedics, psychology, transportation and telecommunications. The system usabil-
ity was iteratively improved by supporting new sensors and data sources (e.g., surveys), data col-
lection protocols, algorithms that minimize the required participants’ interaction with the mobile
devices, and information extraction techniques. We present a thorough evaluation of the platform,
in terms of the sensing costs and the identification and mitigation of recurring data quality issues
typical of uncontrolled data collections.

The usefulness of the platform is validated by more than 8 data collection campaigns from
1000+ users, in different research fields. Among others, it was used to collect 145h of daily work-
trips from 36 bus drivers, including their cardiac signals, facilitating memory recall of stressful
situations and aiming to characterize bus drivers’ cardiac stress sources. Contrastingly, we used
the SenseMyCity platform to collect georeferenced vehicular data from 27 users and vehicles,
allowing us to train a regression model to estimate vehicles fuel consumption and carbon footprint
given only their location traces. The platform capability to automatically collect high-frequency
sensor data only during users’ trips allowed us to characterize the mobility demand of a population
and monitor its evolution year-over-year. Triggered surveys at the end of sensed trips provided us
valuable human feedback, allowing us to train a classifier to automatically detect the transportation
modes used on each trip, enriching the extracted origin-destination (OD) matrices with multi-
modal information.

Finally, we leverage “hidden” information to show that 3D urban maps can be extracted from
standard GNSS data, such as from the datasets collected by our platform. Analyzing the received
satellite signal strength, our proposal incorporates position inaccuracies in the calculations, while
the diversity of collection conditions mitigates bias and noise. A binary classification model is
trained and evaluated on multiple urban scenarios using data crowdsourced from over 900 users.
The Random Forest classifier in typical urban environments achieved a generalization accuracy
between 79% and 91% on 4m wide voxels, demonstrating the potential of the proposed method
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for building 3D maps for wide urban areas.
SenseMyCity contributed directly to 10 scientific publications in top-tier journals and con-

ferences accumulating more than 120 citations, and many other research contributions originated
from the gathered datasets.
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Chapter 1

Introduction

We discuss in this chapter the context and motivation for the work of this thesis, the scientific

contributions, and conclude with the document outline.

1.1 Context and Motivation

In 2010 smartphones were a fast growing niche market and laptops were getting smaller and

cheaper. That year would see smartphones penetration rates rising from 21% to 31% of the popu-

lation in the top 5 European countries (U.K., France, Germany, Italy, Spain)1, and many low-cost

laptops and tablets were appearing with 6" to 10" screens and up to 8h of battery. These mobile de-

vices brought connected mobility and computation technology together, giving programmers and

researchers access to easily programmable mobile technology. Small form factors mobile sensors

started to appear around the same time, such as smart watches, and wearable bio-sensors (Vital

Jacket R©), able to collect physiological signals out of the lab, with very little burden to the user.

Nevertheless, many studies from other research areas were still using very expensive method-

ologies that did not scale well. For example, city-scale mobility analysis could offer valuable

information for city planners, traffic controllers, public transportation authorities, business devel-

opers, tourists and citizens alike. However, the main transportation and mobility study in Portugal,

done every 10 years by Instituto Nacional de Estatística (INE), has been using long paper question-

naires asking users to recollect by memory their home-work travels of the past months, including

trip duration and used transportation mode, costing millions of euros. In the biomedics field, am-

bulatory cardiac monitoring was previously reserved for critical patients and involved expensive

equipment and intrusive setups (e.g., 24-hour Holter). Transdisciplinary research studies merging

these fields, such as studying the effect of transportation events on the drivers’ cardiac signals,

were almost absent since they involved expensive and invasive technology that could not be inte-

grate due to lack of interfaces, data processing difficulties due to lack of machine readability and

lack of interoperability.

1Comscore, "2010 Mobile Year in Review"

1
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We decided to tackle the challenge of bridging these emerging technologies with the method-

ologies and data requirements from the different research fields. Many advantages could be ob-

tained using mobile devices with an interdisciplinary approach: mobile devices offered some in-

tegrated sensing, depending on the device, such as GNSS localization, motion and position sen-

sors (accelerometer, gyroscope, magnetometer), and even temperature, pressure, and many others;

they provided connectivity to external devices trough either USB or Bluetooth, allowing the use of

available third party sensors such as in-vehicle On Board Diagnostics (OBD), wearable sensors,

portable air-quality sensors, etc; they offered a programmable user interface that could be tailored

to the requirements of the different fields and methodologies, collecting human input via surveys

triggered by various conditions such as incoming sensor data, and producing data already in digital

format and easily processable; these mobile devices have local storage and processing capabilities,

but also an ubiquitous connectivity to the internet that provided access to a more powerful back-

end infrastructure for storage and processing of large amounts of data; the advent of smartphones

would also simplify mobile applications development and distribution, allowing any user with a

smartphone to install and run applications, that could be disseminated by standard communication

channels (e.g., email, marketing). The crowd was now reachable to researchers.

These characteristics enabled the idealization of a data collection platform, that can scale in

space, in time, and more importantly in quantity, making it easier to reach more users, from larger

areas, collecting data for longer periods of time and from more sensors simultaneously, in a more

ecological and less intrusive way. Obtaining large-scale dynamic datasets for a widespread geo-

graphic area, like collecting travel demand , city flows and travel time prediction, socioeconomic

data, or environmental data (e. g. noise, pollution) becomes a tractable problem if the sensing

can be crowdsourced to already existing and spread mobile devices. This is widely known as

crowdsensing.

However, extracting useful knowledge from massive amounts of data gathered using mobile

devices poses many architectural challenges. These mobile devices, such as smartphones, have

limited resources and should nevertheless be available to the owner at all times for other functions.

Users will only collaborate and provide data if the offered incentives or services compensate for

the burden of running the system and any possible monetary costs. Data collection typically

requires communication from the user’s device to a centralized system, which can have inherent

transmission costs when using a payed data connection. Furthermore, extra care should be taken

when analyzing sensor data of unknown quality collected from uncontrolled, possibly low-cost

heterogeneous mobile devices. Finally, gathering data from a personal device such as a smartphone

should take security and privacy issues into consideration. The users should be in control of when

their devices are gathering possibly sensitive data, who can access that data and for what reason.

In existing sensing platforms, these aspects are typically tuned in a trade-off manner and hard-

coded in the system according to their specific requirements, e.g., collecting from a fixed set of

sensors, reducing battery consumption by sacrificing sampling rate, or transmitting only when

connected to a free data connection disabling real-time data transmissions.
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1.2 Thesis Statement

It is feasible to leverage heterogeneous and uncontrolled personal mobile devices to sense human

processes on a large scale and provide useful and accurate information to multiple transdisciplinary

fields.

1.3 Contributions

In this thesis we present SenseMyCity, a platform and research tool that can be used to gather data

from massive amounts of participants’ mobile devices and connected sensors. Our design and

implementation of a framework for a crowdsourced urban sensor has achieved a maturity level

through iterative improvements over the last years that allowed us to perform multiple large-scale

deployments among common citizens.

Figure 1.1: Overview of the SenseMyCity platform, a crowdsensing research tool.

The framework, depicted in Figure 1.1 is comprised of an application running on mobile de-

vices that can gather data from many internal and external sensors, and obtain human input from

customizable surveys, transmitting the data securely to a backend infrastructure. We use a scal-

able two-tier server architecture to store, process and visualize the massive amounts of data. The

mobile application is modular and fully configurable, being able to meet requirements on energy

consumption, data usage and sampling rates, by simple configuration changes. Surveys can be

configured to be shown according to various trigger events, such as time based, movement, or

from sensor data like a cardiac monitor. A mechanism for automatic mobility sensing is also

available, able to detect the beginning and end of a user’s trips in real time with very low energy

consumption. These characteristics allow the trade-offs to be performed per usage scenario and

even changed in real-time according to the environment and user context, e.g., collecting only

during users’ trips and with a high-sampling rate, and stopping collection while the battery level

is below a configured threshold.
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The design, development and experimentation of the SenseMyCity crowdsensing platform

lead to the following main contributions further detailed in this thesis:

1) A sensing platform design, including software architecture, data model and communication

protocol, based on personal mobile devices with a cloud backend, that meets the requirements of

both participants and researchers. It is designed to be modular, providing data abstractions that

apply to many different types of sensors and are easily extended to new ones.

2) The iterative design and implementation over 9 years into a stable and proven system.

The initial sensor data gathering software was developed to be executed in any laptop, but later

was converted to run on the popular Android operating system, compatible with a wide range of

smartphones and sensors, thus allowing for a large number of participants, massive amounts of

sensor data and optional human input through surveys. The platform usability is improved by

algorithms that minimize the required user interaction by efficiently detecting users movement,

activating the data collection only during their trips. Surveys can be customized and launched via

various trigger events, according to the project’s requirements, improving the re-utilization of the

platform.

3) A performance evaluation of the platform including an estimation on the costs of gathering

data, and a data quality assessment. The cost analysis include energy consumption on the gath-

ering units, communications bandwidth required for data transmission, and the storage require-

ments on the backend servers for different sensing tasks. Data quality issues are very relevant in

opportunistic mobile crowdsensing, which gathers data with almost no user interaction from their

heterogeneous mobile devices. The raw data obtained from data collection campaigns, such as

users’ location traces, must be cleaned or validated before processing to guarantee data quality

that enables the extraction of accurate information. We present the identification of recurring data

quality issues typical of data collected from uncontrolled environment, discuss their causes, and

propose solutions to mitigate their effects.

4) The validation of the platform usefulness through multiple published scientific contribu-

tions on transdisciplinary fields. The presented platform has been adapted and deployed in more

than 8 distinct data collection campaigns from transdisciplinary projects involving psychology,

biomedics and transportation fields, each having different methodologies and sensing require-

ments. These deployments led to more than 8 scientific publications in top-tier journals and con-

ferences, validating the usefulness of the platform.

5) A novel algorithm able to extract unforeseen information from a georeferenced crowdsensed

dataset: detecting and characterizing buildings using only crowdsourced data collected nearby.

1.4 Thesis Structure

The thesis is organized in the following manner: Chapter 2 compares our solution to other related

platforms found in the literature. Our crowdsensing tool design is described in chapter 3, with

requirements analysis, architecture and implementation. Chapter 4 presents the performance and
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effectiveness analysis in terms of costs and data quality, and the processing algorithms we devel-

oped to tackle the data issues identified in the uncontrolled datasets collected from the platform.

Some use cases that leveraged our platform to collect data and extract useful information, vali-

dating it, are presented in chapter 5. Chapter 6 presents other unforeseen information that was

discovered and extracted from the dataset, further validating the usefulness of the platform.
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Chapter 2

Related Work

Mobile crowdsensing has been thoroughly surveyed in the literature [1, 2, 3], which defines tax-

onomies that consider several aspects, such as engagement strategies, privacy policies, and partic-

ipant involvement and awareness. Regarding participant involvement, they can be either participa-

tory or opportunistic. Participatory systems require a participant to report or subscribe to sensing

tasks, aiming to gather data from targeted events or places in time and space. On the other hand,

opportunistic systems aim to gather a large number of raw data with almost no user interaction,

but typically require more data filtering and processing.

Some systems have been developed that allow a quick integration of crowdsourcing technolo-

gies, such as the Ushahidi project [4], designed to easily deploy a crowdsource mapping platform

to collect reports from volunteers during natural disasters or other events. These and similar par-

ticipatory platforms, requiring users to actively participate in the sensing activity, have been used

by a multitude of projects [5, 6, 7]. Crowdsourcing has also been used to expedite mobile ap-

plication testing and quality assurance by distributing app testing tasks to participating users [8].

Participatory platforms can be used to quickly spread tasks, and detect and report on important

events, but may fail to detect subtler patterns in the environment that the users do not consider

worth reporting. Other projects [9, 10, 11, 12] present participatory crowdsensing platforms with

user-in-the-loop designs that also support the collection of raw sensor data according to the task’s

sensing requirements. These sensor datasets can be used for multiple goals, such as monitoring

the pavement and other civil infrastructures [12, 13], monitor the contents of pollutants in the air

by collecting sensing data from handheld air quality monitors [14], monitoring the noise levels

around a city [15]. The system distributes these tasks to smartphone users who wish to participate,

while handling optional monetary incentives. The requested and collected sensor data can be used

to monitor civil infrastructure [12],

Incentives are an important aspect of such participatory systems as they require a large user

interactivity. They can be given in the form of monetary compensation [9], by providing ser-

vices [16], by entertaining the user [17], or even by motivating altruism [3].

On the other hand, opportunistic crowdsensing platforms can require significantly less user

interaction, and therefore can scale easily and collect huge amounts of data. A lot of information

7
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can be retrieved from these massive data gathering systems, such as obtaining movement profiles

and estimating fuel consumption [18, 19] or monitoring health-care systems [16, 20].

By aggregating collected data from multiple devices it is possible to infer much more infor-

mation and provide useful services, such as automatic car sharing suggestions from traces simi-

larity as proposed in [21], or predicting congestions and population movement patterns [22, 23].

StreetSmart [24] uses crowdsensing with mobile phones to gather data from GPS, Accelerom-

eter and OBD data, and provides individual and per street average fuel consumption to users.

CarTel [18] has a similar goal using dedicated hardware installed on vehicles, gathering infor-

mation from Global Positioning System (GPS) and On-Board Diagnostics (OBD). The MobiSens

platform [25] is a platform for opportunistic sensing using smartphones, that performs activity

recognition with dynamic sensor sampling rates.

The devices’ connectivity can also be studied from aggregated crowdsourced datasets, such

as by constructing WiFi RSS maps [26], allowing for predicting connectivity for a given travel

route or even to improve indoor localization [27]. The authors in [28] present a platform that

uses crowdsourced internet connectivity information to create a fine-grained observation of the

structure of the Internet, in a traceroute manner. Others propose monitoring spectrum utilization

in an area using smartphones and low-cost radios [29].

With a completely different goal, the CrowdSense@Place framework [30] uses opportunisti-

cally captured images and audio clips from smartphones to automatically identify and characterize

places a user visits, without requiring any user interaction. Other types of data already collected

by vehicles’ electronics have also been leveraged to map street parking spaces, using the vehicles’

location and preinstalled parking sensors [31].

These projects implement opportunistic sensing applications focused on solving their specific

problems, such as gathering data from a specific set of sensors and in specific conditions. The

ParticipAct [32], like ours, is a more generic/multi-purpose opportunistic mobile crowdsensing

tools, being configurable and also supporting triggered participatory tasks such as questionnaires.

It is very hard to gather a large data-set without compromising the privacy and anonymity of

the participating users. Studies show that although people are generally very permissive regard-

ing location privacy policies, it is largely dependent on how their location data is used and with

whom it is shared [33, 34]. There have been many proposals to integrate privacy in participatory

systems [35, 36, 37], mainly in systems offering services that allows a user to access and analyze

data reported by others.

Crowdsensing platforms are vulnerable to misbehaving nodes and the existence of noisy or

biased data, which can impact the quality of the information inferred from the gathered data [38,

39]. In crowdsensing platforms, data reliability and misbehaving nodes should be addressed during

the data processing phase [40].

Table 2.1 shows an overview of other crowdsensing projects. This table identifies the dimen-

sions in which SenseMyCity advances the state of the art and provides a stable research tool not

previously available. The projects were characterized according to:

1. the data collection type, if it’s opportunistic or participatory;
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Table 2.1: Comparison of crowdsensing platforms

Project
Participant

Involvement
Sensors

Data
Ownership

Battery Cons. Communications
Bandwidth
and Storage

Medusa [9] Participatory Configurable No Not quantified On-demand Not quantified
mCrowd [10] Participatory Configurable No Not quantified On-demand Not quantified

StreetSmart [24] Opportunistic Fixed sensors No Not quantified Opportunistic Not quantified
CarTel [18] Opportunistic Fixed sensors View only Not applicable (Car) Opportunistic Not quantified

CrowdSense [30] Opportunistic Fixed sensors No info. Not quantified On-demand Not quantified
MobiSens [25] Opportunistic Fixed sensors View only Forced savings Opportunistic Estimated
ParticipAct [32] Opportunistic Configurable View only Not quantified Opportunistic Not quantified

SenseMyCity Opportunistic Configurable Full control Estimated Configurable Estimated

2. the re-utilization capability of the project, if it can be easily used in different scenarios, with

other sensors and sampling rates;

3. the data ownership policies of the project, if the project gives ownership of the data to the

participants, allowing them to visualize or also delete their collected data;

4. the battery consumption of the mobile application, if it was estimated for different sensor

configurations and the users are allowed to choose their battery saving techniques;

5. the data transmission modes allowed between the gathering unit and server: Real-time,

Opportunistic using wifi networks or DTNs, or only on user demand;

6. and the estimated transmission bandwidth and storage space, if it was estimated for different

sensor configurations.

In this work we present a general and configurable opportunistic data gathering platform, that

is able to gather data from a large number of sensors available in smartphones without hindering

its normal operation or requiring regular conscious interactions from the user. We are thus able to

cope with a large set of scenarios and sensing requirements.
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Chapter 3

Crowdsensing Tool

Our data-gathering crowdsensing tool has been deployed in multiple data collection campaigns

requiring sensor data collection, and its design, robustness and efficiency iteratively improved

between deployments.

3.1 Requirements Analysis

A platform or research tool aiming at massive data gathering should aim to fulfill the needs of a

large spectrum of scientific research projects while also satisfying its two main stakeholders: the

users or participants who are the owners of the gathering devices; and the researchers or operators

who wish to collect and analyze the data.

The functional requirements addressed by our platform were:

Sensing capabilities: Allow collecting data from a wide variety of sensors, such as GPS,

cardiac bio-monitors, On Board Diagnostics (OBD).

Support for Surveys at configurable triggering points: Human input and feedback is some-

times invaluable.

Timely processing of the collected data: Some projects may require a faster collection or

processing of the data, such as our deployments analyzing bus drivers (Section 5.1) or police

agents’ cardiac stress. In these cases, the data collected during a day had to be uploaded, processed

and presented to them in a short window after their work-shift in order to not occupy much of their

work nor free time.

Mobility: To maximize the utilization of the platform the sensing devices should be small and

mobile.

Battery autonomy: A mobile device’s battery is one of the most limited resources, and it is at

least required to last enough to allow completion of the sensing task. In crowdsensing, however,

we aim for a massive data gathering system that uses the participants’ smartphones as gathering

devices. Since smartphones are used for a multitude of other tasks, the energy consumption has a

very high impact on the overall functionality and on the users’ adoption and retention of an app.

Therefore, the battery consumption of a given sensing task should be as low as possible, without

11
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altering the normal recharge schedule of the users, and they should be able to know beforehand

what will be the battery impact of such task.

Our platforms’ non functional requirements were designed having these participants’ interests

in mind:

Lightweight: The data gathering application should be lightweight in terms of CPU, memory

and storage use, to work seamlessly with little impact on other smartphone uses.

Low user-interaction: Similarly, the gathering application should be intuitive and require the

least possible user interaction, to reduce the necessary attention and time spent on it. The platform

should not be a burden for the participants in order to maximize utilization.

Transparency: Nevertheless, the interface should clearly state what data is being gathered

and when it is being transmitted.

Mobile communication costs: As with the smartphone battery, the data communication re-

quirements can have a big impact on the participants’ satisfaction and utilization. Even though a

smartphone has multiple connectivity options, some of them may come with a monetary cost to

its owner. The platform should give the user control over the communication costs, such as choos-

ing which connection type can be used. To reduce the user interaction, the default configuration

can for example allow only known free communications, with an opt-in option for other types of

connections.

Security: Data collected from a smartphone’s sensor may contain sensitive information about

the user. As such, communications between app components should be protected and every com-

munication with the servers must be secured using proven security mechanisms.

Anonymity: Anonymity and data ownership should be provided by the framework. The par-

ticipant shall retain ownership over gathered data, with full access to his own data, including being

able to download the full data-set or delete it. Furthermore, the required user identification mech-

anism should not be directly reversible, nor accessible by researchers or data analysis services, not

even when processing clusters of data.

The researchers’ non functional requirements on a crowdsensing platform are the following.

Ubiquitous Availability: The data gathering application should be compatible with widely

used platforms, avoiding the need for specific hardware requirements or expensive devices.

Modular, Flexible and Extensible: Allow it to be easily extended for new sensors and gath-

ering devices.

Scalability: To guarantee availability under high demand, the system should be scalable and

compatible with load balancing mechanisms.

Preserve sensor accuracy from the sensors to the storage facility, in order not to hinder any

current or future use the data may have.

Efficient storage: The collected data should be stored in a way that minimizes utilized space

while allowing easy and fast access and extraction of information. Furthermore, the researchers

should be provided an estimation of the bandwidth and storage required for a given sensing task

and number of gathering devices.
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3.2 Iterative Design Timeline

The above requirements were iteratively addressed while deploying our crowdsensing research

tool in various data collection campaigns with distinct research goals. The development of the

platform was primarily aimed at fulfilling the functional requirements of the next planned data

collection, which then provided useful feedback and information to improve the platform’s per-

formance or non-functional characteristics. The main features introduced to the platform at each

campaign are depicted in Figure 3.1. The purpose and details of each deployment are described in

Chapter 5, while the next sections focus on the design and implementation of the platform.

Figure 3.1: Iterative design of the crowdsensing platform. Light grey arrows represent functional
requirements from the next planned deployment

The first deployment in 2010 had the goal of synchronize physiologic and psychological stress

responses of public bus drivers in their day-to-day routine work (Section 5.1). Georeferenced

cardiac data was collected during their work shift, quickly processed after the shift and presented

to the driver to facilitate recall of the stressful situations. This was accomplished with a platform

based on a C application running on a small laptop, collecting and processing data from external

GPS and bio-monitoring sensors, and leveraging cloud servers mainly to speed up processing time.

The next deployment in 2012 also aimed at analyzing the physiologic and psychological stress,

but this time in on-duty police agents (Section 5). These users have much stricter intrusiveness

and mobility requirements, not being able to carry a laptop briefcase in most work activities.

To satisfy these requirement, the platform was ported to an Android smartphone-based gathering

unit, supported by a laptop at the end of the day questionnaires for easier data visualization and

events recall. The mobility, battery autonomy and sensing capabilities were greatly extended, now

supporting unobtrusive data collection during a full day and from many new sensors available in

smartphones such as accelerometer. Ubiquitous internet connectivity also allowed for real-time

data uploads, which were however seldom used compared to on-demand exports when a free Wi-

Fi network was available.

Another deployment also in 2012 aimed at monitoring and modeling a vehicle’s instantaneous

fuel consumption (Section 5.2). This required gathering data from a bluetooth connected OBD

(On Board Diagnostics) dongle connected to the vehicle communication bus. Feedback from the

volunteers collecting data lead us to develop an opportunistic data export when connected to Wi-

Fi networks, and in-app manually triggered surveys to collect on-the-spot georeferenced human
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feedback, such as trip fuel consumption reported by the car dashboard.

The data collection tool was later deployed in 2015 as SenseMyMood, in an interdisciplinary

project with the faculty of psychology aimed at monitoring and understanding the users’ mood

changes throughout the daily schedule and the main factors causing them (Section 5). This

was achieved by collecting randomly-triggered twice-per-day georeferenced surveys inquiring the

user’s current activity and perceived emotions. Answering the surveys was the only required user

interaction, since the opportunistic data export functionality automated the data transmission, with

minimal battery life impact.

In the next year (2016), SenseMyFEUP had its first deployment, aiming at analyzing the mo-

bility of students and workers of the faculty of engineering (Sections 5.3 and 5.4). It required

collecting location data at high sample-rates during every trip performed by the users, while keep-

ing the battery consumption at acceptable levels. This was achieved by implementing a lightweight

always running movement detection algorithm in the data gathering application, allowing for au-

tomatic sensor data collection only during a user’s movement. Furthermore, transportation mode

surveys triggered automatically at the end of each trip were used as ground-truth for the training

of a transportation mode classifier.

At this point the evolving requirements and iterative improvements resulted in a mature and

stable platform. The mobile application became a set-it-and-forget-it data-gathering research tool,

simply requiring that users install and open the app once to accept the informed consents and

required permissions, and optionally answering any project-specific surveys. This allowed us to

deploy the platform in multiple projects aiming at analyzing mobility of a population from any

field and background (such as again in the Faculty of Psychology, in the Faculty of Engineering,

and in the University of Coimbra)

The remaining of this chapter describes the platform in its latest version.

3.3 System Architecture

The SenseMyCity architecture is organized in two main blocks as seen in Figure 3.2: the gathering

units, typically owned and controlled by the participants (volunteers); and the servers, controlled

and operated by the researchers.

3.3.1 Data Gathering Units

The gathering units collect data acquired by the sensors. A gathering unit should be able to gather

data from multiple sensors simultaneously, which can be either integrated into the gathering unit

(e.g., accelerometer sensor inside a smartphone) or external with some kind of connectivity (e.g.,

bluetooth heart-rate sensors). These units are responsible for synchronizing the data from the

various sensors, to store it locally, and to securely transmit the data to the servers. In the next

section we present the implementation of a gathering unit based on Android smartphones, and the

communication protocol between the gathering units and the servers is described in Section 3.3.3.
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Figure 3.2: System Architecture

3.3.2 Servers

The back office servers are the system core. They receive, store and process the data from the

gathering units, and provide data access and visualization services while respecting defined pri-

vacy policies. We would like to emphasize the importance of a multi-server architecture in such

sensing systems, since data collection and storage have completely distinct requirements than data

analysis and visualization: Storing the data takes little computational power, but should be per-

formed reliably and as quickly as possible for scalability; On the other hand, data exploration

and visualization can be very computationally expensive, easily saturating any computation or

database engine, but in most cases does not have tight deadlines. With this in mind, we designed a

2-tier server architecture, with the main servers collecting and replicating the data asynchronously

to secondary servers.

The main servers should be reliable, with a very high uptime, and offer large storage space.

Their database storage engine should only perform writes and simple indexed read queries when

receiving data from the gathering units. If necessary due to increased demand, may be further

configured as a load-balancing or multi-master database system.

Secondary servers provide desired application level services, such as access control, data pro-

cessing and visualization. These services usually require higher bandwidth and perform complex

database read queries that can leave any database engine unresponsive for some time. The servers

can either maintain a replica of the entire database or just a specialized subset of data, such as ac-

cording to its owner, the data location, or other project requirement. This 2-tier server architecture

provides added storage reliability, since the only servers exposed to processing services are the

secondary ones, which can be rolled-back at any time without loosing the collected raw data.
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3.3.3 Communication Protocol

In this section we describe the protocol that handles the communication between gathering units

and servers. A data gathering platform can sometimes generate massive amounts of connections

and data, even in uncontrolled heterogeneous networking environments as are available to smart-

phones in urban environments, making it very important to reduce the required communication

overhead and bandwidth. Our protocol was designed to be efficient, reliable, versatile, flexible,

secure and privacy preserving. This protocol was developed in 2010, at a time with no efficient

and stable protocols already available to use (e.g., CoAP). Even today (2019), the integration of

other standard and efficient protocols is not trivial on Android while accomplishing our target

requirements, further discussed now.

Efficiency: We did not use standard protocols or web-service existing at the time for the sake

of simplicity and to reduce overhead. Out of the box solutions, even today, typically impose ar-

chitectural and design constraints, like required Resource Identification, fixed message formats, or

specific allowed transport protocol. These constraints and limitations inevitably lead to an increase

in communications overhead and consumed bandwidth, such as when implementing storage level

end-to-end reliability.

Reliability: Our protocol offers reliability through application layer feedback that acknowl-

edges the successful storage of the sensor data on the database. This feedback from the server’s

storage engine informs the gathering unit that the data has been successfully stored and replicated

on the central storage, and can thus be deleted from the device. Researchers have thus extra free-

dom on the server implementation, allowing for server maintenance tasks such as upgrades and

migration without compromising the collection of data.

Versatility: The designed communication protocol can use either TCP or UDP as the un-

derlying transport protocol for the connections between the gathering units and the server. This

versatility is very important in heterogeneous networking environments, allowing our protocol to

better utilize the connectivity options available. A gathering unit can use the efficient UDP proto-

col in dynamic network environments, such as vehicular networks, and fallback to the slower but

friendlier TCP protocol on a highly monitored and controlled network, such as in an enterprise or

university. These transport layer protocols can be used as desired and even concurrently, since the

service is stateless, treating every received packet the same way.

Flexibility: Another requirement our crowdsensing platforms aim to achieve is the support

for multiple transmission modes. Some projects may require data transmission in real-time while

others allow the user to upload the gathered data later, saving on possible transmission costs.

The transmission of gathered data should be configurable to happen (1) continuously, when the

gathering units periodically transmit the data to the server, (2) using opportunistic connections,

e.g., transmitting the stored data only when a free WiFi connection is available, or (3) on-demand,

triggered by the user. However, opportunistic communications can be very unreliable in urban

scenarios, sometimes providing only short-lived connections such as when the gathering unit is

moving at high speeds. Our protocol was designed to be stateless and asynchronous, to better
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cope with this type of connectivity. This way every packet can be transmitted independently using

different network connections at any time and in any order.

Security: Every transmission between the gathering units and the main servers is encrypted

using standard cryptography mechanisms. More precisely, the gathering units use public key

cryptography to authenticate the server and request authorization for new sessions, while also

exchanging per-session symmetric keys to be used in every subsequent transmitted packet. By

designing a custom protocol, we were able to integrate the server authentication and user and

session authorization mechanism in the first transmitted packet (handshake and key exchange),

this way reducing the number of overhead messages and the required bandwidth.

Privacy: Ensuring a user’s data is not accessible by any other person is a strong require-

ment for any platform dealing with possibly sensitive data collected from a user’s smartphone.

We were able to efficiently achieve this by using the mature and ubiquitous OpenID mechanisms

already available on the gathering devices and frontend servers. Bypassing user authentication

on the handshake phase of the communication protocol allowed us to minimize the communica-

tion overhead, reduce complexity, and increase security, since no passwords nor tokens are ever

transmitted.

3.3.3.1 Protocol Description

The protocol (Figure 3.3) is divided in two parts: a 2-way handshake with authentication and a data

transmission phase. In both phases the payload is serialized and compressed using JSON and zlib,

and then encrypted using standard encryption methods. This method proved to be efficient in terms

of bandwidth, as can be seen in Section 4.1.3. The zlib’s integrated error detection provides extra

reliability at every communication. The protocol fields, depicted in Figure 3.3, are the following:

• hash, 32 bytes: the md5-hash of the user e-mail, acting as the user ID.

• time, 4 bytes: the unix timestamp of the start of the session. This timestamp together with

the user_id make the session’s primary key.

• key, 32 bytes: a per-session randomly-generated AES-128 symmetric key to be used for the

data transmission phase.

• version, 2 bytes: the application’s version, to allow for future format upgrades while offering

backwards compatibility.

• identifiers: reserved for optional extra session information, such as openID token, identifiers

of the gathering unit sensors or vehicles.

• seq, 2 bytes: a sequence number defined by the gathering unit.

• data: an array of data gathered from the sensors.

The 2-way handshake phase is responsible for session authentication and symmetric key ex-

change. The gathering units authenticate every session by sending a single packet, encrypted with
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Figure 3.3: Protocol description, with session authentication and data transmission with feedback

the main-server’s 4096-bits RSA public key. On receiving an authentication packet, the server ini-

tializes a new session and responds back with the session identifier (session_id) now reserved for

that session’s data. The server response is compressed and encrypted with the received aes_key,

and also contains the received starting time to serve as an indicator of which session was initiated.

Both the key and the session identifiers can be changed by the gathering unit at any time, by re-

sending an authentication packet with the same hash (user ID) and time. This allows the gathering

unit to not store the aes_key of each session and to update any identifier that may be unavailable

during the authentication phase.

In the data transmission phase the gathering unit starts by sending 4 unencrypted bytes cor-

responding to the session ID, followed by the compressed and encrypted packet with the payload.

The session ID and the used encryption key must be the ones exchanged during the handshake,

otherwise the packet decryption will fail and the server discards it.

The sequence number is used to identify the feedback packets, allowing the unit to have mul-

tiple outstanding data packets. This asynchronous transmission can substantially increase the

throughput in high latency connections by enabling pipelining. The gathering unit is responsible

for sequence number generations, tracking, and any necessary re-transmissions.

The feedback packet is only generated after the storage and flushing of the received data, and

contains the number of rows received and successfully written to the DB. This serves as guarantee

of reception and storage, informing the unit it can delete the corresponding data from the device.
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3.3.4 Data Model

A crowdsensing research tool should be able to collect and store data from many different types of

sensors, to accommodate the requirements of distinct sensing projects. Besides this flexibility, the

adopted data model should store the data in a self-explanatory structure, improving the usability

by potentially non-technical researchers, while being compact to reduce long term storage costs.

3.3.4.1 Data Taxonomy

We identified three distinct types of data potentially useful to be stored in such a platform, depicted

in Figure 3.4:

Data gathered from the mobile application and its sensors, which is owned by the device’s

user and should not be altered;

Information extracted by any data processing algorithm or service, that may itself be used

in other algorithms or visualization services. This data may also be owned by the original data

owner, but since it is completely reproducible from the raw data it may be deleted or updated at

any time;

Support data, collected from other sources, may also be useful to processing algorithms,

such as the travel mode estimation algorithm leveraging information of the metro and bus stops

locations.

Figure 3.4: Taxonomy of data used in the SenseMyCity Project

The gathered data was further organized in three types of tables: Session information, sensor

data, and auxiliary data.

Session information. The data collected from the mobile units is organized in gathering

sessions, with a new session created every time the application starts sensing. This information

contains the identifiers connecting the data to its session and owner, such as user_id, vehicle_id and
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session_id. It also includes data about the recording session such as starting and end timestamps,

timezone, device model and application version.

Collected sensor data or data from other sources, such as surveys, follow abstract structural

rules to facilitate relational data-analysis, further described in the next section. To this end, every

gathered sample of data share some common identifiers, such as session_id and timestamp, allow-

ing access-control and simplifying data analysis across multiple sensors. Information obtained by

analyzing a participant’s sensor data is stored with the same session_id, thus providing ownership

to the original user across processing services.

Auxiliary data are tables that contain non-personal data shared among many sessions or users,

such as a table relating WiFi mac_addresses with the current essid, class and authentication mode.

For example, with this table, a gathering unit scanning for WiFi networks only needs to transmit

the essid, class and authentication mode once per session and per WiFi network, and the backend

DB only stores the history of changes per network. A high frequency WiFi scan can detect the

same network thousands of times per hour, depending on the configurations, and as such this

prevents the system from transmitting and storing huge amounts of redundant data.

A structural DB representation with a few sample tables can be seen in section 8.2. Annex 8.2

contains a more detailed database structure with a few sample tables, and including a workflow

analysis of data between tables, functions, views and processing services, for a sample use case.

3.3.4.2 Sensor Data Characteristics

The sensors available in smartphones can be organized according to some characteristics: If they

are typically embedded in smartphones or external via some connectivity, if the data is periodically

returned at a configured rate or must be requested every time, if the data is already timestamped by

the sensor device, and the frequency at which the data is generated. Table 3.1 summarizes these

characteristics for some sensors supported by the SenseMyCity platform.

Table 3.1: Sensor Characteristics

Sensor Connectivity Periodicity External Timestamp Frequency
Accelerometer Embedded Periodic no 5 Hz-200 Hz

Ambient Pressure Embedded Periodic no 5 Hz-200 Hz
GPS Embedded Periodic yes <=1 Hz

Network-based localization Embedded Periodic no <=1 Hz
Wi-Fi Scanner Embedded Request no <=1 Hz

BT scanner Embedded Request no <=1 Hz
Bio-Monitor Bluetooth Periodic yes 5 Hz-500 Hz

OBD Bluetooth Request no 2 Hz-15 Hz

The characteristics listed in table 3.1 were compiled based on the sensors available in our de-

velopment smartphones. These characteristics and the list of sensors embedded in smartphones

tend to increase, such as the ambient temperature sensor added to the Android platform in 2012,

the support for relative humidity sensors were added in 2014, and heart-beat sensors support were

added in 2016. Also, there might be multiple instances of the same sensor in a system, such as
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multiple location providers (see section 4.2.2.2) or the accelerometer available in both the smart-

phone and connected smartwatches or bio-monitors. SenseMyCity solves this problem by storing

every data from an external device in that device’s own table.

Periodicity: Some sensors can be configured to output data periodically at a specified rate,

such as the accelerometer or Global Positioning System (GPS). However, other sensors only

respond to requests for new data, like the OBD device where we need to query a specific vehicle

sensor and wait for a response.

Timestamp: Every new data from the sensors is timestamped using the smartphones elapsed

clock. This clock measures time passed since the last device reboot and is the only clock source

guaranteed to be monotonically ascending during a data gathering session. Both the elapsed and

UTC clock is saved at the beginning and end of a session, allowing the researchers to calculate the

clock drift and thus get the UTC timestamp of any data sample. However, some sensors have their

own source of time information, such as the GPS and its satellite UTC timestamp. Some external

sensors also have their own internal clock, which they may send to the smartphone with the other

sensor data. In these cases every available clock is stored separately, since they can be useful in

different situations and processing algorithms. For example, when mapping a participant’s heart-

rate around a city, gathered using an external bio-monitoring sensor which includes its own UTC

timestamp, the data from both sensors should be correlated using the smartphone’s UTC clock,

the most related source of time. However, the sensors’ and smartphones’ clock can show a drift

of a few seconds per day over an universal time, making the GPS’s satellite clock a more reliable

time source when correlating data between different smartphones. See section 4.2.1.1 for more

information on how we timestamp the data and mitigate clock issues.

Frequency: The sample-rate or frequency at which the sensors output values also varies be-

tween sensors. Some sensors, such as the accelerometer or ambient pressure sensor, typically have

sampling frequencies between 5 Hz and 200 Hz, and even a Bluetooth connected OBD device can

provide up to 15 query-response sensor values per second. On the other hand, embedded GPS

devices typically can not provide location data faster than every second, and Wi-Fi and Bluetooth

scanners can take a few seconds to complete.

Based on these characteristics we defined a set of possible data types and structures with com-

mon data fields, allowing correlations between sensors and increasing the system usability. This

way, every new sensor data is timestamped with the elapsed seconds since the device booted. A

milliseconds field is available for high-frequency data or by sensors having a higher time preci-

sion, such as the GPS data that can be used to correct the errors in the smartphones’ UTC clock.

External sensors that require a more dynamic structure, with varying fields and sampling rates

depending on the manufacturer or hardware version, are stored in a general key-value format with

milliseconds information. Dynamic information only sporadically available in some data samples,

such as the center frequency and channel bandwidth of a detected WiFi network, are stored in

an optional JSON field on the corresponding table. Survey responses and device events, such as

battery level reports, are also stored using a key-value format. High sample-rates sensors such
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as accelerometer is batched and stored in binary arrays every second, therefore not requiring mil-

liseconds information.

3.3.5 Privacy and Data Protection

Privacy and anonymity are non-monetary but important indirect costs to a participant provid-

ing data from his smartphone’s sensors. However, Jeffrey M. Skopek [41] defines privacy and

anonymity as flip sides of a coin: privacy is when we know a person’s identity but no other per-

sonal fact, while anonymity is when we might have knowledge of personal facts but not the identity

of the person.

Aiming to provide privacy between users and researchers in a crowdsensing platform requires

removing or altering gathered data and inevitably leads to a loss of useful information. For ex-

ample, if researchers are not allowed to collect and analyze a participant’s trips from home to

work, we will not able to estimate the traffic congestion in those roads and provide better route

suggestions.

On the other hand, hiding the participants true identity to provide anonymity has a less deterio-

rating effect on the data and the extracted information. However, some studies show it is very hard

to provide true anonymity while storing participants’ location history [35]. Furthermore, some

kind of user identification is required for authentication and data ownership.

With respect to privacy, our platform follows the EU General Data Protection Regulation

(GDPR) with the following key points:

• An informed consent is shown and obtained from the mobile application, clarifying the data

that will be collected, the purpose of the data collection, the entities (research groups) that

will have access to the data, and authorizing its aggregate treatment for research purposes.

No data is collected nor transmitted by the app without accepting the informed consent.

• We provide awareness of when data is being collected by showing a notification on the

smartphone;

• Participants retain full ownership of gathered data: our visualization services allows a user

to download and also to delete his sessions and data.

• Users have the right to leave the platform or data collection campaign at any time, by in-

forming the developers, at which point their gathered data is completely deleted.

access to own data, and right to delete own data, via a website; right to leave the data collection

action by removing the application.

Our system provides anonymity on the gathered data with the following techniques:

• Every communication is secured to prevent eavesdroppers from obtaining possibly sensitive

information;

• We use proven third-party openID authentication to handle user authentication and owner-

ship, while preventing us from handling account creation and storing passwords;
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Figure 3.5: Main Server implementation

• The authentication mechanism allows only each participant to access his own data, including

data collected from his own device and also the information obtained from processing it;

• Only the participant’s hashed email address is stored in the DB for authentication purposes,

in a protected table only accessible by the authentication mechanism, and not by any other

services nor researchers;

• For any data processing task, only the data strictly necessary for the task is provided:

pseudo-random daily user IDs are created to prevent matching trips from the same par-

ticipant across different days.

3.4 Back Office

Our back-office is running on two servers, implementing the proposed tiered architecture with one

main server and one secondary server.

Connectivity

The Main Server, depicted in Figure 3.5, handles the connections form the gathering units, includ-

ing user authentication and data storage. The java application listens for these connections on four

different sockets, scheduling a job for execution in the corresponding worker: for authentication

and data packets, and in both UDP and TCP mode. These workers are responsible for decrypting

and parsing the packet, storing the data, and returning any response or feedback to the gathering

units.

Storage

Typically, the servers have more resources, processing power, and are more reliable than the gath-

ering units, with redundant power supplies, data storage and even network connectivity. However,

we should not blindly trust in their ability to scale and successfully store each received packet,

since the number of active users in crowdsourcing systems can increase very quickly, faster than

any load-balancing or multi-tier architecture can handle. Furthermore, in these architectures, the

servers receiving the network connections are typically not the ones storing the data, increasing the
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probability of failure between reception and storage of the data. Our storage level feedback is ini-

tiated by the database manager only when the received data is successfully stored in the database,

thus providing reliability in any event.

Our Main Server stores the data in a local PostgreSQL database. We considered using NoSQL

since it has some advantages over relational databases on huge datasets, mainly with single-index

write operations. However, they have a similar performance in multiple-index multiple-writes,

and even have lower performance on complex reads [42]. Our data processing projects and front-

end visualizations typically query the database using multiple indexes, such as by session owner

and timestamp when showing a session to its user, by GPS coordinates for spatial queries or

clustering, etc. Moreover, as previously discussed in section 3.3.4, data gathered from the sensors

are correlated to each other in multiple ways, such as in time, space and always the owner of the

data. Such correlations are frequently used, such as when mapping Wi-Fi hotspots or other sensor

data, making relational databases a better choice then NoSQL. We opted for PostgreSQL since

it offers a robust GIS extension, and a large part of our data analysis is based on geographical

information. The Main Server PostgreSQL database is configured to replicate the database to a

hot standby offsite Secondary Server, that is responsible for data processing and visualization.

A web-page for data visualization allows users to visualize all of their recorded sessions and

associated sensor data using a GIS service, as depicted in Figure 3.6.

Figure 3.6: SenseMyCity website showing a trip with speed information mapped
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Figure 3.7: Mobile application architecture and the communication between the main modules

3.5 Gathering Unit

The gathering unit was implemented as an Android application, taking advantage of the smart-

phones’ embedded sensors and connectivity. The application was initially developed to be de-

ployed in multiple data collection campaigns for the FutureCities Project1.

In order to gain acceptance by a large audience in the general public, the application main

requirement was to run on a wide range of Android smartphones and require almost no configura-

tion and user interaction. A significant amount of time was invested on enhancing the stability and

efficiency of the application to allow it to run properly across smartphones with different hardware

resources and different OS versions.

The application architecture and the communication between the main modules, depicted in

Figure 3.7, are described in the following sections.

3.5.0.1 Orchestration

The main service is responsible for controlling the whole application state, passing feedback to

any active interface and sending notifications. When a gathering session is started, this service

initializes the modules of the corresponding sensors and required managers. The arriving data is

buffered in the Memory Manager, stored in batches in a local database by the Database Manager,

and optionally transmitted by Internet Manager if the application is configured for automatic data

upload and a connection is present. Every main resource is executed in a separate thread, including

the network connections, database access, sensors services, and the main activity (UI). The main

1https://futurecities.up.pt

https://futurecities.up.pt
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service also ensures that every module is correctly terminated and the data is flushed to local

storage when the session terminates.

3.5.0.2 Sensing

Each sensor module communicates with the corresponding sensor, and receives, timestamps and

sometimes converts the gathered data. A common problem of data gathering systems is the syn-

chronization and timing accuracy of the data. To minimize the losses of time information, getting

the device timestamp in milliseconds since boot is the first performed task after the arrival of a

new sensor data sample. Collected sensor data is buffered in the Memory Manager, allowing the

application to only perform one local database (SQLite) transaction every few seconds.

3.5.0.3 Storing

The data model implemented in the local database on the gathering units has different requirements

than the server’s, and has therefore slightly different structure. The local database is not used to

perform queries correlating data from multiple sensors, allowing us to reduce the required indexes

and primary keys. Also, the efficient SQLite internal RowID column is used as the primary key

instead of the (session_id, timestamp) of the server’s DB.

3.5.0.4 Transmitting

The Internet Manager handles all the communications to our servers, implementing the commu-

nication protocol described in Section 3.3.3. The application can be configured to transmit the

gathered data either in real-time using any available internet connectivity, opportunistically using

only unmetered WiFi connections, or only when triggered by the user. In any case, the transmitted

data is deleted locally after a successfully acknowledge transmission.

All of the required cryptography and compression algorithms are available in the Android or

java standard libraries. The server RSA key used for server authentication is hardcoded on the

application and thus can be changed anytime via an application update. The symmetric keys are

randomly generated when a session is started.

3.5.0.5 Adaptive Interfaces and Configurations

The application interface was designed to be intuitive and easy to use, and easily adapted to each

deployment goals. The base SenseMyCity application uses a barebones interface as shown in

Figure 3.8a, with every user action of our app available in five big buttons: start, pause or terminate

the gathering session, to access the settings menu, and to manually export the gathered data to

the server. A widget is available to quickly start, pause or stop a session without leaving the

smartphone’s home screen.

The SenseMyFEUP campaign aimed at analyzing mobility of a population, requiring a large

user base and retention, and therefore required a less intrusive interface. A simpler interface was

devised, as seen in Figure 3.9a, with no buttons whatsoever and showing interesting statistics
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(a) Main screen (b) Settings menu

Figure 3.8: SenseMyCity, generic base version, every button and configuration available

comparing the users’ mobility with the target populations’. Other screens were added providing

some external services, such as bicycle specialized routing service (Figure 3.9b) and bus schedules

timetables for the nearest stops. This deployment also required travelmode surveys, which were

implemented as shown in Figure 3.9c.

A settings menu is also available in every deployment, where many parameters of the applica-

tion can be configured. Configurable settings include, among others, activation and deactivation

of individual sensors, their desired sensing frequency, allowing mobile data internet connections,

and choosing between automatic data transfers or user-activated synchronization. However, a re-

searcher can fix or limit the allowed configuration changes in each deployment, like specifying

active sensors and their sampling rates. The application can thus be configured prior to every

deployment, with default settings that satisfy its sensing requirements, such as gathering only

location data and travel mode surveys during a deployment targeting a mobility analysis.

Some other debug interfaces are also available, showing verbose stats about the app such as

activated sensors, their most recent gathered data, and number of data samples per sensor type

currently on the local database.

3.5.1 Android Intricacies

Analyzing a population’s mobility became the main goal of most of our platform’s deployments

since 2016, requiring high sample/rate location data during the participants’ trips. To greatly

increase usability and increase user retention on the app, the participants should not be bothered

having to remember to perform an action every time they start or stop a trip. However, to save

the smartphones’ battery and infrastructure resources (e.g., storage), the smartphones should only
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(a) Main screen with statistics (b) Bike routing service (c) Travelmode surveys

Figure 3.9: SenseMyFEUP deployment, targeting mobility analysis with

sense and gather data when the user is travelling, which can be implemented by an always running

travel-detection algorithm.

This section provides some knowledge on the inner workings of the Android operating system

that were useful during implementation of our lightweight travel-detection algorithm, explained in

the next section.

3.5.1.1 Background running restrictions

Android was designed to support multi-tasking, with multiple processes running concurrently even

on the background. But there are some limitations on what smartphones can run, due to scarce

memory, processing and battery resources that need to be shared among all running apps.

The decisions on what apps it allows to keep running on the background depend on multiple

factors, such as when and how often the app has been executed, and its resources consumption.

Android distinguishes between 1) main running/showing app, 2) foreground services showing

something to the user, even if just an entry in the notification pane, and 3) background services

(apps running without any visible component). The recent Android 9 (2018) dynamically divides

each app even further into 5 App Standby Buckets2. Also, every app is scored according to its

CPU, Memory, and Battery requirements. These "scores" or "blames" can be seen in some parts

of the Android OS, such as in the "Battery Settings" or "App Info" system menus. When the main

running app requires more resources than those readily available, the more demanding background

services will be stopped and purged from memory, and even other foreground services can be

affected.
2https://developer.android.com/topic/performance/appstandby

https://developer.android.com/topic/performance/appstandby
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Android versions have become more aggressive with power saving measures (e.g., Doze fea-

ture on Android 6.03), not allowing background services to keep the CPU awake in some situa-

tions, such as when the user turns the screen off and no other foreground app is using the CPU.

The Doze feature puts the CPU in sleep mode faster and for longer periods of time, saving battery.

During this periods most apps are not working, including email services, social media apps, etc.

Sporadically, the phone wakes up the CPU and remaining functions, executes any pending jobs

such as delivering sensor data to apps, downloading emails and notifying users, and goes back to

sleep as soon as possible. More information can be read in the Android Documentation 4, describ-

ing very important steps to reduce the CPU and power burden of an app, and therefore reducing

the chances of it getting killed or working erroneously.

Figure 3.10: Illustration of how Doze applies restrictions to improve battery life

Nevertheless, Android OS still allows applications, even background services, to sporadically

receive callbacks with alarms, locations or other sensor data, that can be used to develop motion

detection algorithms. Furthermore, most of their power-saving measures like Doze are less ag-

gressive when Android detects the phone is not stationary, such as when the user picks the phone

to go to work, which is exactly when our platform needs to sense.

3.5.1.2 Available Sporadic Wake-ups

Some techniques are available to request the Android OS to alert and wake-up an app when some-

thing occurs, without the requirement to have it constantly running.

Alarms are time-based events, useful when an app needs to sporadically do something even

when no new data arrives, such as implementing timeouts.

Location Updates allows an app to be called/executed to receive new location data, when

there is one. An app can also request the operating system to actively estimate locations at a

given rate and a configured power burden, or if it should just passively listen and leverage location

updates requested by other apps.

3https://developer.android.com/about/versions/marshmallow/android-6.0-changes#
behavior-power

4https://developer.android.com/topic/performance/power/

https://developer.android.com/about/versions/marshmallow/android-6.0-changes#behavior-power
https://developer.android.com/about/versions/marshmallow/android-6.0-changes#behavior-power
https://developer.android.com/topic/performance/power/
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Google’s Activity Recognition from Google Play Services sense the participant’s physical

activity, and can also be requested to sporadically estimate the activity and wake the app with the

new data.

Geofencing also relies on Location Services, alerting an app when the phone enters or exits a

specified region of interest.

Unfortunately, the operating system may throttle or even cancel these callbacks for multiple

reasons, such as saving battery. For example, recent Android versions limit the rate of active

location requests a background app can make to "a few times each hour"5.

3.5.1.3 Fused Location Provider

Smartphones include a GPS receiver to provide location data, including longitude, latitude, alti-

tude, speed, heading and estimated accuracy. However, GPS requires a non-negligible amount

of energy to operate and can provide very low accuracies when tracking positions underground,

indoors or near high buildings with limited line-of-sight to satellites.

To compensate for these limitations, Google Play Services provide the Fused Location Provider

API 6 that allows simplified management of the tradeoffs between accuracy, sampling rate and en-

ergy consumption. This location provider also works inside some buildings where no GPS signal

from satellites is available. To achieve this, the API fuses location estimations from two sources:

• GPS based, which has a high energy-consumption, works poorly indoors, but can have a 1

Hz sampling rate and accuracy of few meters outdoor;

• Network based, that estimates a location and accuracy estimation from the list of nearby

cellular network towers and WiFi hotspots. Also works indoors, but requires an internet

connection to transmit the list to an online API7.

This location provider is also affected by the power saving measures mentioned earlier.

3.5.1.4 Other Factors and Configurations that Impact Movement Detection

Other running apps and Android configurations may significantly alter the number of times our

app is awaken with new data, such as:

• Fitness tracking applications such as Google Fit require more frequent sensor data and pro-

cessing, resulting in wakening the CPU more frequently and improving other services that

require motion sensor-data such as Google’s Activity Recognition.

• Internet connectivity, either through WiFi or mobile, is a requirement for Location Ser-

vices to provide the cheapest location estimates (in terms of battery), based on nearby WiFi

hotspots and cell towers. Therefore, location updates to lightweight background services

are almost nonexistent if there’s no internet connectivity.
5https://developer.android.com/about/versions/oreo/background-location-limits
6https://developers.google.com/location-context/fused-location-provider
7https://developers.google.com/maps/documentation/geolocation

https://developer.android.com/about/versions/oreo/background-location-limits
https://developers.google.com/location-context/fused-location-provider
https://developers.google.com/maps/documentation/geolocation
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• Google’s Location History is an Android configuration that automatically requests and col-

lects network based locations every 1 or 2 minutes. When this setting is turned on every

other app can receive those location updates, even if they are running on the background.

• Running any app on the foreground and keeping the phone awake while on the move pre-

vents the operating system from putting the phone into standby and maximizes the amount

of data and processing our app can perform when necessary - when on the move.

• Moreover, if the app keeping the phone awake is frequently requesting location updates,

such as navigation apps like Google Maps, every other running app have access to those

location updates.

• Some manufacturers perform many customizations to the power saving measures of their

phones. In an extreme example, we have seen phones with the accelerometer chipset input

power tied to the screen’s, completely preventing motion sensor data to be read after the

screen is turned off. Manufacturers commonly bypass Google’s power saving features such

as Doze, implementing their own background limitations strategies that prevent an app to be

executed in the background. Unfortunately, there are many variations of such power saving

features implemented by manufacturers, with very limited to no information about them.

3.5.2 Automatic Detection of Trips

Automatically detecting the start and end of a user’s trip allows an app to automatically gather

sensor data from the participants’ daily trips in a non-intrusive way, i.e. without requiring any

user interaction. We identified three main techniques to detect movement that are able to respect

the Android power saving limitations explained in the previous section, and can be implemented

in background services: activity recognition, location updates, and Geofencing. These techniques

have multiple parameters that can be configured, such as the desired frequency of updates, desired

accuracy, and allowed power burden, allowing us to configure the trade-off between saving battery

or quickly detecting a trip.

Our algorithm for detecting movement, described in Figure 3.11, leverages all three techniques

and combines them using a fuzzy algorithm, detecting if the participant is stopped or on the move.

With "on the move", we mean urban scale movement relevant to transportation systems, like the

daily commute trips or even a walk to the baker shop, and not indoor movement.

Each technique is implemented in its own classifier, that analyzes the stream of sensor data

and outputs a value between -100% and 100%, representing a confidence between "the user is

stopped" and "the user is moving" respectively. The classifiers also implement timeouts, updating

their confidence value accordingly when no new data has arrived for some time. Our application

allows users to select which classifiers to use, for testing and research purposes. All the parameters

in each classifier can be tuned in the settings menu, or quickly changed in a quick-settings options

setting the Energy Allowance and Parameter Sensibility of all classifiers at the same time.
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Figure 3.11: Workflow of the Automatic Start and Stop functionality

3.5.2.1 Decision Algorithm

A fuzzy algorithm is responsible for analyzing the output of the active classifiers and make a

decision, starting data collection if the merged confidence is higher than a threshold, and stopping

it when it is lower than another threshold. Hysteresis between both thresholds prevent the app

from starting and stopping multiple times with no significant changes in the user’s activity. The

starting and stopping thresholds are configurable, but with default values the algorithm starts a data

collection when the average confidence of all active classifiers goes over 15%, and stops when it

decreases below -15%.

The start and the end of a trip are also implemented slightly different in each classifier, since

they analyze very different sensor streams: During the start of a trip, the smartphone is typically

turned off and our classifiers receive sensor samples only sporadically, depending on the sensor.

On the other hand, when searching for the end of the trip that is being sensed our classifiers

have access to a much larger stream of sensor data. This asymmetry must be considered in each

classifier.

3.5.2.2 Activity Classifier

We use Google’s Activity Recognition API to sense the participant’s physical activity. The API

uses motion sensors to estimate the user activity, returning a list of possible activities, each with

a corresponding confidence value: moving in a vehicle, by bicycle, is running, is walking, is

still, or unknown. The sample confidences returned by the Activity Recognition API for each

of these activity types are mutually exclusive, returning for example 50% for both bicycle and

vehicle, and 0% for all others, if it’s unsure which one is the correct. Our classifier needs to

quantify movement, and therefore we transform the data into variables representing a confidence

per minimum amount of movement, by summing the confidence of activities representing higher
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movements, as represented by the functions:

At least On Vehicle = On Vehicle

At least On Bike = On Vehicle + On Bike

At least Running = On Vehicle + On Bike + Running

At least Walking = On Vehicle + On Bike + Running + Walking

Stopped = 100% − At least Walking

The Activity Classifier caches and analyzes these movement confidences in a moving window

of the last few minutes. It classifies as moving when the participant is continuously performing

an activity representing movement for longer than some time windows, depending on the corre-

sponding amount of movement. This is implemented by calculating the percentage of area under

the curve of each of the detected At least activities and its corresponding window, as represented

in Figure 3.12. If this classifier has no data to analyze in the whole window, the classifier outputs

0% ("Unknown").

Figure 3.12: Movement detection classifier based on Activity Recognition data

This classifier’s desired sample rate is configurable in the app, together with the parameters

and thresholds used in estimating the movement confidence value. With the default values, this

classifier requests the current activity every 60 s, and uses a window size of 3 min. The thresholds

to classify as moving for the various types of movements are 30 s of driving, 1 min of At least On

Bike, 2 min of At least On Running, and 3 min of At least On Walking.

As an example, -100% confidence is returned when no activites are detected in the 3 min

window, and 100% is returned when cycling + driving are detected with 100% confidence in two

sequential samples 1 min apart.
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3.5.2.3 Location Classifier

This classifier uses Google Play Services’ Fused Location Provider to sporadically request and

cache location data, analyzing it to estimate the participant’s movement. As mentioned earlier, this

Location Provider typically receives slowly-refreshed network-based location data when searching

for a trip start, and frequently-refreshed GPS-based locations when detecting the end of a trip. The

former may contain low accuracy location samples, and the latter is known for high-frequency

noise even when the user is stopped, and so the sum of distances between consecutive points can

be much higher than the actual traveled distance. Our algorithm overcomes this limitation by

implementing a simplified version of the radius of gyration, which as been shown to be able to

distinguish if a user is static or moving [43]. Our version bypasses the root-mean-square distance

of the original method, which is sensitive to noise, estimating the movement as twice the maximum

distance between the cached locations and the window mean, as represented in Figure 3.13.

Figure 3.13: Movement detection classifier based on Location data

The algorithm returns a value close to the real travelled distance when the user is travelling in

a straight line at a constant speed, but overestimates movement at the beginning and end of a trip.

This overestimation results in faster starts, reaching maximum confidence when the user travels

half the configured distance after being stopped for some time, and improving the collection of

the data since the begining of the trip. It also results in slow stops, taking longer to detect a stop

at the end of a trip and causing a tail of collected data of a few minutes, which can be cleaned in

post-processing.

With default settings, the classifier reaches 100% confidence when the user moves at least

150 m within a 3 min window, and -100% if he travels less than 100 m.
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3.5.2.4 Geofence Classifier

Recent versions of the Android operating system restrict the availability of location updates to

background apps. The currently advised way to leverage location data in background running

apps is through the use of system-triggered geofences. These are defined by a center location, a

radius and a dwell time, and the system notifies the application every time the user enters, exits,

or dwells inside the geofence for the specified amount of time after entering it. Geofences use

standard location data internally, but are optimized in terms of processing and energy consumption

by the system for all apps using them. The target uses of this API is for apps connected to some

specific places, such as air transport companies and airports, or supermarkets, to notify the user of

some useful information or promotion after he arrives at their premises.

Geofences are also very different when detecting a stop or a start of an uncontrolled trip.

Since we have no knowledge about where the user is going to, we are not able to detect a stop by

configuring a geofence at the destination to detect an Enter event, and then waiting for a Dwell

event. Detecting a start is possible by creating a geofence centered in a user and waiting for an

Exit event. However, the geofence API typically uses a network based location, which can be very

inaccurate, introducing multiple sources of errors:

• An Exit event may never arrive, if the center location was very inaccurate, outdated, or the

user was moving quickly and he/she was already outside of the configured area when the

geofence was created.

• May take a long time to be triggered, due to the design and target uses of the Geofence API.

• Trigger false Exit events, since locations used are not very accurate and we might want to

monitor a small displacement.

To mitigate possible problems caused by these, such as slower or false starts, our algorithm

implements these functuionalities:

• Disabled when detecting a Stop. To avoid constantly receiving triggers and re-creating

geofences during an active trip, this classifier is only used to detect the start of a trip, and

deactivated during sensing sessions. Furthermore, the app is typically collecting sensor data

at high sample-rates during sensed trips, including locations, making the other classifiers

work much better.

• Never returns a negative confidence value. Our classifier considers an Exit event as an

indication of movement, but a lack of Exit events as an "unknown state" (0%).

• We use smaller radius of movement per geofence but require 2 triggers in a configurable

time window, reducing the impact of location noises, as represented in Figure 3.14

With default settings, our Geofence Classifier defines a geofence centered at current location

with a 150 m radius every time the phone boots up or a stop is detected. When an EXIT geofence
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Figure 3.14: Movement detection classifier based on Geofences

event is detected, it recenters the geofence at the most recent position, and estimates a movement

confidence depending on the time elapsed since the previous Exit event. If the new EXIT event

is detected within 90 s of the previous, the classifier is confident the user moved at least 150m in

90 s, and thus classify the user as "Moving" returning 100%. The confidence is linearly reduced

as the time since the last trigger increases, reaching 0% if no new event is detected within 300 s.



Chapter 4

Performance Evaluation

In this chapter we analyze the performance of our crowdsensing research tool, which goal is to

allow the extraction of useful information, by first collecting sensor data from users’ devices. Its

performance can therefore be analyzed by the costs involved on a sensing task (Section 4.1), and

the ability to extract information from the gathered data.

The main costs of a sensing task can be quantified, but the amount of extractable information

is unquantifiable at any point in time, as new uses and methods to analyze the data are researched.

It is however hindered by data quality problems typically present in opportunistic crowdsensing

systems. In Section 4.2 we raise awareness to data errors that arise from such sensing systems and

from automatic gathering data. We further present techniques to prevent damage to information

extraction algorithms down the stream.

Most of the work described in this chapter was published in [44, 45, 46].

4.1 Data Gathering Costs

In this work we define cost of knowledge as the total cost of a sensing task, to both the participants

and the researchers involved. This concept aggregates the battery consumption, data communi-

cation and storage requirements of a data gathering task. Participants and researchers should be

given accurate quantitative values for these costs.

The participants’ costs come mainly from the battery consumption on the sensing device and

from the required data communication. The researchers’ should deal mainly with the data storage

requirements, since a crowdsensing system can quickly gather massive amounts of data. In Sec-

tion 4.1.1 we present a battery consumption study, enabling the estimation of energy consumption

for different sensors and sampling rates. In Section 4.1.2 we present the storage requirements

for such sensors and sampling rates, allowing a researcher to accurately estimate the database

storage requirement for any given sensing project. Section 4.1.3 shows the efficiency analysis of

our communication protocol, giving participants’ and researchers information about the required

bandwidth and communication costs.

37
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4.1.1 Energy Consumption

One of the main challenges of sensing platforms is related to the battery resources available in

mobile devices. Most of the currently available mobile sensing platforms make blind choices

regarding this resource, such as reducing the sensors sampling rate without knowledge of the

corresponding battery savings. The reconfigurability of our system was leveraged to perform a

battery consumption study with different classes of devices, sensor configurations and sampling

rates. Our methodology follows the recommendations of a case study by Kim et al. [47], where

they show that a battery saving strategy should be evaluated based on battery consumption or

battery life, and not on the instantaneous energy used. In this section we evaluate SenseMyCity

on 2 models with different characteristics: a 2010 small and cheap smartphone - Samsung I5500

running Android version 2.3.7 with a single-core 600 MHz CPU and a 1200 mAh battery; and a

2012 powerful model - LG Nexus 4 E960 running Android 4.2.2 with a quad-core 1.5 GHz CPU

and a 2100 mAh battery.

The study involved at least 3 runs of each configuration and smartphone model, with different

smartphones (three Samsung I5500 and three LG E960), with everything turned off except for our

application and desired sensors. More specifically, the smartphones were tested with the following

configurations:

• Disabled the automatic updates of the operating system and installed applications;

• Turned off background data and automatic synchronization of accounts’ data;

• Turned off all options related to near field communication (NFC), bluetooth and WiFi;

• Removed any SIM cards from the smartphones;

• Deactivated automatic screen rotation;

• Deactivated all options related to facial recognition and voice unlock;

• Disabled automatic screen brightness and configured it to the minimum.

Each run was initiated with the phone fully charged, finishing when the battery depletes and

shuts off the phone. The changes in the battery level (%) were monitored and time-stamped by

our application, and this data was used to estimate percentage of battery per hour (%/h) and time

to depletion (hs to 0%). Average power consumption per hour (mW) was also calculated using the

original battery capacity (1200 mAh and 2100 mAh). This methodology was also used to monitor

the battery usage of other states of the phones: when they are in idle (nothing running, only the

battery levels being collected), when only the CPU is kept awake (required for processing data

or even gather in smartphones with Android version 5 or older), and also when the smartphone

screen is kept ON but dimmed.

Table 4.1 presents some of the results, showing the battery consumption of different sensors

and setups in both tested smartphones, and the corresponding expected battery life.

Figure 4.1 presents some sensor setups and their corresponding average power consumption

(Bat. Cons. in mW) and estimated battery autonomy (Bat. Life in hs). Figure 4.2 shows the
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Table 4.1: Average battery consumption and autonomy, for different sensor configurations and
devices

Samsung I5500 Nexus 4 E960
Battery % / h hs to 0% Battery % / h hs to 0%

Idle 1.87 % 53.6 h 0.47 % 214.3 h
CPU 4.11 % 24.3 h 1.08 % 92.4 h

Screen 8.20 % 12.2 h 5.88 % 17.0 h
Acc, Gyro, Mag 7.55 % 13.3 h 1.75 % 57.1 h

GPS 8.33 % 12.0 h 4.67 % 21.4 h
WiFi (WF) Scan 6.58 % 15.2 h 3.77% 26.5 h
Ambient pressure NA NA 1.67 % 60.0 h
External via BT 5.31 % 18.8 h 2.31 % 54.9 h

Acc, Gyro, Mag, GPS 11.62 % 8.6 h 5.52 % 18.1 h
Acc, Gyro, Mag

GPS, WF
16.67 % 6.0 h 8.09 % 12.4 h

All internal1 16.67 % 6.0 h 9.43 % 10.6 h

Figure 4.1: Energy consumption for different sensor setups

same metrics but for smartphones gathering data only from the accelerometer sensor at different

sampling rates. The older Samsung phone showed a constant consumption across all sampling

rates (from 5 Hz to 50 Hz), while the newer Nexus 4 showed a more efficient sensor but with an

increasing consumption for higher sampling rates (from 5 Hz to 200 Hz). From Figure 4.3 we

can see that the GPS sensors from both smartphone models have a similar power consumption.

Also, we can see that energy consumption does not scale linearly with the sampling rate. This is

expected since a GPS fix takes at least a few seconds to obtain after waking up from standby, and

therefore the GPS can only enter sleep mode beyond a certain frequency. A 60 s GPS sampling rate

results in a 32% of energy reduction compared to a 1 s sampling (99 mW to 67 mW). In a similar

fashion, we can see from Figure 4.4 that just like the GPS, the WiFi module energy consumption

does not scale proportionally to the sampling rate. However, configuring this sensor can result in
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Figure 4.2: Energy consumption for different Accelerometer sampling rates

Figure 4.3: Energy consumption for different GPS sampling rates

Figure 4.4: Energy consumption for different WiFi sampling rates

bigger energy savings than with the GPS, saving 68% by using a 60 s sampling rate instead of 1 s

(79 mW to 25 mW).

Overall, we can see that, in the tested models, the smartphones’ battery lasts for 6 h to 10 h

when collecting data from every internal sensor and not considering any additional functionality.
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Considering the results presented, a user that gathers data during his 1 h daily travels, will arrive

at the end of the day with at most 15% less battery than if he was not gathering data. More

importantly, our system reconfigurability allowed us to estimate the energy consumption of these

smartphones’ sensors in multiple configurations.

4.1.2 Storage Requirement

The size and amount of collected data can have a big impact on the cost-of-knowledge, depending

on the communication and storage costs. Our system uses multiple techniques to reduce these,

explained in the previous chapter, such as using lossless compression for transmission and storing

high sample-rates sensors in arrays. In Table 4.2 we present the resulting storage requirement of

individual sensors and typical configurations.

Table 4.2: Storage requirements for different sensors

Streams Sample size Sample rate Expected Storage
GPS 58 B 1 Hz 60 B/s

Acc, Gyro, Mag 8+3x2 B 4 - 200 Hz 32 - 1200 B/s
WiFi Scanner 18 B 0 - 10 / 1s 0 - 180 B/s
BT Scanner 16 B 0 - 10 / 10s 0 - 32 B/s

Pressure 8+4 B 1 - 200 Hz 12 - 800 B/s
OBD 14 B 4-12 Hz 50 - 160 B/s

Example setup: GPS, Motion, WiFi ' 160 B/s
All internal sensors < 300 B/s
All sensors at max. rate ' 4500 B/s

A sensing task requiring data from GPS at 1Hz, WiFi scanner sensing networks every 2 sec-

onds, and Accelerometer, Gyroscope and Magnetometer at the default Android rate (typically

between 4 and 15 Hz), gathers around 160 bytes of binary data per second, or around 1 MB per

hour.

In a more sensing intensive utilization, gathering data with the highest available sampling rate,

with many surrounding WiFi networks and gathering vehicle data from an external OBD device,

the storage requirement is around 4.7 KB of data per second, 17 MB per hour. In this setup, the

accelerometer, gyroscope, magnetometer and pressure sensors are responsible for more than 90%

of the storage utilization.

The mobile application uses SQLite to store the data locally before being transmitted, which

requires some overhead storage on the smartphone. Tests showed a storage efficiency between

70% and 95% when comparing to the raw binary format, depending on the size and sensors con-

figuration. Similarly, the PostgresSQL database used in the servers also require around 28 Bytes

of overhead per row of data, resulting in an efficiency of around 40% for small size data, such as

OBD samples, and up to 95% when storing large samples, such as accelerometer at 200 Hz.
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4.1.3 Communications Requirement

The communication protocol described in Section 3.3.3 was specifically designed for our platform

requirements and is built on top of standard transport layer sockets. To evaluate the protocol’s ef-

ficiency we compared it to other request-response protocols in terms of required packet overhead

during the data transmission phase and in the required number of transmissions in the authentica-

tion phase.

In every data transmission, our gathering units should transmit the session_id, the sequence

number, and sensor data, irrespectively of the used communication protocol, and receive back

an Acknowledgement (ACK) packet and the sequence number. As stated in Section 3.3.3, the

session_id (4 bytes) and the sequence number (2 bytes) are both required to make the protocol

stateless and allow multiple outstanding packets. Also, communications should be encrypted,

which requires some kind of token for session management to allow the server to keep track of

the encryption keys for different clients. For simplicity, we allow the session_id to be used as the

token, and also consider that encryption can be provided at the payload or application level, and is

not a requirement of the protocol itself.

By using different socket ports specific to the desired action - authentication or data transmis-

sion - our protocol does not require the transmission of any form of action code or other metadata,

e.g., GET/PUT, version, token length field, etc. Our implementation uses the session_id as the

session token, and transmits the sequence number, sensor data and ack packet compressed and

encrypted, resulting in an effective packet overhead of 0 bytes, in both the request and response.

One recently proposed protocol is the Constrained Application Protocol (CoAP) 2. CoAP was

designed for resource constrained devices, requiring small processing power and containing very

low overhead. Effectively, their simplest required header in both requests and response packets is

only 4 bytes in size, but from which 2 of them (message id) may be used to send the sequence

number. It therefore has only 4 bytes of overhead per data packet (2 in each direction) during the

data transmission phase. However, it was not yet available when we developed our protocol, and

at the time of writing this thesis it is not yet available on standard Android libraries. Furthermore,

it uses DTLS for secure communications, which requires 11 more overhead transmissions during

the initial handshake than our custom protocol.

Undoubtedly one of the most widely used request-response protocol is REST over HTTP.

Based on the RFC of HTTP version 1.1 3, the minimum packet for requests containing data bodies

is the following:

2https://tools.ietf.org/html/rfc7252
3https://tools.ietf.org/html/rfc7230
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POST / HTTP/1.1

Host: [HOSTNAME]

Content-Length: N

[BODY]

and for responses is:

HTTP/1.1 200 OK

Content-Length: N

[BODY]

The HTTP header lines must all be separated by both a carriage-return and line-feed characters

(2 bytes), and the header is terminated by a single blank line. Regarding the HOSTNAME field,

Chung et al. [48] analyzed a dataset of more than ten million web hosts from 2004 to 2006 and

reported an average HOSTNAME length of 24 characters. However, the smallest possible domain

name consists of a single character plus three for the domain suffix (4 characters total, e.g., g.cn).

This results in a minimum overhead of 50 bytes for requests and 38 for responses, totaling 88 bytes

of overhead. More recently, HTTP version 2.0 was proposed 4, and although it does not allow

smaller headers, it does allow their compression, possibly reducing the overhead significantly.

As with CoAP, securing a REST or HTTP communication requires the use of TLS or DTLS,

introducing at least 11 extra transmissions during the handshake phase.

Table 4.3: Average size of data from 1h sessions collecting data from GPS, Accelerometer, Gyro-
scope, Magnetometer and nearby WiFi networks

Binary data SQLite file JSON string Compressed and encrypted JSON
570 KB/h 700 KB/h 1100 KB/h 120 KB/h

Communication costs are also affected by the payload efficiency in transmitting the sensor

data. Before transmission, our gathering unit serializes the sensor data in JSON format, com-

presses it using zlib and encrypts it. To evaluate its efficiency on the transmitted packet size, we

evaluated it with data from 1 h sessions using different sensing setups. Table 4.3 presents the re-

sults when collecting data from GPS, Accelerometer, Gyroscope, Magnetometer and nearby WiFi

networks. The gathered sessions contained an average of 570 KB of binary data. After being

stored in a local SQLite database, the resulting file occupied around 700 KB (123% comparing to

the binary size). The JSON serialization of the data resulted in a string with around 1100 KB of

length (193% of binary size). However, after compression, encryption and encapsulation, the total

size of the transmitted packets was only around 120 KB (21% of binary size)

4http://dev.chromium.org/spdy/spdy-whitepaper
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Even though the JSON serialization increases the size of the data, the zlib compression proved

to be very efficient at compressing the JSON strings. Other sensor setups, such as the ones pre-

sented in Table 4.2, showed a similar compression ratio, with a final transmitted payload between

20% and 24% of the binary size. This way, a user collecting sensor data using the presented setup

(GPS, Acc, Gyro, Mag and WiFi networks with default sample rates), will upload around 120 KB

of data per hour. Collecting data from all of the smartphone’s internal sensors will require between

220 KB/h and 3.4 MB/h, depending on the sampling rates.

4.2 Identifying and Mitigating Data Quality Issues

Our research tool is able to gather data from multiple types of sensors, allowing the extraction

of distinct types of information. Most of the performed data analysis are, however, focused on

spatiotemporal data, aiming to characterize or predict phenomenons in a certain location and time.

Location and timing information is furthermore very important to allow aggregated analysis and

data fusion between multiple sensors and devices, which can also introduce some noise on the ex-

tractable information if not handled carefully. The uncontrolled nature of crowdsourcing systems

can also introduce some undesirable characteristics in collected datasets.

In this section we explore the following characteristics typically present in such systems that

may impact the quality of extracted information:

• Limited sensors accuracy. Mainly of timing and location sensors, often provided by low-

cost integrated sensors to reduce devices’ cost.

• Fusing data from different sensors. Which may be from the same or between devices, and

from different or the same type of data (e.g., multiple sources of location).

• Uncontrolled collections and user behaviour. We have no control of how the user was using

the device, in what context. Furthermore, users are anonymous, with unimputable respon-

sibility, and from possibly unknown backgrounds, and as such the feedback collected from

surveys may contain biased or erroneous information. Different hardware and software ver-

sions or configurations, such as the Android version or implemented power saving measures,

can also represent very different behaviours as seen in Section 3.5.1.

4.2.1 Sensors Accuracy

In this section we elaborate on the quality of what we consider to be the two most important

types of information of sensing systems mainly targeting mobility: samples time and location.

We will not delve into the quality of other sensors readings, such as the accuracy of Wifi SNR

measurements or accelerometer readings, as these are very dependent on the device’s hardware

and sensing requirements.
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4.2.1.1 Data Timestamps

Every sensor data sample should be timestamped with a common time source to allow synchro-

nization among multiple sensors and devices. Smartphones usually keep track of time by using an

electronic oscillator circuit, based on a quartz crystal or other piezoelectric material. It counts the

oscillations even when the phone is turned off, in order to provide a correct time and date when

the phone turns back on. However, its frequency may vary slightly from the expected values, in-

fluenced by some factors such as temperature variation, that can lead to clock shifts. Furthermore,

generating and counting the oscillations require a constant source of energy, therefore losing the

time information when the power is lost, such as by a battery removal or depletion.

Smartphones typically provide two timing sources based on this oscillator: the elapsed time
(elapsed) since the last boot; and the system clock indicating the current calendar time (epoch or

unix timestamp, usually given as time elapsed since 1970/01/01 00:00:00 UTC). Some sensors

may have their own specific timestamp data, such as the satellites’ clock available in GPS data

samples, also indicating the current UTC time provided by the very expensive and precise atomic

clocks present in the satellites. Figure 4.5 shows a diagram with these clock sources.

Figure 4.5: Clock sources and sensor batching in smartphones

The system clock in smartphones is usually implemented by applying an offset value to the

oscillator circuit clock, which may be automatically updated based on cellular broadcasts or inter-

net connections. Due to this correction, the system clock is not guaranteed to be continuous nor

monotonically increasing, since the offset can be updated at any time to correct clock shifts, and

in any direction. This unpredictable update can cause major problems to data gathering platforms

such as ours, since the system clock can be updated in the middle of a trip by a large amount of

time, causing large jumps in samples’ system clock timestamps. This would seriously impact even

apparently simple information extraction, such as trip duration.

Moreover, in our data collection campaigns we observed that it is common for users to let the

battery run out of energy, causing the phone to boot afterwards with a completely wrong default
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system clock, defined during manufacturing of the device. The smartphone’s clock must then be

updated to a more precise timestamp, via cellular broadcasts or internet, which takes a varying time

between a few seconds to hours. We can observe multiple system clock jumps on our datasets,

such as the one depicted in Figure 4.6 of more then 46 years+, caused by a clock update 2400s

after the beginning of a trip being sensed.

Figure 4.6: System clock jump of 46 years during a trip being sensed

We present this issue in our platform by timestamping all sensor samples using the elapsed

time since boot, which is guaranteed to be monotonic. We also estimate our own version of the

clock offset by comparing the system clock and elapsed time at a few specific moments, allowing

us to estimate the UTC timestamp of all others collected data sample. We compute this offset value

by collecting timing data at both the start and end of every session, using the former only if the

latter is not present, such as if the app is abruptly terminated. When available, the GPS provided

satellites’ clock is also stored on the location tables and can be used to estimate this offset, since

it is the most accurate UTC clock source.

Additionally, recent smartphone models offer power-saving strategies that include batching

sensor data [49], which consists of caching data samples on dedicated hardware before delivering

to the main CPU, allowing the CPU to enter sleep mode for longer periods of time. This can lead

to delays between the sensing and reception of the sensor samples, up to a few minutes in case

of sensor batching. Sensor batching was introduced in Android OS since version 6.0, which also

introduced the sensing timestamps in every sample of sensor data, using the elapsed timestamp.

This sensing timestamp should be used when available, falling back to the elapsed timestamp at

data reception only on older Android versions.

4.2.1.2 Location Providers and Accuracy

A crowdsensing platform can gather information from multiple sensors, but location information

is required both to assess the participants’ mobility and to geo-reference other sensor data. As

described in Section 3.5.1.3, the recommended Android location provider can leverage WiFi and

cellular information to complement and improve GPS/GNSS based solutions, saving energy and

providing indoor localization. Our data exploration shows that around 85% of collected location
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data was obtained directly from GPS, and the remaining 15% was estimated from nearby WiFi

hotspots and cellular network towers.

The original GPS technology was designed to offer a position accuracy of around 15 m in

perfect conditions [50] with 68% confidence. Advances in the satellites hardware and processing

algorithms has been able to improve it to 5 m or less, even in low-cost chipsets. Fortunately, by

analyzing the received signals and satellites positions, Global Navigation Satellite System (GNSS)

receivers are able to estimate an error value, which follows a normal distribution around the re-

ported position [50]. The error is typically reported as a 68% (1σ ) confidence value, and is avail-

able in all location providers on Android. Our collected dataset has an average of 9.5 m and median

of 10 m of reported 1σ circular accuracy, with no locations reporting better than 3 m of accuracy,

as can be seen in Figure 4.7.

Figure 4.7: Histogram of reported GNSS 1σ accuracy

However, we noticed that network based locations may lie far from the true device location due

to changes in the placement of WiFi hotspots. This causes a device to be placed near a previous

location of nearby WiFi hotspot, possibly very far away from the current correct location, and

even far from other positions received recently. To exacerbate this problem, such locations are still

reported with a low accuracy, around 30 m.

An example can be observed in Figure 4.8, showing a trace approaching the underground metro

station of "Salgueiros", at which point the reported location jumps to another nearby metro station.

This problem is mainly noticeable in areas with no GPS coverage, such as underground metro

stations, where the Location Services API has to rely on network assisted positioning. During a

data collection campaign that lasted for 1 month, around 30% of participants’ trips traveling in

that metro line were affected by this positioning error.

This effect was also observed in our dataset when participants attended temporary events,

such as exhibitions, demonstrations, etc. Presenters and demonstrators usually took their own

WiFi hotspot to such events, causing nearby Android phones to sporadically report a location
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Figure 4.8: Position mismatches due to WiFi hotspot mapping error.

near the hotspot’s original place, such as near their office location. Another participant in Porto

was repeatedly mapped to Angola, 6000 km away, for almost 3 minutes in the middle of his work

commute, possibly due to problems obtaining a GPS location and a wrongly mapped mobile WiFi-

hotspot. Another common case we noticed are users being initially mapped to some car factory

far away, possibly due to being closed to a recently bought modern vehicle with onboard WiFi-

hotspot.

These network assisted location problems are hard to impossible to prevent. So, they should

be detected and filtered in the pre-processing phase of mobile crowdsourced data.

Assessing Data Quality

We assessed and quantified the location quality degradation caused by these erroneous positions

during a data collection and analysis targeting mobility studies, presented in Section 5.3 and pub-

lished in [46]. The same metrics are used to evaluate the improvements achieved with each of the

proposed filtering steps. A test dataset was collected with this goal, containing 9,099,576 loca-

tion points, from 17,866 trips totaling 5,082 hours of commuting time, from 227 participants, and

spreading over 229,564 km traveled during 2 months in 2016.

It is very hard to impossible to collect ground-truth locations from crowdsensing systems due

to their uncontrolled nature of both hardware and human behaviour. However, since we target
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sensing human mobility, we can search for location data that contains information incompatible

with humans, and therefore is guaranteed to be erroneous. As such, we search each trip for location

data points that correspond to movement physically unrealistic for a vehicle in an urban scenario,

similar to what is suggested in [51] but with a higher speed threshold to accommodate train speeds.

Concretely, we ignore instantaneous speed available at some positions, and estimate speed and

acceleration at each instant with respect to the previous one (point to point), which we call sp2p
i ,

ap2p
i , with the following equations:

∆di = haversine(Li−1,Li) , ∆ti = ti− ti−1

sp2p
i = ∆di/∆ti

Note that location data can arrive in a variable sample rate, and therefore acceleration should

not be calculated by the common ∆sp2p
i /∆ti, since sp2p

i are calculated from averages over the period

between two points, and not instantaneous. Therefore, we calculate acceleration as the slope in

speed between the two segment’s midpoints, with the formula:

ap2p
i = |

sp2p
i − sp2p

i−1

(ti− ti−2)/2
|

We then mark a point as unrealistic if it contains a speed over 80m/s or horizontal acceleration

over 10m/s2. We also consider a trip as noisy if more than 1% of its points represent unrealistic

movements.

On the test dataset, this algorithm detected 69,330 location points (0.76%) with unrealistic

movement occurring in 6878 (38.50%) of the gathered trips, and 2350 trips (13.15%) were marked

noisy containing more than 1% of unrealistic points.

Duplicate points

The Android Fused Location Provider, for unknown reasons, returns duplicate location data mul-

tiple times. We test every new location point and mark it as a duplicate when every field in the

location data is the same as the previous sample, except for the timestamps. No GPS based lo-

cations were deleted, but around 5% of network-assisted locations were detected as duplicates,

possibly due to cached WiFi scan results or to low location granularity returned by this location

provider.

4.2.2 Fusing Different Sensors

The quality of data timestamps and location is very important to allow fusing data from different

devices and allow aggregate analysis in space or time. However, there are other problems that

should be addressed when fusing data from the same device, such as fusing data from different

types of sensors with variable sample rates, or fusing data from multiple sensors of the same type.
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4.2.2.1 Variable Sample Rate

Different sensors, or even the same sensor across different smartphone manufacturer can provide

data at different sampling rates. Furthermore, sensors with the same sample-rate do not produce

samples at the same exact time, requiring some form of synchronization to be fused and analyzed.

Our platform stores the gathered data samples with timestamps up to milliseconds, to allow fusing

and analyzing data from multiple sources.

For example, accelerometer, gyroscope or magnetometer sensors embedded in smartphones

can typically be configured to output samples at frequencies between 5 Hz and 200 Hz. Individual

samples collected at different sample rates may not be directly comparable or be out of sync,

requiring careful analysis such as aggregating using a compatible time granularity (e.g., seconds).

The same problem can be significantly exacerbated in sensors with lower frequencies, such as

WiFi or bluetooth scans that can take more than 10s to return results.

Other sensors may have unknown or unpredictable sample rates, such as an On-board Diag-

nostics (OBD) device that can sequentially query individual vehicle sensors with a response time

highly dependent on the vehicle and sensors technology. Moreover, synchronized data from mul-

tiple OBD parameters may be required, such as for calculating the vehicle’s instantaneous fuel

consumption. Further synchronization is required if these calculations are to be compared with lo-

cation data, that arrive at completely different sample times. In a use case of our platform aiming

at modeling and estimating vehicles’ instantaneous fuel consumption from location data (see Sec-

tion 5.2), we perform this synchronization using linear interpolations, re-sampling the data points

at a common timestamp, such as interpolating the OBD parameters at the location’s timestamps.

4.2.2.2 Multiple sensors of the same type - location providers

Multiple sensors of the same type can co-exist and provide data on the same device. We ob-

served some of these cases in our platform, such as collecting accelerometer data from the smart-

phone’s internal sensor and from an external wearable sensing device (e.g., from the VitalJacket

bio-monitor), allowing to monitor the relative position of the smartphone/hand vs the user’s body.

The most often observed case of multiple sensors providing the same type of data is the afore-

mentioned Android fused location provider. Even though it is registered as a single sensor or

data provider, it can actually estimate a location using two distinct methods: from visible WiFi

and cellular information, or GPS/GNSS based solutions. However, both methods can report data

concurrently during our users’ trips, and thus the resulting traces are a sequence of the following

types of periods:

• No location data, when no satellites are visible and no internet connection is available for

estimating a location based on cellular or nearby WiFi networks.

• A GPS location at 1 Hz when enough satellites can be tracked with good enough signal

quality.
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• A network-assisted location every few seconds when nearby WiFi hotspots are detected and

an Internet connection is available.

• A mix of the previous two.

This heterogeneity of location providers can result in a location dataset with very distinct

characteristics, with different timestamps, data fields, sample rates, and sometimes with estimated

locations thousands of kilometers apart.

Incompatible timestamps

GPS provided localization contain an elapsed and GPS timestamp field, given by the very accurate

satellite clocks, and is usually calculated at the transition of each second, providing a consistent

stream of locations. Network based locations are timestamped with the elapsed and system clock,

which has the problems mentioned in the previous section, and is calculated at an inconsistent rate,

depending on the WiFi scans and internet connectivity.

Mixing both positioning methods and their reported system clocks without taking this into

consideration lead to an inconsistent trip, with jumps back and forth the taken path. Using the

elapsed timestamp provided in each location sample must be used to keep a sane time-series of

location data collected from multiple methods.

Different available information

GPS chipsets can estimate the device speed and direction by analyzing the Doppler effect on

signals received from satellites [52]. This method provides an estimate for instantaneous speed,

direction, as well as location, at the precise time of signal arrival, independent from previously

received data. On the other hand, network-assisted location cannot provide instantaneous speed

nor direction, creating the need to estimate it by other methods, such as using the distance between

two consecutive location points divided by the time elapsed between them. Mixing both types

of speed information may result in erroneous calculation of derivatives, like acceleration. Also,

network based location data does not report an altitude estimation, as opposed to GPS.

Variable and unpredictable sample rate

Mixing both sources in a single stream of location data can result in very unpredictable sample

rates, as can be seen in Figure 4.9 showing the distribution of inter-location intervals. 2% of

locations arrive within 0.2 s of the previous location, 89% at around 1.0 s (expected interval be-

tween GPS samples), and 9% of samples are received with more than 4 s of interval (expected for

network based location requests).

As shown in Figure 4.10, using every received location point to create a trace may result in

an erroneous path when multiple location sources are available concurrently, and causing some

algorithms to extract wrong information from such data. An example: one might be tempted to

estimate speed for every position of a mixed trace as distance/∆time. However, if two consecutive
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Figure 4.9: Histogram of time between location samples.

location samples are provided from different sources (Figure 4.10.b), they may be separated by a

few milliseconds in time and hundreds of meters in space due to estimation errors, resulting in an

unrealistically high speed.

Figure 4.10: Different sources of location and resulting paths: a) true path, b) path if all locations
are used, c) target path after pre-processing

Mitigating the problem - Select a single location source

To prevent or mitigate this problem, we consider only GPS provided locations if they are available

in a local window of [-3s, 3s], and network-assisted locations are accepted otherwise.
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Applying the above rule in our testing dataset identified and discarded 23,791 (0.26%) points.

After ignoring these points, we still detected 61,691 (0.68%) locations representing unrealistic

movements for an urban scenario, affecting 5,948 (33.29%) of the trips. Furthermore, 1,916 trips

(10.72%) still contained more than 1% of unrealistic movements.

Detecting and filtering wrong location data

We carried out a case-by-case analysis of trips with highest ∆d between consecutive points, and

observed several spatial jumps. We detected a few jumps between 200 m to more than 1000 km

away from the rest of the trip, and, therefore, from the probably true position. One of the most

common spatial jumps observed in our dataset is mapping one metro station to another, which

is likely caused by moving WiFi access point, as previously mentioned. Another common case

can be seen in Figure 4.11, when the first points of a trip are inaccurately mapped using network-

assisted location, and corrected when GPS becomes available after a few seconds, resulting in an

unrealistically high sp2p.

Figure 4.11: Sample trace with wrong initial position

We then tested two distinct approaches to detect and filter these errors in the locations pro-

vided: statistical analysis for outlier detection, and a teleport detector aided by a clustering algo-

rithm.

Statistical Outlier Detection
Abnormally high speed points seems to be a good indicator of location problems. However,

speed distributions in urban trips present very different patterns, depending deeply on transporta-

tion mode, traffic, road type and conditions, speed limits and individual behavior. Moreover, a

single trip by car can contain a combination of many different conditions, thus outlier detection is
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not straightforward to parameterize. A solution that allows variability is to use a Hampel Identi-

fier in a local window centered at the point being evaluated. Thus we tested and compared three

different Hampel filters, removing the points that meet the outlier criteria on:

• A window covering the whole session, for comparison purposes.

• A moving window comprising the previous and following 3 samples.

• A moving temporal window of [-3.5s, +3.5s] around the point being tested.

The three types of windows were applied to the dataset, and data quality was tested using the

unrealistic movement criteria defined above, and results are shown in Table 4.4.

Table 4.4: Hampel Identifiers comparison

Window type Whole trip 6 samples 7 seconds

Points removed 265k (2.92%) 175k (1.92%) 196k (2.16%)
Undetected errors 13,2k (0.15%) 7,3k (0.08%) 12,8k (0.14%)
Noisy Trips 206 (1.2%) 115 (0.6%) 192 (1.1%)

The Hampel filter configured with a window of 3 samples on each side presented the best

results, removing the least amount of points and still resulting in the least number of undetected

unrealistic movements and noisy trips.

Clustering Algorithm - Teleport Detector:

We analyzed the trips containing undetected points, and noticed that the location errors some-

times occur in multiple consecutive points, such as the previously mentioned case of a user mapped

6000 km away to Angola for almost 3 minutes in the middle of a trip. The Hampel Identifier failed

to detect these sequence of errors with any automatically configurable window size, motivating

the development of a clustering algorithm.

We implemented a dynamic clustering algorithm, similar to a Weighted K-Means clustering

algorithm with a varying K, using sp2p, ap2p, distance and ∆time as the properties of the observation

used to select the cluster. We used weights of 1/80, 1/10, 1/400, 1/20, respectively, to scale the

metrics around 80m/s, 10m/s2, 400m distance and 20s ∆time. Location points are sequentially

analyzed, their properties calculated with respect to the last point of each cluster, and mapped to

the closest cluster. A new cluster is created if the new point results in an unrealistic movement

to all existing clusters, using the same criteria as above (thresholds of 80m/s or 10m/s2). After

clustering all location points of a trip into clusters representing physically realistic travel paths, we

select the longest path as the only valid location trace to be analyzed.

After applying this filter, no unrealistic movement was detected on the dataset, as expected

since the thresholds used in the detection are the same as in the filtering algorithm. Visual in-

spection showed a significant improvement, which were validated with improved results in some

processing algorithms such as the travel mode detection presented in Section 5.3.
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4.2.3 Uncontrolled Collections

Another common type of errors in crowdsensing systems are due to the uncontrolled nature of

such data collections. For example, travel mode surveys and other anonymous human feedback

are unaccountable and unverifiable, requiring a larger dataset and careful analysis to detect and

mitigate noise.

Mobility analysis can also be greatly hindered in uncontrolled data collections due to the

mismatch between the start or end of a stream of sensor data, and the trips performed by the

user. We implemented our movement detection algorithm to helps us mitigate this problem, but

a sensing session may start or stop for multiple other uncontrollable reasons, such as a lack of

resources or battery, user actions on the phone, OS and software bugs, etc.

Independently of the algorithm used, automatic actions will inevitably cause false positives

and negatives for both start and stop. When a start is not detected, no data is produced; although

this impacts some analysis, such as the generation of OD matrices, there is nothing we can do at

a pre-processing stage, it may only be improved at the application level. When a start is falsely

detected, location data will be collected for a short period of time without large traveled distance;

this can be easily detected and trips removed. When a small stop is falsely detected during a trip,

this results in multiple smaller ones that should be composed using trip chaining, detailed next.

When a stop is not detected, a trip simply continues recording in the same surroundings for longer

than desired. We solve this problem in post-processing by implementing a trip-chaining algorithm,

described next.

Chaining Multiple Traces into a Trip

False start and stops on the automatic gathering algorithm, such as caused by a participant waiting

for a bus that takes 5 minutes to arrive, result in multiple gathered traces for what should be

considered a single trip. Additionally, trips are segmented into sequences of moving and stopped

periods for transportation mode detection. Thus, it is necessary to merge the segments used in

the classification back into trips. We considered a trip chain to be a sequence of singular sessions

bounded by at least 30 minute stops as proposed in [53]. Thus, we apply a trip chaining algorithm

that searches for and joins trips from the same participant based on their timestamps and locations.

More specifically, two traces are chained together according to these criteria:

1. both traces belong to same participant (participant identifiers change only daily);

2. a trace starts within 30 minutes of the end of the previous one;

3. distance between the end of a trace and the start of the next is less than 200 m; or,

4. end of first trace and start of second are in the premises of a metro station, if this information

is available.
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The first three conditions are straightforward, and the last one is important due to the lack of

location data inside metro tunnels, which can cause the application to stop detecting motion and

therefore split the trip.



Chapter 5

Platform Validation

SenseMyCity was leveraged multiple times to collect data and extract different and novel types

of information. In this chapter we present some of the use cases of our platform that validate its

usefulness, summarized in table 5.1. We further detail some of the use cases that led to scientific

publications in top tier journals or conferences and in which I, this thesis author, was the main

researcher or direct contributor.

Table 5.1: Summary of SenseMyCity use cases and collected dataset characteristics

Goal Main sensors
Unique
users

Time
span

Sensing
duration

Distance
covered

Bus drivers stress Location, cardiac sensor 36 3 months 151 h 2500 km
Police officers stress Location, cardiac sensor 6 2 months 90 h 400 km
Fuel consumption Location, OBD 17 12 months 172 h 4000 km
Emotional states Location, mood surveys 155 4+ years 3900 h 120000 km
Travel mode Location, travel mode surveys 227 1 month 5000 h 230000 km
Mobility demand Location 850 3+ years 32000 h 740000 km

Analyzing Bus Drivers Stress

The first project leveraging our platform aimed at cardiac stress detection among public bus

drivers. It was published in two articles [54, 20], the latter of which is expanded in Section 5.1.

To this end, our research platform was used to collect mobility data from bus drivers’ in the city

of Porto during their normal work time. The monitored drivers were also wearing a non-intrusive

bio-monitoring bluetooth device connected to our platform and collecting their electrocardiogram

signal, that was used to monitor and extract the drivers’ cardiac stress. This information was then

correlated with location information to help the drivers’ recall stressful situations that happened

during the day. New filtering and processing techniques allowed us to reduce noise and elimi-

nate biases in the cardiac data caused by physical activity. Results include scientific advances on

the knowledge and methodology to extract information about bus drivers’ stress sources, and the

generation of city-wide maps of the most common and static stress sources such as dangerous

roads. With our platform, we were able to investigate daily sources of stress faced by bus drivers

57
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while driving, with findings consistent with previous research recommendations, but with a much

cheaper and scalable methodology.

Monitoring Police Officers Stress

The following deployment of SenseMyCity aimed at analyzing the stress sources of Emergency

Responders Officers (Police), and the work was published in [55].

Our platform was leveraged to help retrospective accounts of psychological stress, combining

location, electrocardiogram (ECG) data and mobile self-reports about the stress symptoms, event

types and event intensity. Particularly, this study: 1) analyzed physiological stress data obtained

during police officers’ shifts, 2) compared with the same officer’s physiological stress data from

baseline levels (days off) , 3) and also compared with normative values for healthy populations; 4)

compared observed cardiac stress differences between beginning and end of shift; 5) and with the

self-assessed stress events and events intensity.

Fuel Consumption Estimation

Our platform was also used to model vehicles’ fuel consumption using only location data, leading

to the scientific publications [56, 19, 57]. I made significant contributions to all parts of the work

[19], which is expanded in Section 5.2.

To achieve this goal, our platform collected location data synchronized with vehicular data

from OBD devices providing information such as speed, fuel consumption and other vehicle met-

rics. The quality of extracted information was validated by human feedback containing the in-

formation displayed on the car dashboard about fuel consumption, which is not available through

the OBD device. The data gathered was used to improve existing fuel consumption estimation

models based solely on traces of location data and derived metrics: vehicle instantaneous speed,

acceleration, and road gradient.

Mapping Citizens Emotional States

In this use case, our platform was deployed as SenseMyMood, in a collaboration between the

Faculty of Engineering and the Faculty of Psychology, with a goal to better understand human

emotions. This work has been presented in a national conference ([58]).

It was our first open to the public deployment of an Android application, and motivated the

development of our movement detector to automate data collection and mobility analysis. The app

initially collected randomly-triggered twice-per-day georeferenced surveys inquiring the user’s

current activity and perceived emotions, together with his/her location when answering the survey.

This allowed us to analyze whether there are regions where people feel happier or angrier, whether

there are external or environmental factors that correlate with the perceived emotions, like noise

or traffic jams, or if human males and females perceive emotions differently. Later, the same

app started collecting mobility information, providing us with context information that can better
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explain perceived emotions, i.e., instead of knowing that the user is in traffic, we could quantify

the congestion or traffic light waiting time, and therefore their effects on user’s emotions.

Multi-Modal Mobility Analysis

SenseMyCity was leveraged to improve the characterization of mobility demand, namely to de-

vise algorithms that detect the transportation mode used given its location traces. This work was

published in [46] and is expanded in Section 5.3. Achieving the proposed goal, drawing value

from a crowdsensed dataset and characterizing mobility demand including transportation mode,

required a deep exploration of the datasets, development of filtering techniques, and evaluation of

data quality, most of which were presented in Section 4.2.

The transportation detection model was trained by leveraging SenseMyCity automatic col-

lection of mobility traces, together with surveys triggered at the end of each trip asking the user

which transportation modes were used. Sequential traces possibly belonging to the same trip were

chained together, and then segmented at each stop possibly representing a change in transporta-

tion mode. Multiple statistical features were extracted from the location sub-traces, which together

with the ground truth provided by the surveys allowed us to train a Random Forest classifier that

can distinguish between 5 different modes achieving accuracy and precision of 85%. We also

quantify the impact of the model on multi-modal OD matrices and whole trip characterisation.

Analyzing Participants Recruitment and Engagement

All of the previous use cases required new specific SenseMyCity deployments, with custom inter-

faces, sensor configurations and surveys, and used slightly different dissemination and retention

techniques. In this scientific contribution ([45]) we analyzed the effect of such differences on

the participants recruitment and engagement, which is expanded in 5.4. The same publication

also introduced our movement detector algorithm, as well as some of the data quality issues and

developed algorithms already presented in Section 4.2.

5.1 Analyzing Bus Drivers Stress

Experience of daily stress among bus drivers has shown to affect physical and psychological

health, and can impact driving behavior and overall road safety. Although previous research con-

sistently supports these findings, little attention has been dedicated to the design of a stress de-

tection method able to synchronize physiologic and psychological stress responses of public bus

drivers in their day-to-day routine work. To overcome this limitation, we propose a mobile sensing

approach to detect georeferenced stress responses and facilitate memory recall of the stressful sit-

uations. Data was collected among public bus drivers in the city of Porto, Portugal (145 hours, 36

bus drivers, +2300 km) and results supported the validation of our approach among this population

and allowed us to determine specific stressor categories within certain areas of the city. Further-

more, data collected through-out the city allowed us to produce a citywide "stress map" that can
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be used for spotting areas in need of local authority intervention. The enriching findings suggest

that our system can be a promising tool to support applied occupational health interventions for

public bus drivers and guide authorities’ interventions to improve these aspects in "future" cities.

5.1.1 Introduction

Driver behavior constitutes a major concern in road safety research and policy. Since buses are

one of the most used modes of public transportation worldwide, the behavior of bus drivers and

their occupational health becomes a critical priority in overall road safety [59].

Epidemiological evidence from several studies conducted mainly in North America and in

Western Europe showed that urban bus drivers have substantially higher mortality rates and higher

risk to develop physical and psychological diseases in comparison to many other occupational

groups [60]. In agreement with these findings, a meta-analysis by Tse et al. [59] reviewing fifty

years of research in the area of bus driver well-being concluded that this population is exposed to

several sources of stress over time. These can be distinguished in three main categories: physi-

cal environment, job design and organizational issues. Physical environment includes sources of

stress related with cabin ergonomics, exposure to noise, weather conditions, threat of physical vi-

olence, and traffic congestion aspects. Job design includes responsibility for security and schedule

obedience, working in shifts, long periods of social isolation, ticket selling and control. Organi-

zational issues are related to bus drivers’ low autonomy and limited decision-making authority.

Finally, bus drivers profession is associated with high sedentarism levels, which is known to be a

major cause for cardiovascular diseases [61].

The task of driving involves considerable strain for bus drivers, ranging from the needed aware-

ness to safeguard passengers, to traffic hazards [62]. The diversity of daily demands faced by

this population causes detrimental effects to their physical and psychological health and well-

being, as supported by studies conducted in the occupational [63], ergonomic [64] and biomed-

ical areas [65]. Furthermore, it can also increase the risk of accidents, decreasing overall road

safety [59]. Also, stress caused by emotional upsets has been associated with several incidents

among drivers [66]. This is probably explained by the fact that emotional states of anger and

frustration can increase driver distraction and impair driving performance [67]. Additionally, bus

drivers role is often conceptualized as high in demands (i.e., traffic congestion, rotating shift pat-

terns, negative passenger interaction, tight running times, workload demands, etc.) and low in

control with respect to limited decision latitude [64]. This is a main cause for psychological prob-

lems [60] and cardiovascular diseases [68].

In agreement with this idea, an investigation by Baevskii et al. [65] aiming to study the use

of principles of prenosological diagnosis for assessing the functional state of the body, has found

that bus drivers experienced chronic occupational stress leading to exhaustion of regulatory mech-

anisms and to rapid development of cardiovascular pathology. As explained by the authors, long-

term mental and psychoemotional tension in bus drivers was associated with occupational stress,

and leads to the worsening of psychophysiological and cardiorespiratory function of the body. The

degree of stress was assessed in this study based on analysis of Heart Rate Variability (HRV).
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While there is no definitive method of directly assessing physiological stress levels, many

techniques have been identified in the literature, such as heart rate and HRV metrics, electro-

dermal activity, respiration rate, electromyography and blood volume pressure [69, 70, 71, 72].

Their results suggest that stress events do indeed cause a reaction perceivable in physiological

signals, and that using multiple physiological inputs and incorporating driving event information

can greatly increase drivers’ stress detection accuracy [73, 74].

Although, one can question the ecological validity and reliability of driver stress measures

collected in laboratory conditions [75]. In opposition, stress assessment research among drivers

should take place in ecological settings including non-intrusive physiologic stress monitoring.

Recent advances in noninvasive measurement techniques allowed the progression of human de-

velopmental stress research [76], including ambulatory monitoring of cardiovascular function [77,

78, 79]. HRV can be calculated from the Electrocardiogram (ECG), and is reported to be an accu-

rate measure of stress [71]. Recent studies were able to correlate stress with some non-linear HRV

features [80], while time-domain and frequency-domain features extracted from HRV have been

validated multiple times as stress indicators in the last decades [71, 72, 81].

Nevertheless, stress assessment in ecological settings among bus drivers is not always an easy

task, mainly due to difficulties faced when aiming to collect their physiologic and psychological

stress responses during operation of public vehicles in urban centers [82]. Previous research in

this area [83, 84] associated physiologic (e.g., blood pressure levels, pulse, and urine samples)

and psychologic (e.g., self-report and/or researchers observation) measures of stress, and data was

collected during bus drivers rest periods. Although these studies provided a crucial contribution

to the understanding of daily stress among bus drivers, they are plagued by limitations highlighted

below. Primarily, physiologic measures used do not include HRV, considered to be one of the

most viable physiologic assessments of stress [81, 72]. Secondly, these research designs failed to

understand the physiologic and psychologic impact of a specific source of stress on the driver [85].

Thirdly, the retrospective self-report assessments of sources of stress at the end of a working day

may be plagued by attention and memory bias, limiting the driver ability to recall acute stressfull

events [86]. It is well known that the experience of stress affects quality of memory recall [87].

Furthermore, bus drivers deal with numerous tasks and challenges throughout a day at work (e.g.,

driving, interaction with passengers and other drivers). Hence, previous research has shown signif-

icant discrepancies between real-time assessments and retrospective recall [88], questioning how

accurate and valid are results that rely merely on bus drivers memory construction and retrieval.

Towards this goal, the current paper proposes an interdisciplinary method that combines phys-

iologic, psychologic and georeferenced data to investigate sources of stress faced by bus drivers

while driving in an ecological setting on a daily work basis. Our contribution includes the design

of stress assessment software, adapted to the routine needs of bus drivers, and combines non-

intrusive, user friendly and reliable physiologic and psychologic research methods, providing a

continuous daily monitoring of the driver during the course of a day at work. To overcome previ-

ous retrospective self-report assessments among bus drivers, our methodology provides a digital

contextualization of potential sources of stress, including environmental cues to trigger memory
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retrieval [89]. Furthermore, this information is synchronized with the physiologic response for

each stressor and the georeferenced location.

Hence, findings will benefit future evaluation of stress sources among bus drivers and will

foster the design of efficient occupational health and local road safety interventions.

5.1.2 Methodology

In this section we describe the technology and methodology that was iteratively improved by real-

world experiments with professional bus drivers in the city of Porto, Portugal.

5.1.2.1 Sensing Platform

Our project targeted a large population, and thus our platform was designed to be very easy to use

and have very low intrusiveness. These were critical for the wide acceptance and participation we

achieved, with 36 volunteers out of 37 drivers introduced to the project.

Physiologic Sensors

One kit of equipment was provided to each bus driver, including a VitalJacket R©1, disposable elec-

trodes, a Global Positioning System (GPS) receiver and a netbook PC. The Vital Jacket R© (VJ) is a

wearable bio-monitoring platform in the form of a t-shirt that provides real time electrocardiogram

(ECG) with 500 Hz sampling rate, 3 axis accelerometer and an event push-button [79] [90]. This

data is transmitted to the netbook via Bluetooth from a small box embedded in an easily accessible

pocket on the t-shirt.

Self-Report Measures

Health and demographic questionnaires were completed by participants. This data was used to

analyze the impact that demographic metrics have on the drivers’ physiologic response (Sec-

tion 5.1.4.3).

Furthermore, bus drivers provided a description of each potential stressor, followed by a stress

intensity rating, based on their appraisal of the particular situation. Potential stressful situations

were either detected by the system or tagged by the drivers using the push-button incorporated in

the VJ. Stress intensity was assessed using a "stress thermometer" where the participant dissected

a 10 cm bipolar line anchored by two statements ("not at all stressful" vs. "extremely stressful").

The "stress thermometer" has demonstrated normal distribution properties and adequate variability

in previous stress assessment research [91][92].

System Architecture

The GPS receiver used was placed near a bus window and transmits information to the netbook

via Bluetooth. A small and lightweight netbook, chosen for its portability, served as the gathering

1BioDevices S.A., www.vitaljacket.com
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unit. Data processing was performed on a cloud server to increase processing speed. The netbook

was used further for visualization in the recall phase (see Section 5.1.2.2), and the required Internet

connectivity was provided by a 3G network adapter.

The architecture of the system designed and implemented to integrate the previous materials

is shown in Figure 5.1. This architecture and gathering capabilities, such as sensor-data synchro-

nization, reliability and communications have been tested and validated in previous work [56].

Gathering Unit

Data collection

VisualizationDB

Data Sources

GPS

VJ with push-button

Questionnaires

DB

Server

Data processing

KML generation

Online questionnaires

Figure 5.1: Hardware architecture

Signal Processing Software

The processing of the ECG signal was performed using the open-source library PhysioToolkit from

Physionet [93], which follows the recommendations proposed by the Task Force of The European

Society of Cardiology and The North American Society of Pacing and Electrophysiology [71].

We used the GQRS tool from the library to extract heartbeat information from the ECG. Fig-

ure 5.2 shows a 5 second ECG segment with the R peaks marked at the top. This tool determines

the moment of the peaks for each heartbeat and outputs the inter-beat intervals (R-R) in a format

compatible with other Physionet tools.

Extra processing and filtering of the cardiac signal was required, as explained in Secion 5.1.3.3,

due to the presence of very noisy signals, which can occur in real world research.

We used the HRV Toolkit from Physionet to perform time-domain and frequency-domain anal-

ysis of the heart rate information, as suggested by the Task Force of The European Society of Car-

diology and The North American Society of Pacing and Electrophysiology [71]. We performed the

analysis using a window size of 100 s with a shift of 60 s between consecutive windows, and the

results were stored for further statistical analysis (which we denominate HRV blocks). We decided

to use overlapping windows to improve the time accuracy of the results, but we downsample the

results when independence between samples is required (See Section 5.1.3.3). The window size
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Figure 5.2: Sample ECG signal collected from a bus driver and R-R measures

of 100 s was chosen in order to have a 0.02 Hz of frequency resolution in the frequency-domain re-

sults without upsampling. Among others, the metrics include the average normal-to-normal (NN)

intervals, the standard deviation of these NN intervals, their low frequency spectral power (LF)

between 0.04 Hz and 0.15 Hz, the high frequency power (HF) between 0.15 Hz and 0.4 Hz, and

the ratio LF/HF.

The spectral power of different frequency bands is specially important to our study, because

the power in the HF band is mainly mediated by the parasympathetic system and encompasses

respiratory sinus arrhythmia, but the LF band is mediated by both the parasympathetic and sym-

pathetic components, and so they might provide a robust way to assess individual stress [94].

Figure 5.3 shows an example of the evolution of the LF power and the LF/HF ratio, which are the

two metrics most correlated to stress according to [70] and [81]. The figure shows that spikes are

more distinct in the LF than the LF/HF case. A statistical analysis (Section 5.1.3) confirmed this,

leading us to use the LF power as a stress indicator.

Detecting Stressful Events

Potentially stressful events were selected from all the moments the driver pushed the button on the

VJ, combined with additional 10 blocks with the driver’s highest physiologic stress (LF compo-

nent) but separated at least 5 minutes between each other.
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Figure 5.3: The Low Frequency Power and the ratio between Low Frequency and High Frequency
power, for a 3 hour long trip. We use the standardized LF Power to detect stressful events, marked
in the top horizontal axis.

Enquiry and Visualization tools

The processed ECG data, together with the GPS information, was used to generate a map at the

end of each driver’s shift.

The map was visualized using Google Earth (Figure 5.4), providing a straightforward approach

to overlay spatial data and correlate different types of information. Free camera movements and

a time toolbar, used to select a time interval window to be displayed, allowed to easily analyze

the detected events and their context. To facilitate memory recall, we overlaid information about

location and time of the events, as well as the speed of the bus in the whole trip, plotted using a

line segment over the map with the height of the line representing speed. By displaying the speed

profile for every second of the trip, the driver and researcher could easily identify bus stops and

driving events information, such as aggressive braking, accelerations (as in Rigas et al. [74]) and

others, aiding them recall and characterize the events. In the map, the detected potentially stressful

events were displayed as ellipses spanning over the area traveled during the corresponding 100 s

HRV block.

The Internet connection from the 3G network adapter was used to access Google Earth and

refresh the maps and to synchronize the driver’s self-report data to the server. Moreover, the

netbook also leveraged this Internet connection to speed up the processing of the ECG signal,

sending the raw data to a server that performed all the needed computation and generated the

maps. This upload and cloud processing took around 4 minutes for a 6 hour work shift. If the
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Figure 5.4: Visualization of a trip and stress events in Google Earth. The height of the traces
represents bus speed, ellipses denotes events.

computation had been done locally, it would have taken around 15 minutes for the same workload.

5.1.2.2 Procedure
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Figure 5.5: Workflow on daily data collection

On the day prior to data collection, participants completed a demographic and health ques-

tionnaire, and received a kit containing the required equipment. At this time they were given a

detailed explanation of the procedures by a researcher. On the data collection day, the bus driver

followed the workflow depicted in Figure 5.5, wearing the VitalJacket R© and turning on the net-

book and GPS receiver at the beginning of the work shift. Following this procedure, the bus driver

was ready to start his work shift, carrying the kit for a full day. The participant was instructed

to press the button on the VitalJacket R© in case of appraising a potentially stressful event during

the day, affecting his or the passengers’ well-being. At the end of the shift, a researcher met the

participant at the station, and ran the cloud processing algorithms over the gathered data. A map

was then produced displaying the information for the full workday of that participant, as described

in Section 5.1.2.1.
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Figure 5.6: Close-up of a stress event in Google Earth. The height of the traces represents bus
speed.

For each of the displayed ellipses, the driver visualized the exact location and extra information

using Google Earth (Figure 5.6). For the cases when the participant could remember the event, he

was asked to recall that particular situation, and to provide a brief description followed by the stress

intensity evaluation for that particular event. The description of the events and stress intensity

evaluation were completed in the netbook, but stored and synchronized with the physiologic data

on the cloud server.

The protocol was designed to obtain the following independent data sets to help in the detection

and categorization of the events:

• Tagged events, providing annotations of on-site self-reported stressors including a descrip-

tion of the situation experienced and stress intensity evaluation;

• Physiologic responses measured with biomedical sensors - HRV blocks;

• Location and velocity information assessed from GPS data, used to detect driving events

and facilitate memory retrieval.

• Short annotations for every stressful event detected by the system and confirmed by the

driver as stressful, including a description of the situation experienced and stress intensity

evaluation.

This method provided an accurate connection between the georeferenced data, description of

the stressor experienced and stress appraisal evaluation for a particular stressor, synchronized with

physiologic and driving response data. The ellipses provided a general vicinity to the memory
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retrieval of the event, contextualizing time and location information. Additionally, the method

allowed the driver to isolate certain events during the working day by pushing the button. These

were saved in the system and available for description and stress intensity evaluation later at the

end of the work shift.

5.1.3 Data Analysis

5.1.3.1 Samples and Population

Thirty-six male professional bus drivers, aged between 29 and 55 years old (Mean = 41; Standard

Deviation = 6.5) with experience in bus driving between 3 and 25 years (M = 13; SD = 6.0),

participated in this study. All participants worked for the major transportation company in the

city of Porto, Portugal. The exclusion criteria for the study were participants having a history of

cardiovascular disease and/or taking prescription drugs known to affect cardiovascular function.

Participants volunteering to participate in the study were instructed to perform no changes in their

daily routine, such as sport activities and caffeine, nicotine and food consumption.

Following approval of the study by the bus company administration, bus drivers were invited

to participate. For this purpose a presentation session was organized by researchers, explaining the

aim and protocol of the study. Participants provided informed consent forms prior to participation.

Data was collected for each bus driver over a full working day, corresponding to approximately

5 hours of driving, divided in one or two daytime shifts occurring between 8 AM and 8 PM. In total,

this study gathered 151 hours of data, including 500 Hz ECG and location information stored every

second that spanned more than 2.500 kms.

5.1.3.2 Stressor Categories

Each situation of stress described by the drivers in the 86 events was subjected to a content analysis

to identify stressors categories. The identified categories are similar to a great extent to the job

hassles reported by previous research [85], with a few exceptions discussed in Section 5.1.5.

Two researchers on the field then independently analyzed and assigned each event into 5 major

stressor categories or event types.

1. Social interactions (e.g., with passengers or friends);

2. Unexpected situations (e.g., mechanical failures, driving mistakes, unexpected changes);

3. Other drivers or pedestrians behaviors (e.g., other drivers risky behaviors and lack of polite-

ness);

4. Events that impact time schedule (e.g., traffic congestion);

5. Difficult driving due to urban planning (e.g., narrow roads and tight corners).

A reliability check showed a level of agreement of 98.8% between both researchers after the

first categorization. Following some discussion, this agreement increased to 100%.
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5.1.3.3 Filtering and Processing the Physiologic Data

Synchronizing the VJ and GPS clock

The Physionet library can process the cardiac signal and outputs the metrics we need. However,

some extra steps were required in order to synchronize the Physionet output with our GPS data.

We used the GQRS tool from Physionet to detect heart beats, which takes the ECG signal as

input with a specified starting time and sample frequency, and outputs the timestamps of every

detected beat. Even though the VitalJacket R©, our ECG sensor, has a fixed 500 Hz sampling rate,

small errors in the VJ clock precision and in the Bluetooth communication can cause discrepancies

between the timestamps and duration of the ECG and the GPS data. This clock drift is negligible

at the beginning of a trip, since a starting timestamp is given to the application, but naturally

increases as the time passes, and sometimes resulted in errors of more than 15 minutes at the end

of the 6 h trips in our pilot experiments. A small desynchronization between the VJ and GPS

clocks can cause a huge misplacement of a stressful event, since buses can travel at up to 50 km/h

(14 m/s)

To correct this synchronization issue our processing algorithm keeps track of the GPS clock

and also of a virtual one that follows the beat-detector fixed 1/500 s per data sample. The differ-

ences between both clocks is constantly analyzed, and the ECG stream is split and given a new

corrected timestamp every time a shift of more than 10 s is detected.

Detecting noisy ECG data

Another problem we detected in our pilot experiments when processing the data was ECG noise.

The heartbeat detectors perform poorly in the presence of very noisy signals that can occur in

real world scenarios like ours, leading to the detection of false-positive stressful events. There

are many sources of noise in a real world environment, such as from other muscular activity or

electrode misplacement, which can significantly reduce the accuracy of the heartbeat detection

algorithms.

We implemented a Standard Deviation (SD) filter to detect extremely noisy blocks of data

and improve the reliability of the ECG data. This filter calculates the SD of the raw ECG every

second (500 samples), discarding an HRV block from the analysis if it contains any second with

an SD higher than a threshold. The filter successfully detected the trips belonging to 2 drivers who

misplaced the electrode patches, and also other 3 trips that presented problems with the electrodes’

connection after some point in the middle of the trip. After analyzing these trips, the threshold

was set as the 90th percentile of all of our data, eliminating the 10% noisiest ECG data gathered

in our real world scenario. The SD filter was applied to 151 h of gathered data, resulting in 1470

discarded HRV blocks. From these, 1349 (92%) belonged to 5 trip segments with problems in the

electrode patches.
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Push-button time correction

Another filtering step was the correction of tagged events’ timestamps. This consisted in corre-

lating the push-button events with the correct HRV block of physiologic sensor data by analyzing

the driver description of the event and surrounding trip data, such as location and speed. Most of

the events were associated with the block that immediately preceded it, meaning that the drivers

pressed the button right after they experienced a stressful situation. However, in some cases they

were associated with the following block, because some drivers pressed the button when approach-

ing a known dangerous place.

HRV metrics standardization

Different drivers have different cardiac characteristics and baselines, preventing us from compar-

ing HRV metrics between multiple drivers. Since we could not collect a baseline for each driver in

a relaxed and controlled environment, we decided to standardized the cardiac metrics per driver.

To this end, the HRV metrics of each driver’s entire collection day were transformed to have zero

mean and unit variance.

Downsampling to independence

The final step in our processing algorithm was the downsampling of the HRV blocks for each driver

in order to increase independence between samples. The recalled events were already selected with

at least 5 min of data between them. However, the rest of the ECG was analyzed every minute

but with a window size of 100 s, resulting in 40 s overlap between HRV blocks, and producing

a dependent dataset of HRV metrics. To make the HRV blocks independent, the processed and

filtered blocks were downsampled for each driver, removing the minimum number of blocks that

guarantees the same 5 min distance between HRV blocks or any recalled or tagged events.

5.1.4 Results

We gathered a total of 9081 HRV Blocks, from which 1470 were filtered as noise and 6050 were

removed in the downsampling process. From the 36 drivers, 2 had misplaced electrodes providing

no useful ECG data and other 2 forgot to turn on the GPS device. 29 events were tagged on-site

as stressful by 11 drivers. Some drivers forgot they were being monitored and thus forgot to press

the button in stressful situations, others were distracted dealing with the situations.

To facilitate the events recall, 320 distinct blocks were identified by the system and shown to

the 32 drivers in the map at the end of the day. From these, 57 blocks were recalled as stressful

events and evaluated by 27 bus drivers, 2 drivers did not recall any additional events besides the

ones they tagged, and 3 stated they did not experience any stressful situations during their work

shift.
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Our final dataset to be analyzed contains stress information from 29 drivers, with 29 on-site

tagged events, 57 events recalled at the end of the day, and other 1475 HRV blocks not identified

as stressful. Thus, a total of 1561 independent rows of data standardized per driver.

Due to non-normalized distributions of the data, we used non-parametric tests. The Mann-

Whitney U-Test [95] was chosen to compare the distributions of two populations, the Kruskal-

Wallis Test [96] to verify if more than two populations have the same distributions, and the

Kendall’s Tau [97] to check for statistical dependence between variables in the same population.

To this end, multiple pairwise Mann–Whitney U-Tests were conducted to analyze differences in

the main HRV metrics between the samples classified as tagged events, recalled events and others.

Kruskal-Wallis Test was conducted to test for differences in the LF spectral power across stressor

categories in both self-reported and cardiac stress responses. Kendall’s Tau rank correlation test

was used to search for statistical association between demographic and physiologic variables.

5.1.4.1 Physiologic vs Recalled Stress Assessment

Our system used the LF component of the interbeat intervals as a stress indicator, as proposed

by [70] and [81]. To validate this proposition, we compared the LF frequency component of all

blocks, the tagged events and the stress events recalled at the end of the day (Figure 5.7).
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Figure 5.7: Distribution of calculated stress between other blocks, tagged events, and events re-
called at the end of the day

The Mann–Whitney U-Test showed significant difference between the distributions of LF

power for other and tagged events (z = -4.91, p = 9.16×10−7), indicating that there is a signif-

icant increase of the LF power during events appraised as stressful by the driver. The recalled

events also presented a statistically higher LF component than the tagged events (z = -4.85, p =

1.23×10−6), even when analyzing only the 11 drivers who tagged events.
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The same statistical analysis between tagged and other events was performed for every HRV

metric, and some are presented in Table 5.2. The metric that showed the most statistically sig-

nificant difference was the LF power, followed by the time-domain metrics that detect variability,

such as standard deviation of heart beat intervals.

Table 5.2: Distribution tests’ results between Other and Tagged events of different HRV metrics
from the HRV Toolkit

Mann–Whitney AVNN SDNN pNN50 LF HF LF/HF
Z value -0.68 -4.19 -2.75 -4.91 -2.39 -1.42
P value 0.50 <0.01 <0.01 <0.01 0.02 0.16

5.1.4.2 Analysis of Stressor Categories
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Figure 5.8: Distribution of the stress level throughout the different stress categories, for both
reported stress evaluated by the stress thermometer, and calculated from the ECG signal

Figure 5.8 shows an overview of the distributions for physiologic and self-reported stress in-

tensity evaluation for each stressor category, introduced in Section 5.1.3.2. An event was only

considered to be stressful when appraised by the bus driver as higher than 0 in the stress ther-

mometer scale (51 of the 86 identified events).

The Kruskal-Wallis Test showed that no significant differences across stressor categories exist

either for self-reported X2(4,N = 51) = 7.62; p = 0.11; or for cardiac stress responses X2(4,N =

51) = 4.82; p = 0.31.



5.1 Analyzing Bus Drivers Stress 73

Table 5.3 shows a frequency analysis of stress categories combining all tagged and recalled

events appraised as stressful by bus drivers. Other drivers or pedestrians behaviors were the most

commonly reported source of stress, reported for 35% of the recalled or tagged events and men-

tioned at least once by 62% of the 29 bus drivers. Difficulty driving due to urban planning was

the second most reported source of stress, reported for 22% of the events recalled or tagged, and

mentioned by 41% of the drivers (12/29). Also, events that impact time schedule was a frequently

reported source of stress, accounting for 19% of the events and mentioned by 41% of the drivers.

Table 5.3: Frequency analysis for reported stressor categories: number of reports, frequency rel-
ative to the total number of events, number of distinct drivers that reported that category, and
corresponding relative frequency to the number of drivers.

Stressor Category 1 2 3 4 5 Total
Total Count 14 7 30 16 19 86
Relative Frequency 16% 8% 35% 19% 22%
Drivers 11 6 18 12 12 29
Drivers’ Frequency 38% 21% 62% 41% 41%

5.1.4.3 Questionnaires and per Driver Analysis

In this project we also analyzed the questionnaires data and their correlations with the cardiac

metrics. We combined the questionnaires answers with the HRV analysis over each driver’s full

dataset, resulting in metrics such as a driver’s age, height, weight, years of experience as a bus

driver, usual exercise routine, and also the full day’s average heart rate, average spectral power for

different frequencies, and others.

To analyze the data we performed cross-correlation analysis between all variables using Kendall’s

Tau (τ) rank correlation test [97]. The main results are presented in Table 5.4, with correlated vari-

ables resulting in a p-value lower than 0.05 marked in bold.

The results show a strong correlation between the cardiac metrics and the years of experience

of the drivers, and not with any other demographic metric.

Table 5.4: Kendall’s Tau test results for demographic and full-day cardiac metrics. P values lower
than 0.05 are marked as boolean

Age Weight Experience
Tau P Tau P Tau P

AvgAVNN 0.0 0.84 0.3 0.06 -0.3 0.02
AvgSDNN 0.0 0.87 0.1 0.72 -0.3 0.01
AvgLF -0.1 0.32 0.1 0.63 -0.3 0.04
AvgHF -0.2 0.09 0.1 0.45 -0.3 0.02
AvgLF/HF 0.1 0.37 -0.1 0.72 0.0 0.93
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Figure 5.9: Stress map of Porto with placemarks on detected stressful events. The numbers rep-
resent the event category, the darker marks are tagged events and lighter are events recalled at the
end of the day.

5.1.4.4 Geo-Referenced Stress Analysis

Furthermore, the analysis of the tagged and recalled stress events showed that more than 75%

(65/86) of the stressors are location-dependent, such as tight roads, low-visibility crosswalks and

drivers not respecting signalization on some crossroads. This data suggests that the geographic ref-

erence of detected events provided by our method was efficient in facilitating bus drivers’ memory

retrieval, and also that it is possible to provide valuable stress-maps to decision makers. With both

physiologic and psychologic stress assessment performed with our methodology, we are able to

map their intensity and detect systematically stressful locations.

Figure 5.9 shows a stress map of the city of Porto, where lighter areas represents less stressful

and darker areas represents highly stressful places. Also, darker symbols mark the spots where

stressful events were tagged, lighter ones were recalled at the end of the day, and the numbers

correspond to the event category as stated in Section 5.1.3.2. The map was generated by clustering

and averaging the Standardized LF information of the HRV blocks. Additionally, in order to

eliminate biases in the cardiac data associated with physical activity, we discarded data gathered

while the bus was almost stopped (less than 5 km/h) and only map clusters with data from at least

3 distinct drivers.

Based on Figure 5.9 it is clear that the city downtown, near the center of the map, is a stressful

region with many highly-stressful roads being detected in that dense urban zone. However we

can also find other less obvious highly-stressful zones, such as in the left-middle edge of the map,

where a roundabout caused a cardiac response in all of the 4 drivers that passed by and even a

tagged event from one of the drivers.
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5.1.5 Discussion

The aim of this work was to investigate daily sources of stress faced by bus drivers while driving

in an ecological setting during their daily work. Results suggest that the proposed method is

accurate in detecting psychological and physiological stress responses. Despite the divergence in

the concept definition and assessment of stress, our findings are consistent with previous research

recommendations [98].

Particularly, results showed a significant increase of the LF component of HRV during events

appraised as stressful by the driver, suggesting that the stress concept assessment can combine

both psychologic and physiologic dimensions of stress, while also contemplating an integrative

approach in the real world. Contrary to the results presented by McCraty et al. [70] and Healey

and Picard [81], the LF/HF does not show a statistically different distribution between tagged

stressful events and other HRV blocks, which may be due to the higher HF noise present in real

word scenarios like the one in this study. This indicates that the LF power is the best stress metric

for our scenario.

Regarding demographic factors and their impact on the drivers’ physiologic response, results

indicate that years of experience of the driver is an important factor to consider. Surprisingly, even

the age, which is correlated with the years of experience, is not significantly correlated with the

physiologic metrics. This suggests that, although cardiac response is known to decrease with

age [99], more experienced drivers (not necessarily older ones) have less cardiac response to

stressful events and a smoother physiologic response throughout the entire working day. Fur-

ther research is required controlling for bus drivers routes in order to confirm whether this finding

is due to effective coping strategies developed by this population or the experience of different

environmental demands.

In what concerns to sources of stress found in our study (Section 5.1.3.2), these are similar

to a great extent to the job hassles reported by Johansson et al. [85] among bus drivers working

in the city of Stockholm (e.g., traffic congestion, illegal parking of vehicles, risky or impolite be-

haviors of other divers or pedestrians, mechanical difficulties, timetable restrictions). However,

in the current study, social interactions with passengers or friends and bus driving mistakes were

also reported as stressors in 16% of the reported events and by 38% of the drivers (11/29). We

believed that this fact may be mainly related to the methods used in this study that facilitated the

drivers’ memory retrieval of events. On the other hand, previous research methods used across

studies relied on retrospective self-reports following long periods of time what may had affected

the type of stressors reported. Additionally, other previous studies were based on the researcher

observations, whereas our study relied on a more ecological setup and based on the inputs of the

drivers themselves, i.e. their own perceptions and experiences of stress. As a result, stress cat-

egories such as the experiences of interpersonal stressors are unlikely to be reported by others,

who merely described what they can observe. Also, the constant presence of an observer may pro-

duce biased results, making the driver less likely to do driving mistakes and avoid communicating

with friends entering the bus. Hence, we believe that the type of stress categories found in this
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study complements the literature in the area and reinforce the strengths of the methodology used

to capture drivers’ acute stressors experienced on a daily basis.

It is important to highlight that the current ecological method culminates a previous limitation

in the area of stress reactivity assessment [100], and provides a crucial contribution to the study of

cardiovascular reactivity to stress in real world scenarios. This is a fundamental relationship when

investigating sources of stress, critical to the etiology of cardiovascular disease [85]. Furthermore,

as suggested by Myin-Germeys et al. [101] stress responses assessed in real life situations are

more likely to be closer to reality than those collected under laboratory settings.

Additionally, the inclusion of georeferenced information and its visualization by bus drivers

was a key aspect in this methodology, facilitating memory retrieval of the experienced situations,

thus providing a detailed description and specificity of stressors. To support this argument the pro-

posed methodology allowed the collection of 57 additional stressors in the city of Porto, compared

with only 29 voluntarily tagged by bus drivers.

In sum, the proposed methodology provides detailed information of different stressors experi-

enced by bus drivers, and their specific location in a city. It is believed that this information can

induce evidence-based decisions across a variety of areas (e.g., ergonomics, security, management,

technological, public policy, psychologic and urban planning). Additionally, the system is able to

map exactly where in the city these events have occurred and the average stress intensity for the

sensed areas, what is likely to result in more efficient decision making. Furthermore, the mapped

placemarks are clickable on Google Earth, allowing decision makers to see detailed information

of each stress event, such as intensity and description.

5.1.6 Conclusions

We proposed an interdisciplinary methodology for assessing sources of stress in professional bus

drivers based on the population’s real world needs. The system was designed by an interdisci-

plinary team, in cooperation with bus drivers working in the city of Porto. The method valida-

tion was tested among a sample of bus drivers in their day-to-day routine. Results showed that

the methodology is successful in detecting stressful events based on bus drivers’ physiologic re-

sponses. Furthermore, the system provides real world visual cues and information, which seems

to facilitate driver memory retrieval, enriching description of stressful events, and findings pro-

vide contextualized sources of stress within a city. Applied implications of this method will foster

evidence-based solutions at enterprise, policy-makers and government levels, providing an open

approach to improvement and change towards developing bus drivers’ occupational health, im-

proving driver performance, and enhancing overall road safety. Theoretical implications of this

work also include contributions to the stress assessment literature in general and particularly to the

occupational health.

Findings provide strong theoretical and practical implications. Respectively, the method makes

a valuable contribution to the occupational health stress assessment literature. Additionally, prac-

tical implications will facilitate the design of holistic occupational health interventions for bus

drivers while also guiding authorities interventions aiming to increase road safety. Current ongoing
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work is deploying this methodology over a larger population in order to perform a comprehensive

characterization of sources of stress among professional bus drivers in the city of Porto.

5.2 Mining Geographic Data for Fuel Consumption Estimation

Mobility is one of the greatest contributors to the personal carbon footprint and to pollution and

noise in urban areas. Still, these factors are not yet easily quantifiable in personal or urban scale,

e.g., impact of each car trip or areas most exposed to CO2 emissions. In this section, we propose

an innovative solution for estimating fuel consumption and emissions leveraging the opportunities

generated by the ubiquitous availability of mobile devices.

We collect a large data set of GPS and fuel consumption data crowd-sourced by volunteer

participants with an Android mobile application that logs the smartphone’s embedded GPS data

and gathers vehicle data using an external On-Board Diagnostics (OBD) device. This data is used

to develop a model that estimates the instantaneous fuel consumption from the smartphone’s GPS

data alone, using the On-Board Diagnostics data as ground truth. We use speed, acceleration and

steepness as predictor variables to train polynomial models with and without cross-product terms.

With the best general model (trained and tested on all participant vehicles), we obtain an aver-

age residual standard deviation of 1.58 l/100km for average consumption on 1min intervals. For

individual models (trained and tested on each participant vehicle), we obtain an average resid-

ual standard deviation of 1.43 l/100km. The average fuel consumption for the used data set was

6.7 l/100km.

5.2.1 Introduction

Transportation was responsible for 31.7% of the total European final energy consumption of

2009 [102], and 71.7% of that energy was consumed in road transportation, causing 878.4 Mil-

lion Tons of greenhouse gas emissions (GHG). According to the same source, households across

Europe spent almost 500 billion Euro on the operation of personal transport equipment, i.e. in

fuel costs in that year. These figures show that road mobility based on personal vehicles has high

environmental and monetary costs.

Providing more accurate information in a more intuitive way and more related to the personal

context increases user’s awareness about the environmental impact of car transportation, and this

awareness impacts the acceptance of transport policy measures [103]. Information like the per trip

duration, fuel/emissions or monetary can raise awareness about energy consumption and mobility

efficiency. Further, logging and comparing historical data for different people enables creative

measures for more efficient resource usage, for example emission reduction games like who con-

sumes less fuel in the same route and vehicle. From a business perspective, detailed information

about fuel consumption can be used to improve processes and reduce costs.

However, information about individual mobility costs is still naive or experts-only to a great

extent. Mobile applications that allow tracking average fuel consumption based on manual input
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about tank re-fills are an example of the first. Applications like Torque2 resource to On-Board

Diagnostics and knowledge about motor functionality to enable logging and tracking fuel con-

sumption are examples of the latter. Neither option is intuitive for the majority of the population.

Smartphones penetration in Europe has recently exceeded 50%3, and they are widely dis-

tributed technology that is empowered with a large amount of sensors and provides intuitive inter-

action to the users. Hence, it has the potential to be a key enabler of behavioral change, as well as

a much more accessible sensor than a specific technology, like On-Board Diagnostics. However,

the tools to enable this are not yet available, specifically, it is not yet clear how a smartphone alone

can be used to estimate the fuel consumption, or how accurately.

In this work, we propose to use smartphones alone, specifically the embedded GPS sensor,

to estimate the fuel consumption of a vehicle. The proposed methodology consists in using an

On-Board Diagnostics to obtain the ground truth of the actual fuel consumption in an initial data

gathering phase. That data is later used to train a regression model that estimates the per sec-

ond fuel consumption using the geographic position data measured by the GPS receiver alone.

This model can be applied in applications that provide information to drivers or companies about

the fuel consumption of their cars or fleets, in real-time or as historic data, as well as providing

information about GHG emissions to urban planning when used in aggregate form.

The contributions of this work are: 1) a systematization of fuel consumption models based

on different sets of OBD sensor information; and 2) a data-based fuel consumption model that

uses as input the GPS location data, trained using On-Board Diagnostics fuel consumption as the

ground truth. The rest of the paper is organized as follows: the next section reviews related work

and Section 5.2.3 describes how to calculate the fuel consumption from vehicle internal sensors;

Section 5.2.4 describes the data gathering process and Section 5.2.5 shows how we extract infor-

mation from GPS data. Finally, Section 5.2.6 shows the results of the regression and Section 5.2.7

addresses a few conclusions.

5.2.2 Background and Related Work

5.2.2.1 On-Board Diagnostics

Concerns about GHG emissions from transportation prompted governmental agencies, like En-

vironmental Protection Agency (EPA) and California Air Resources Board (CARB), to require

improvements in the efficiency and cleanliness of new vehicles, and the deployment more sophis-

ticated emission sensors and better diagnostics systems. This lead to the On-Board Diagnostics

(OBD) standard in 1996, and its subsequent OBD-II revision, which defines a connector and com-

munication protocols between a controller and the vehicle. An OBD-II connector is mandatory on

vehicles sold in the United States since 1996 and in Europe since 2001 for petrol/gasoline engines

and 2004 for the diesel counterpart.

2http://torque-bhp.com/
3http://www.comscore.com/Insights/Presentations_and_Whitepapers/2013/2013_Europe_

Digital_Future_in_Focus

http://torque-bhp.com/
http://www.comscore.com/Insights/Presentations_and_Whitepapers/2013/2013_Europe_Digital_Future_in_Focus
http://www.comscore.com/Insights/Presentations_and_Whitepapers/2013/2013_Europe_Digital_Future_in_Focus
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By connecting an OBD-II interface4, it is possible to monitor a vehicle’s emissions system and

status of some of the vehicle’s sensors, even in real-time. Even though the standard defines the

access to hundreds of sensors, called Parameter IDs (PIDs), manufacturers can choose which to

implement, with only a small set of them being mandatory. This, and the significant differences

in speed between the allowed communication protocols and devices, creates a disparity of data

availability across vehicles.

To compensate this fragmentation, in Section 5.2.3 we developed multiple formulas for fuel

consumption estimation from various combinations of On-Board Diagnostics variables (PIDs).

5.2.2.2 Fuel Consumption Models and Applications

Applications that provide fuel efficiency information exist, like Crew Chief5, Garmin Mechanic

with ecoRoute HD6 or DashCommand7, though they are not free and the first two use proprietary,

undisclosed models. Moreover, the last two depend on the OBD technology, and not all users want

to or know how to use On-Board Diagnostics.

A few emission models have been compared in [104], such as CMEM [105] and MOVES8. The

first model is vehicle oriented while the second is more suited for wide scale emission monitoring,

and it is not the best for individual vehicle dynamics. Both models require user input that can be

confusing and time consuming for users not familiar with vehicle specifications.

The solution that we propose can overcome these limitations by estimating fuel consumption

from GPS data, using fuel consumption estimation from On-Board Diagnostics data only as the

ground truth for model fitting.The SAE J1979 [106], the DashCommand manual and the OBD-II

Resource website9 proved to be valuable guidelines in understanding the parameters needed for

fuel consumption calculation and the expressions found in Section 5.2.3.

5.2.3 Fuel Consumption Calculation

In this section we give a brief overview of which sensors or parameters are available through

the OBD protocol for gasoline and diesel engines, and how they can be used to estimate fuel

consumption. A more in-depth explanation on OBD and its parameters is available in [106].

Our algorithm should work for both gasoline and diesel four-stroke engines, which compose

the large majority of commercial vehicles. Both of these types of engine work in a similar fashion,

putting fuel in a combustion chamber to generate kinetic energy from the expanding gas [107].

The Fuel Consumption is calculated as the ratio of Fuel Flow (FF), measured in liters per hour,

to speed, in kilometers per hour, as shown in Equation 5.1. The Fuel Flow is a function of the

Corrected Air to Fuel Ratio (CAFR), the Corrected Mass Air Flow (CMAF), and the Fuel Density

4Many options are available to bridge between the OBD port and a computing platform, like USB, Bluetooth or
WiFi.

5http://crewchief.telogis.com/
6https://buy.garmin.com/en-US/US/prod38354.html
7http://www.palmerperformance.com/products/dashcommand/
8http://www.epa.gov/otaq/models/moves/index.htm
9http://obdcon.sourceforge.net/

http://crewchief.telogis.com/
https://buy.garmin.com/en-US/US/prod38354.html
http://www.palmerperformance.com/products/dashcommand/
http://www.epa.gov/otaq/models/moves/index.htm
http://obdcon.sourceforge.net/
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(FD), which is a constant for each vehicle depending on the type of fuel, related as shown in

Equation 5.2. Next, we explain how to calculate CAFR and CMAF for both types of engine.

FuelConsumption(L/100Km) =
FF×100

Speed
(5.1)

FF =
CMAF×3600
CAFR×FD

(5.2)

In gasoline engines the fuel is mixed with air in a controllable ratio before being injected in

the pistons, and is ignited by a spark plug at the right time. The Air to Fuel Ratio (AFR) in this

mixture is tightly controlled in gasoline engines, in order to improve power and efficiency, and

reduce emissions and engine wear. The optimum ratio is close to the ideal gasoline combustion

stoichiometric ratio — 14.7 g of air to 1 g of fuel (14.7:1) — but is automatically compensated

for additives and fuel impurities, or even engine defects, via feedback from exhaust systems.

We call Corrected Air to Fuel Ratio (CAFR) to this compensated ratio. The correction to the

base stoichiometric ratio (14.7) is sometimes available in the OBD as the Long Term Fuel Trim

(LTFT) parameter, which is a positive or negative percentage for extra air or extra fuel in the

ratio, respectively. The controlled ratio in gasoline engines makes it feasible to estimate fuel

consumption from air sensors, and improving the results if the LTFT value is available, according

to Equation 5.3.

CAFR = StoichiometricRatio× (1+LT FT ) (5.3)

In a diesel engine the air is first compressed in the cylinders, which causes it to heat up to the

point that when fuel is injected it ignites. These engines needs a high volume of air and pressure

in the cylinders to ensure combustion of the fuel, even under very low load, resulting in air to

fuel ratios between +100:1 and 14.6:1. To obtain fuel flow we require either a fuel sensor, or air

sensors together with an instantaneous indicator of the amount of air used in the combustion, such

as Calculated Load10 (explained below). The LTFT value in diesel engines is the correction to the

optimum AFR when peak torque is requested, and can be used to increase the accuracy of fuel

consumption calculation.

In both types of engines, LTFT is very close to 0% under normal operation, and an absolute

value higher than 10% typically indicates a defect. Also common to both engine types is the

estimation of the mass of air in the cylinders, which in some vehicles may not be directly available

from the OBD sensors. In those cases, it is possible to estimate it using the Ideal Gas Law,

taking into account the absolute or calculated load, ambient pressure, air temperature, engine

displacement and its volumetric efficiency. Both diesel and gasoline engines can support Absolute

and Calculated Engine Load PIDs. The Absolute Load is a percentage indicating the current air

mass in the cylinders divided by the maximum air mass at standard temperature and atmospheric

pressure11. This sensor takes into consideration the actual temperature and pressure, going up

10http://www.palmerperformance.com/products/dashcommand/
11http://obdcon.sourceforge.net/2010/06/about-pid-calculated-load-value/

http://www.palmerperformance.com/products/dashcommand/
http://obdcon.sourceforge.net/2010/06/about-pid-calculated-load-value/
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to 400% in a turbo charged engine, and is a good indicator of the amount of air in the cylinder.

Calculated Load gives a similar measure, but does not take into account the current temperature,

pressure, nor the engine volumetric efficiency, so the algorithm needs to compensate for those

parameters. In diesel engines, both these values represent the ratio between applied torque and

peak torque, instead of air mass to peak air mass, and so are essential to estimate the amount of air

that was actually used in the combustion [108], which we call Corrected Mass Air Flow (CMAF).

CMAF can be calculated in multiple manners, depending on the available sensors, and expressions

are shown in Equation 5.4.

CMAF =



MAF, gasoline

MAF×LOADCALC, diesel

LOADABS×
RPM

60×RIS
× any

×ED× P×MMair
R×(T+273.15) ,

LOADCALC×
RPM

60×RIS
× any

×ED× MAP×V E×MMair
R×(IAT+273.15)

(5.4)

If necessary, the engine displacement, volumetric efficiency and fuel type should be obtained

from the user. However, the MAF parameter is available in most vehicles, so the only needed

variable is the fuel type, which can be predicted from the available On-Board Diagnostics sensors:

diesel vehicles are required to support Calculated Load and rarely provide the Absolute Load, and

gasoline vehicles are required to provide Absolute Load. Regarding the Volumetric Efficiency, we

use a predefined value of 80% if not provided.

Using these equations, we are capable of estimating the fuel consumption of a wide range of

vehicles. Of the vehicles we tested (see Table 5.6), one vehicle can only use the 4th CMAF equa-

tion in the calculations, requiring 5 parameters (Speed, Load_Calc, RPM, MAP, IAT), whereas the

rest provide the MAF parameter, allowing the use of the 2nd CMAF equation and requiring just 3

parameters (Speed, MAF, Load_Calc), with the optional LTFT for accuracy improvement.

5.2.4 Data Gathering

We proposed an architecture for massive urban scanning in [56], which we extended to enable

smartphones as data gathering units for this work. These devices are equipped with GPS receivers,

as well as multiple other sensors, and have the capability to connect to external sensors, e.g., using

Bluetooth. Furthermore, we integrated a module that collects vehicle data over Bluetooth from an

OBD device plugged in the vehicle. The application has play and stop buttons to start and stop
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Table 5.5: Constants and variables used in equations 5.1 - 5.4.

Constants
FD Fuel density (g/l)
RIS Revolutions per intake stroke, 2 in four-

stroke engines
P Standard atmospheric pressure (kPa)
MMair Molar mass of air (g/mol)
R Ideal gas constant (J/mol/K)
T Standard air temperature (oC)
Variables
RPM Engine revolutions per minute
FF Fuel flow (l/h)
MAF Mass air flow (g/s)
MAP Manifold absolute air pressure (kPa)
IAT Intake air temperature (oC)
VE Volumetric efficiency (%)
ED Engine displacement (l)
CMAF Corrected mass air flow (g/s)
CAFR Corrected air to fuel ratio
LTFT Long term correction value (%)
LOADCALC Calculated Load (%)
LOADABS Absolute Load (%)

sensing sessions, and we also added the possibility to mark events through a button in the user

interface. Data from GPS is collected at a frequency of 1 Hz.

The application runs in the background and was designed to have minimal energy consump-

tion, avoiding hindering the normal operation of the smartphone. The data is temporarily stored

in a local database on the smartphone until the user requests its synchronization with the back

office server, to avoid using the mobile data plans of volunteers. All data-mining and processing

operations are performed a posteriori in the back office.

The data gathering process involved eight volunteers with different smartphones and vehicles.

Each driver signed an informed consent form acknowledging that their data was being collected

and would later be processed for the purpose of this research.

5.2.5 Data Processing

Table 5.6 describes the population used in this study, along with engine displacement, fuel type,

and amount of collected points for each participant vehicle. Although this was not intentional, all

volunteers drove diesel vehicles, so the data collected only enables training a diesel fuel consump-

tion model.

Our goal is to estimate a regression model that uses GPS information alone, but we do not

use GPS positions directly. Instead, we use the GPS trace to estimate predictor variables, namely

vehicle speed and acceleration, and road steepness. In the next sections, we describe how we
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Table 5.6: Characterization of collected data

Id Model Displacement Fuel Type Nr Points
V1 Audi A4 1896 cm3 Diesel 32945
V14 Peugeot 207 1560 cm3 Diesel 40132
V23 Volkswagen Golf 6 1598 cm3 Diesel 24161
V42 Renault Clio 1461 cm3 Diesel 131425
V45 Fiat Punto 1248 cm3 Diesel 45454
V46 Renault Twingo 1461 cm3 Diesel 3102
V47 BMW 525d 1995 cm3 Diesel 6366
V48 BMW 320d 1995 cm3 Diesel 3241

estimate the predictor variables from the GPS data, and then we show calibration results for the

fuel consumption estimation from OBD parameters. At the end of the section, we analyze the

relationships between each predictor variable and the fuel consumption estimates.

5.2.5.1 Estimating Acceleration And Steepness

A GPS receiver provides time, latitude, longitude, altitude, speed and azimuth values for each

second, and we use them to estimate vehicle acceleration and road steepness applying least square

estimation in time and space. Since the speed provided by the GPS has a very low error, we

estimate the acceleration for each GPS point as the slope of a least square estimation of three

values consecutive in time.

We estimate steepness through least square estimation in space, using the altitude and distance

traveled. However, to account for the low accuracy of the altitude information, we consider all

GPS points that lie within a spatial neighborhood of the GPS point being considered. Specifically,

we use all the points inside a radius that is gradually increased to include at least 5 neighbor GPS

points. A maximum radius is also defined, in this case 80 m, to allow for highway speeds, where

3 points are sufficient since steepness variations are more easily captured with greater traveled

distances.

The distance traveled is estimated for the spatial neighborhood thus defined. We use speed due

to its higher precision [109, 110, 111], instead of using position to calculate the distance, like the

Inverse formula used by Android [112]. Specifically, we sum the speeds at each instant, since the

speed (in m/s) is obtained at a fixed sampling rate of 1 second.

5.2.5.2 OBD Data Interpolation

Every On-Board Diagnostics parameter received is stored with millisecond time precision. How-

ever, different On-Board Diagnostics devices and vehicles have different response times and sam-

pling speeds, so there is no guarantee that a sample of all On-Board Diagnostics parameters re-

quired to estimate fuel consumption (see Section 5.2.3) are available every second. Moreover, the

On-Board Diagnostics and GPS data sets must be synchronized, since the On-Board Diagnostics

derived fuel consumption is used to train the regression model based solely on GPS data.
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We use linear interpolations to re-sample the vehicle status — On-Board Diagnostics param-

eters — at the precise GPS timestamps. Values are only interpolated between data points that are

at most 2 seconds apart. Hence, large data gaps are not used, since interpolating these gaps would

possibly result in noisy data and negatively impact the accuracy of the model.

5.2.5.3 Validation

We validated the fuel consumption formulas shown in Section 5.2.3 with the trip-information

available in the display panel of some vehicles, namely V1 and V14. These vehicles provide

instantaneous and per trip average fuel consumption, and we used them to validate the accuracy

of the fuel consumption values calculated from the On-Board Diagnostics parameters. At the

beginning of a trip, the user defined an event, such as ’Consumption at 6l/100km’, in the mobile

application used for collecting data. While driving, every time the vehicle’s interface showed 6

liters per 100 kilometers the driver recorded the event by tapping the smartphone’s screen. At

the end, the vehicle’s on-board computer values and values calculated using Equation 5.1 are

compared using the timestamps from the event and the timestamps from the calculated value.

Table 5.7 shows that the average of the calculated values match the values showed on the interface,

validating the fuel consumption expressions shown in Section 5.2.3.

Table 5.7: Fuel Consumption Measurements

Vehicle display Calculated average Std. Dev.
8.9 8.9 0.4
7.5 7.4 0.0
6.0 5.6 0.5

5.2.5.4 Data Filtering

The data set used in the rest of this section includes only data from vehicles V1, V14, V23,

V42 and V45, because the others had less than 25% of the consumption points of these vehicles.

Moreover, to reduce bias due to the very large differences in amount of data available for each

vehicle, we decided to use only 20 000 points from each, resulting in a training data set of 100 000

measurements of instantaneous fuel consumption.

Finally, we only used position information with an accuracy higher than 50m, having an incli-

nation between -15 and 15 degrees, and a maximum of 2 m/s of difference between GPS and OBD

reported speeds. Overall, this corresponds to removing less than 10% of the data points.

5.2.5.5 Exploring Data Relations

In order to understand the relationship of fuel consumption with speed, acceleration and inclina-

tion, each was individually plotted and analyzed. The units used for the variables are liters per

100 kilometers for fuel consumption, meters per second for speed, meters per second squared for

acceleration and degrees for inclination.
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(c) Fuel Consumption vs Inclination

Figure 5.10: Fuel consumption versus predictor variables (LOESS smoothed with span = 0.45).

Figure 5.10 shows the mean fuel consumption versus the estimated predictor variables ex-

tracted from all GPS points: speed, acceleration, or inclination, respectively. Observing these
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plots, we see that the dependence of fuel consumption on the predictor variables is not linear, in

general. However, in the selected ranges, fuel consumption varies approximately linearly with

acceleration and steepness, and non-linearly with speed.

5.2.6 Regression and Performance

We experiment with multivariate regression models using two sets of predictor variables. In the

first set, FC1, we take the GPS derived predictor variables Speed, Acceleration, and Inclination,

and also Speed2 and Speed3, since we observed that this relation is non-linear. The second set

of predictor variables, FC2, consists of FC1 plus the cross-product terms of the linear variables:

Speed ∗Acceleration, Speed ∗ Inclination, and Acceleration∗ Inclination. We performed feature

selection on each set using a greedy forward selection algorithm.

At each step, a multivariate regression was performed on the training data set using the pre-

vious set of predictor variables combined with each yet unused feature. The resulting coefficients

were then used to estimate the instantaneous fuel consumption for every data point of the data set.

The fitness metric used was the standard deviation of the residuals (std. dev.) of the instantaneous

fuel consumption estimation.
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Figure 5.11: Regression residuals for different number of features, and the corresponding feature
selected at each step

The fitness metric for the instantaneous fuel consumption evolves as shown in Figure 5.11 with

the number of features used. In both sets of predictor variables there is practically no improvement

in the instantaneous residuals (0.3%) from increasing from 3 to the maximum number of features

(5 or 8).
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We performed the remaining regression analysis using the best 3 predictor variables from each

set: Acceleration, Inclination and Speed2 for FC1, and Acceleration, Speed ∗ Inclination and

Speed3 for FC2. The global consumption models obtained from least squares fitting the above

predictor variables to the data are given by:

FC1 ≈ 5.31+3.99∗A+0.431∗ I+0.00213∗S2

FC2 ≈ 5.55+4.08∗A+0.0329∗S∗ I+5.50E−5 ∗S3

where S is the vehicle speed, A is the acceleration, and I is the road steepness or inclination.

Table 5.8: Residuals’ std. dev. from both training methods and models

Instantaneous 1 min Average
Global Individually Global Individually

FC1 FC2 FC1 FC2 FC1 FC2 FC1 FC2

All 3.92 3.81 2.29 2.10
V1 2.95 3.01 2.81 2.75 1.00 0.89 1.01 0.91
V14 3.90 3.79 3.87 3.75 2.04 1.56 2.09 1.72
V23 4.01 3.90 3.98 3.88 1.80 1.57 1.86 1.50
V42 3.36 3.16 3.17 2.95 2.13 1.84 1.67 1.30
V45 4.22 4.06 4.16 3.97 2.46 2.03 2.28 1.72
Avg 3.69 3.58 3.60 3.46 1.89 1.58 1.78 1.43

Table 5.8 presents the residuals’ standard deviation obtained by using the generic models above

to calculate the fuel consumption of each vehicle, compared against the models trained individ-

ually for each vehicle with their own data. It also shows the 1 minute average fuel consumption,

obtained from performing a moving average for every 60 s of sequential data points. For reference,

the average fuel consumption of the whole data set is 6.7 l/100km.

We observe that by choosing the best predictor set (FC2) we improve the residuals’ std. dev.

for the global model by 2.7% on average in the instantaneous case, and 15.7% in the 1 min average.

For a specific vehicle, using FC2 improves the 1 min average results up to 24%.

By individually training the models with each vehicle’s data, we can improve the instantaneous

accuracy by up to 9%, with an average of 4%. The 1 min average results can be improved on

average 7%, though for one vehicle the improvement was 30% and for another one the accuracy

decreased 10%, showing a large variability across vehicles.

The global model prediction using the best 3 predictor variables has an instantaneous accuracy

with a standard deviation between 3.01 and 4.06 for the tested vehicles (average of 3.58), which

can be considered high, resulting in a somewhat inaccurate instantaneous fuel consumption. How-

ever, the residuals’ standard deviation for the 1 min average for the model are between 0.89 and

2.10 (average of 1.58), showing that our model is a more accurate estimator for the average fuel

consumption, as the errors average out over short periods.
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5.2.7 Conclusions

We have analyzed and processed spread out information on On-Board Diagnostics sensors and

their usage for fuel consumption calculation, providing a systematized way to calculate fuel con-

sumption from On-Board Diagnostics sensor readings for a large variety of vehicles. Moreover,

we validated the expressions presented on two vehicles. We used a smartphone application to

simultaneously collect GPS and On-Board Diagnostics data from 5 volunteers during daily trips,

extracted speed, acceleration and road steepness from the GPS data, and used them as predictor

variables to fit a fuel consumption model.

Figure 5.12: Average fuel consumption on Porto’s main roads. Red represents 12 L/100 km

The proposed model shows a standard residual of about 3.6 liters per 100 kilometers when

estimating instantaneous fuel consumption, and 1.6 liters per 100 kilometers when estimating the

average fuel consumption of a 1 minute block. This and the normal distribution of the residuals

indicate it is a good model to estimate average fuel consumption or produce fuel consumption

maps aggregating a large number of vehicles. The resulting model provides us an estimate of the

fine grained fuel consumption of all users collecting data while driving a vehicle, allowing us to

aggregate the information in space and create city-wide maps such as Figure 5.12.

Future work will focus on reducing the estimation errors for the predictor variables, by im-

proving the methods used for their calculation from the GPS data. Further, we will search for

other predictor variables that may improve the accuracy of the models. Finally, we will collect



5.3 Multi-Modal Mobility Analysis 89

more data and experiment more advanced regression techniques, including well-known machine

learning regression models, working towards a more accurate model.

5.3 Multi-Modal Mobility Analysis

Mobility demand is traditionally studied through costly and time consuming surveys, sometimes

supported through and manual counting. The most common goal of such mobility demand studies

is to obtain origin-destination (OD) matrices, including number of trips between two geographic

regions and statistics on distance and duration. Additional information such as transportation

mode is also useful for the field of mobility sustainability. Cellular record data has been widely

used to estimate OD matrices [113] due to its wide penetration, but the temporal sampling is very

coarse and the location data has accuracies of hundreds of meters, providing good insights only

on large geographic scales. Additionally, transportation mode detection is very difficult due to

the coarseness of the data. In this section we show that the process of gathering OD matrices

with transportation mode information can be automated through the mobile crowdsensing allowed

by our platform, increasing spatio-temporal granularity and reducing sample bias and costs when

compared to traditional surveys.

The work described on this section was published in [46], which addressed multiple challenges

in OD matrix estimation from crowdsensed data:

1. devise an algorithm to automatically collect mobility data without incurring in significant

battery drain and reducing required user interaction;

2. identify limitations and data quality issues in crowdsensed and participant annotated loca-

tion traces;

3. propose a classifier to detect transportation mode from crowdsensed location traces from an

uncontrolled and heterogeneous dataset;

4. propose data quality mitigation algorithms and compare their impact on transport mode

detection and OD matrix estimation.

The algorithm described to automatically collect mobility data was described in 3.5.2. The chal-

lenge of accurately estimating trips length and duration led to the development of data filtering

and processing techniques presented in Section 4.2.

Detecting transportation mode from smartphone data has been addressed before, but in most

cases it uses additional sensor data, like accelerometers or geographic information systems (GIS)

about public transport stops and / or schedules. Moreover, in most cases only single mode trips

were considered. This work proposes a classifier to detect used transportation modes from crowd-

sensed location traces from an uncontrolled and heterogeneous dataset, also comparing the impact

of data quality issues on transport mode detection and on OD matrix estimation.
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5.3.1 Related Work

There are several works in the literature extracting OD matrices from coarse cellular data [22, 114].

Mobile crowdsensing provides much more precise spatial granularity, leading to more accurate

trip statistics and the possibility to detect the used transportation mode. When performing this

detection, it is important to understand that usually more than one transportation mode is used

in a trip, therefore, the majority of researchers acknowledged the necessity to segment location

traces [115, 116, 51, 117] to tackle the multi-modality issue. The most common approach in the

literature to detect transportation mode is to use location traces and its parameters, such as speed

and distance. However, some authors reported using GIS layers of known public transportation

lines to improve mode detection accuracy [115, 118], in one case from 75,9% to 92,8%. GIS

information may not be easily available, thus we use only features extracted from location traces.

Table 5.9 summarizes the most relevant parameters of related works on transportation mode

detection. The large majority of works use small datasets, either in terms of number of users

[119, 118], different devices [116, 51] or both [117]. Analyzing data gathered from a single ded-

icated GPS device at high frequency, results in data-quality issues and post-processing require-

ments quite distinct from modern smartphone-based mobile crowdsensing datasets. However, the

only reported classifier that outperforms ours without help from GIS layers analyzes only 125

traces [117]. Furthermore, there is rarely any information about the datasets balancing strategy,

so the reported results may be overfitted or biased towards more common transportation modes.

The only work with a dataset of similar scale (17 million points) is [115], though nothing is said

about its collection conditions or heterogeneity. It uses a manually derived fuzzy classifier to dis-

tinguish between 10 different modes and leverages GIS layers with road information to identify

bus/metro/tram/train lines. Ground truth is obtained by human observation and manual annota-

tion from a single person, and performance is also evaluated through human observation, and no

comparable metrics are reported.

5.3.2 Detecting Transportation Modes

Data was collected using the SenseMyFEUP configuration, comprising an optional transportation

mode survey at the end of each trip, providing us with travel mode annotations, albeit uncon-

trolled. Data was automatically uploaded to the server using WiFi connections, and collection was

started and stopped automatically using the movement detector previously described, reducing the

required human interactions. The app used Google Fused Locations provider to achieve low bat-

tery consumption while allowing indoor and underground location updates, important to collect

and analyze metro trips.

5.3.2.1 Dataset

We collected location data for 17,866 sessions, totaling over 9 million location points, spanning

more than 229,564 km, crowdsensed on the wild by 227 users. Data was filtered using the algo-

rithms described in Section 4.2.2.2, multiple sequential sessions belonging to the same trip were
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Table 5.9: Travel mode detection in related work comparison

Work

Modes

Population
H

eterogeneity
*

Segmented Trips

C
lassifierM

odel

Transition Probability
Length
Speed
Acceleration
Duration
Stop Time
RCM
Position Accuracy
GIS layers

Balance *

Accuracy *

[115]
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17M
points

n.a.
Y
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engine

N
N

Y
Y

N
N

N
N

Y
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n.a.
[118]
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n.a.

N
N
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Y
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N
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Y
Y

N
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[51]
5
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Y
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N

N
Y

Y
N

N
N

N
N

n.a.
n.a.

[116]
4
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single
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Y
D
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N

,SV
M

,C
R

F
Y

Y
Y

Y
N

N
N

N
N

n.a.
61,7%

[119]
5

12
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single
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N
N

D
A

N
N

Y
Y

Y
N

Y
N

N
n.a.

80%
[117]

5
125

traces
n.a.

Y
SV

M
N

N
Y

Y
Y

Y
N

N
N

N
93%

our
5

227
users,18k

trips
notcontrolled

Y
R

F
N

Y
Y

Y
N

N
N

N
N

Y
85%

*
n.a.:notavailable

chained together using the algorithm presented in Section 4.2.3, and the dataset was limited to

the area of study, removing trips that do not start nor stop at the Faculty of Engineering. The

resulting dataset contains 6961 trips with user reported transportation mode, from all 227 users,

corresponding to approximately 39% of all gathered sessions. In all, users reported 3659 walking

trips, 2864 traveled by car, 729 bus commutes and 563 metro trips. Multi-modal trips were also

gathered and reported by the participants 1013 times (15%), but most of these were reported as

being traveled by foot and another mode. Trips reported as having 2 or more distinct modes other
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than foot were only reported 143 times (2%).

Also, we noticed that the transportation mode survey presented at the end of each trip was not

always correctly answered, and there were inconsistencies across participants. The most relevant

case is the inconsistent reporting of walking as a transportation mode. Some participants reported

walking jointly with other transportation modes while others did not, even though in most trips the

participants walk to the bus, train or metro station, when changing modes, or when approaching

or leaving their car or bike. We address this issue by assuming that every trip might have walking

segments, even if not annotated as such.

To allow detection of multiple transportation modes in a single trip, each trip is split into a

sequence of moving segments separated by stationary points. Each stationary point is a candidate

to a transportation mode change, maximizing the confidence that each segment is traveled using a

single mode. We consider a point (Li) to be stationary if the 85th percentile of sp2p is under 0.5 m/s

within a window centered at the point. We used a 6 s window containing at least 3 points, and

location data during a data gathering session is typically collected at 1 Hz. This corresponds to

searching for a 5 s period of motion below 0.5 m/s as suggested in [117], but allowing some noise

to be present in one sample of the estimated speed. It is also important to note that traffic jams

or traffic lights are often detected as stationary segments, resulting in multiple small segments in

these slower urban trips. To reduce the impact of these small segments we ignore them when less

than 50 m is traveled between two stationary moments.

Finally, walking segments on trips annotated with other transportation modes can impact the

classifier training and accuracy. Thus, we filter walking segments in advance, detecting them when

the segment’s median speed lies below the average 75-percentile, and its 75-percentile lies below

the average 95-percentile of all trips annotated only as walking (2715 of 6961). Segments detected

as walking in trips annotated with other modes are removed from the training dataset. The final

training dataset, described in Table 5.10, is then composed by segments of trips annotated only as

walking, plus segments detected as non-walking from trips annotated with only one transportation

mode other than walking.

Table 5.10: Filtered Training Dataset

Foot Bicycle Car Bus Metro Train
Trips 2715 169 2804 611 431 38
Segments 19572 984 12098 4760 1974 291

Table 5.11: Combination of transportation modes in Multi-Modal trips

& Car Bus Metro Train 3 Modes Total
Bicycle 2 1 2 0 0 5
Car 21 25 6 7 48
Bus 83 4 7 102
Metro 16 9 117
Train 4 22
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Finally, we leverage the trips annotated with multiple non-walking modes to evaluate the gen-

eralization of the classifier and evaluate its ability to classify multi-modal trips. Table 5.11 shows

the combination of transportation modes in the collected multi-modal trips, where we can see that

the public transit systems of bus and metro were often used together in the same trip. 9 trips were

annotated with using 3 modes: 5 trips using car, bus and metro; other 2 trips used car, metro and

train; and 2 other trips were annotated as being travelled using bus, metro and train. No trips were

annotated as having 4 or more different non-walking transportation modes.

(a) Single v Multi Average Distance (b) Single v Multi Average Speed

Figure 5.13: ECDFs comparing average distance and speed of Single and Multi-Mode Trips

Figure 5.13 compares the average distance and speed of all trips annotated with a single non-

walking mode and those annotated with multiple modes. We can see that multi-modal trips were

used to travel longer distances on average (median average distance of 13 km instead of 5.5 km),

but showed almost no difference in terms of speed.

5.3.2.2 Features

We extract 19 features from each moving segment. These features are length, plus 9 statistics

related to calculated sp2p and ap2p: average, standard deviation, median, minimum, maximum,

MAD, and 25th, 75th, and 85th percentiles. It is important to use rank-based features that are

robust to outliers. A moving segment is created between two stationary moments, therefore the

length metric is inversely related to stop-rate, which has been identified in literature as an important

metric to detect transportation mode [116].

5.3.2.3 Classification Performance

We trained four different supervised learning models of differing complexities: Random For-

est (RF), Gradient Boosting (GB), Support Vector Machine (SVM), and K-Nearest Neighbors

(KNN). Our highly unbalanced dataset, a result from crowdsourcing data on the wild, can easily

lead to overfitted models and biased results. Thus, we explored the impact of various balancing

options: upsampling to the number of car segments (12098), re-sampling to the median category,

bus (4760), and downsampling to the number of bicycle segments (984). We used a stratified

5-fold cross validation to select the model that achieves best classification score.
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Table 5.12: Score of multiple classifiers and balancing strategies

Precis. Accur. F1 Sampling

Gradient Boosting 62% 63% 61% Median (4760)
SVM 80% 78% 79% Median
KNN 61% 62% 61% Median

Random Forest 62% 62% 62% Down (984)
Random Forest 84% 85% 84% Median
Random Forest 94% 94% 94% Up (12098)
Random Forest 73% 76% 72% Unbalanced

RF (Walking) 93% 96% 95% Median
RF (Bicycle) 88% 99% 94% Median
RF (Car) 75% 64% 69% Median
RF (Bus) 77% 75% 76% Median
RF (Metro) 87% 90% 89% Median

Results, presented in Table 5.12, show that RF outperforms the other models in terms of preci-

sion, accuracy and F1-score, and is on par with other methods previously published in the literature

that do not use additional GIS information (see Table 5.9). Thus, we will analyze further only the

performance of that model.

Balancing shows a great impact on classifier training, as expected in such unbalanced datasets,

resulting in the highest performance for upsampled datasets, possibly due to overfitting caused by

overly repeated instances of the less represented categories. In the unbalanced case, the observed

performance is due to a high accuracy in detecting the highly over represented modes walking and

car, showing extremely low performance for the other modes.

Thus, the most generalizable classifier is obtained using the median balanced dataset, and thus

performance values to compare with existing literature are 84% to 85% for precision, accuracy

and F1.

The most relevant features for the RF model are the speed’s median, average and 75-percentile.

Figure 5.14 shows the ECDF of the segments’ median speed. We can see a very distinct distri-

bution between Walking and other modes. However, the same cannot be said for any other trans-

portation mode. In fact, the first quartile of the median speed lies in a range between 9 km/h

and 15 km/h for all modes. This hints that future work should focus on feature engineering and

possibly other types of classifiers.

The impact of the developed data filters presented in Section 4.2 in the predictive power of the

RF classifier is shown in Figure 5.15. We compare the effect of the different filters, training Ran-

dom Forests using: 1) all raw segments without filtering; 2) filtering location data using only the

One Location Source algorithm; 3) additionally applying the Teleport Detector filter; 4) instead of

the Teleport Detector, filtering with the Hampel Identifier; 5) filtering with the Hampel Identifier,

and additionally discarding trips still containing more than 1% of unrealistic points (as defined in

Section 4.2).

Results show that filtering to a single location source greatly improves the accuracy of the
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Figure 5.14: ECDF of median segment speed, RF’s most important feature

Random Forest classifier. Additional filters produce a reduced improvement in the classifier accu-

racy. This is a consequence of using outlier robust features to train the classifier, e.g., rank-based.

On the other hand, the teleport detector showed a great impact on the estimated trips’ statistics,

such as trip distance.

5.3.3 Origin-Destination Matrices from Multi-Modal Location Traces

The main purpose of this crowdsensing campaign was a digital mobility survey, whose expected

output are the estimated OD matrices with multi-modal transportation mode information. For each

origin-destination pair, it is important to know the average distance per trip, time taken, as well as

the distribution of transportation modes used.

5.3.3.1 Accuracy of Multi-modal OD Matrices

The average distance per trip is an important metric in OD matrices. Even though it is not possible

for us to obtain the ground truth of these metrics for uncontrolled trips, we can perform visual

analysis and analyze how they vary with the different filters. Figure 5.15 shows that even though

the one location source and Hampel Identifier detect and remove individual points, resulting in

a 5% reduction in the average distance, these value was still erroneous. The Teleport detector

produced the best empirical results while removing the least number of location points, and was

the only filter capable of detecting the jumps from Portugal to Angola previously detected in

Section 4.2. Filtering trips based on the amount of erroneous data points as detected by the Hampel

Identifier resulted in the elimination of some of the largest trips, biasing the dataset and producing

erroneous statistics and OD matrices.

We now analyze how well we identify which transportation modes are present in each trip

using the RF classifier (median balanced model). Here, we include all annotated trips, even those

with multiple transportation modes which were not considered in the training dataset. In some

sense, this is an indicator of the generalization of the fully trained model to a different dataset.
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Figure 5.15: Impact of different filtering techniques on the RF classifier accuracy and estimated
trip distance

We measure the accuracy of the classifier by answering three questions with relevance to

building OD matrices:

1. "Was transportation mode A used in the trip?" In 97% of the trips for which walking

was reported, walking was also detected. Complete results are: walking 97%, bicycle 99%,

car 97%, bus 99%, metro 99%.

2. "Does the classifier detect all modes used in a trip?" In 96% of the trips all reported

modes were detected.

3. "Does the classifier detect only the modes used in a trip?" Only in 35% of the trips the

reported modes were the only ones detected.

These results show that there are many false positives in the multi-modal trip analysis. This

is caused by the segmentation of trips into many small segments and independent classification of

each. Since each segment has a probability of being misclassified of 15% (85% accuracy), there is

at least one misclassified segment in many trips. If we analyze trips marked as car, we observe that

20% have segments that were classified as bike, and 49% as bus, mostly for lower speed segments,

like during traffic jams. However, we believe that a post-classification smoothing step could be

developed in future work, taking into account the classification of neighbor segments or even all

segments of a trip.

5.3.4 Conclusion

In this work we analyzed data obtained from crowdsensing mobility information from a universe

of 227 users along 4 weeks, and compare several approaches to improve its quality. We show that

crowdsourcing mobility data impacts information quality both due to device and OS heterogeneity,
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and to annotation errors by untrained participants. However, crowdsourcing allows us to achieve

a more heterogeneous dataset than others available in the literature, enabling a better perception

of the real world. In this work, we address how to draw value from such a dataset, devising the

filtering algorithms presented in Section 4.2. Further, we train a transportation mode classifier

using only features extracted from location data. Finally, we evaluate the proposed classifier in

terms of the accuracy in origin-destination matrix parameters. Future work should address im-

proving transportation mode detection accuracy by using GIS layers to improve identification of

public transportation, and improving multi-modal transport recognition using classifiers that can

consider sequential dependencies and transition probabilities across segments.

5.4 Analyzing Participants Recruitment and Engagement

In this section we report on three inter-disciplinary data collection case studies on the wild in the

city of Porto involving overall 641 participants, reflecting on the dissemination techniques and

participant engagement mechanisms and the results of the data collection campaign. This work

was published in [45], where we also also introduced our movement detector algorithm (already

presented in Section 3.5.2), detailed our privacy protection policies (detailed in Section 3.3.5, and

identified some data quality issues and proposed algorithms to deal with them (Section 4.2).

5.4.1 Introduction

Our mobile crowdsensing campaigns mostly aimed at obtaining information about citizen mobil-

ity, so we required a large amount of location traces from participants’ trips to be able to obtain

relevant insights. Besides the technical challenges of a production-level infrastructure, carrying

out large scale studies in the population requires dissemination efforts and deployment of partic-

ipant engagement mechanisms. We focus here on some aspects of the campaigns that we believe

are highly related with the ability to collect high amounts of data: dissemination techniques, par-

ticipants engagement mechanisms, and required user interaction. We used different dissemination

and engagement mechanisms in the three analyzed campaigns, and show a qualitative analysis

of their impact on the data gathered, namely on participant number, participation duration, and

distribution of collected data per participant and time unit.

5.4.2 Goals and Requirements

The three data collection campaigns had slightly different research goals and sensing requirements:

SenseMyCity

The goal of this campaign was to study the mobility in the city, identifying traffic patterns and

pollution hotspots to drive improvement suggestions to the municipality. Other specific projects

were also using this campaign to achieve their sensing requirements, such as additionally collect-

ing OBD data from the volunteers that drive a personal vehicle and use it for the fuel consumption
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estimation project described in 5.2. The distributed app only collected data when the user desired,

requiring participants to manually start and stop data collection before and after a trip.

SenseMyMood

This campaign main goal was to study the users’ perceived emotions and their context: time,

location, and current activity. We wanted to identify some factors that may contribute to the users’

emotions, such as their evolution through the time of day, if there are locations where people

feel happier or angrier, whether there are external or environmental factors that correlate with the

perceived emotions, like noise or traffic jams, or if human males and females perceive emotions

differently. For this, the app collected randomly-triggered twice-per-day georeferenced surveys

inquiring the user’s current activity and perceived emotions, together with his/her location when

answering the survey. Shortly after the first trial runs, the app was updated with our motion

detection algorithm to automatically collect mobility information (described in Section3.5.2), and

allowed us to better study the mobility in the city.

An iOS based application was outsourced and developed by an external company, collecting

twice-per-day georeferenced questionnaires about the users’ emotions and context. This app did

not automatically collect mobility data during users trips due to limitation of the platform.

SenseMyFEUP

This data collection campaign focused at analyzing the mobility demand of a target population: the

students, teachers and support staff of the Faculty of Engineering. The application was also con-

figured to detect mobility and automatically collect data during participants’ trips, and triggered

an optional survey at the end of each trip enquiring about the just used transportation mode.

5.4.3 Dissemination Techniques

We used different dissemination opportunities for the three campaigns:

SenseMyCity

The main dissemination for the SenseMyCity campaign was a "Large Scale Sensing" workshop

at the university in December 2013, with 54 participants, mainly engineering researchers. We

presented the application and the goals to the attendees, along with technical details, privacy and

anonymity procedures, and showed exemplary maps obtained from previous trials. Potential par-

ticipants had the opportunity to ask questions and clarify their concerns. The app continued to

be disseminated for some years, mainly in the beginning of the school year and verbally by re-

searchers or students requiring new datasets for their research goals (e.g., fuel consumption es-

timation). This campaign was able to recruit and gather data from 192 unique participants from

2012 to 2016, and the user registration history can be seen in Figure 5.16.
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Figure 5.16: SenseMyCity user registrations

SenseMyMood

The application was initially distributed in May 2015 to a class of psychology students, which

served as a trial run to improve the app and motivated the development of the motion detection

algorithm. Later in November 2015, it was presented at the "Conference of the Future" workshop,

organized by the municipality . The event was free and attended by over 100 participants with

a high education level mainly in social sciences. Additionally, the campaign was disseminated

via the facebook account of the municipality and several articles on generic newspapers. In the

conference we explained the goals to the conference attendees, and presented the tool along with

some technical details with a stronger focus on privacy and anonymity procedures, and showed

exemplary traffic maps obtained from the previous data collection. Potential participants had a 30

minute question-and-answer opportunity to ask questions and clarify their concerns. They were

mostly concerned with privacy issues, relevance of the samples, potential interpretation of the

results, and impact on public policies. This campaign had a greater success than the previous one,

reaching 210 unique participants, of which around 30 were iOS users and thus not contributing

with mobility data. The effect of the dissemination events in the number of registered users can be

seen in Figure 5.17.

SenseMyFEUP

The dissemination for this campaign was done on the Faculty of Engineering campus with a reg-

ular population of 9000 people, targeting a technology aware population with strong interest on

research and quantification. We distributed flyers during the last week of March 2016, placed

posters on key locations and carried out a mass mailing action with institutional support before the

start of the data collection (beginning of April 2016). Then, we repeated the mailing action twice

during the first 2 weeks of the data collection period, also reporting on the prizes that were being
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Figure 5.17: SenseMyMood user registrations

awarded to serve as an incentive for new users. 239 unique participants installed the application

and contributed with data following this campaign, with very high spikes on user registrations

after each mass e-mails, as shown in Figure 5.18.

Figure 5.18: SenseMyFEUP user registrations

5.4.4 Engagement Mechanisms

Incentives are an important aspect that drive participants registration and continuous engagement

with the app, mainly in participatory systems as they usually require a large user interactivity.

They can be given in multiple ways, such as a monetary compensation, by providing services,
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entertaining the participants, or by motivating altruism [3]. We explored three different participant

engagement mechanisms in our campaigns:

SenseMyCity

altruistic: we asked participants to contribute their data for the common good, exploring the con-

cept of data donor. No feedback on the community or individual contributed data were accessible

on the app.

SenseMyMood

emotional engagement: we asked participants to contribute their self-assessed emotional state,

and showed a map of the recent average happiness of the city on the application screen. This

engagement mechanism provides the participant an emotional connection with other participants

and a short term feedback on available data and its evolution on the application.

SenseMyFEUP

non-monetary compensation: we asked participants to contribute their data and feedback about

the used transportation mode, and offered weekly prizes (sweat-shirts) and a final one (mid-range

smartphone) drawn randomly based on the number of contribution days. The application also

showed them statistics on their gathered trip distance, duration and carbon footprint, and compared

these with the average of the community.

5.4.5 Results

Figure 5.19a shows us the number of days the participants were engaged and using the application

before deleting it. SenseMyCity is used mostly in a quantified-self university environment; 40%

of the participants used the application for more than 30 days, 20% for more than 3 months, and

10% of the participants still sporadically gathered data after 6 months. Very differently, 75% of the

SenseMyMood participants lost interest in the application in less then 1 month, most of them even

earlier on. Even though SenseMyFEUP looks similar, with 70% of the participants quitting after

30 days, it coincides with the duration of the campaign and therefore the end of offered incentives.

These results indicate that material compensation is the most effective participant engagement

mechanism.

Figures 5.19b shows the distributions of number of sessions gathered per participant. These

are indicators of the usage ratio, showing the contribution of each campaigns in terms of trips

and locations per participant. While SenseMyFEUP and SenseMyMood collect mobility data

automatically in a less intrusive manner, SenseMyCity required participants to manually start and

stop data collection before and after a trip. Despite the short install time of 1 month, 40% of

SenseMyFEUP participants collected at least 100 sessions, while on the other platforms the same
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(a) Number of days using the application

(b) Number of sessions gathered per participant

Figure 5.19: Empirical distribution function of the install time (number of days the application
was installed), number of gathering sessions per participant, number of geo-referenced data points
per session.

40% of the participants collected less than 20 sessions. This leads us to conclude that incentives

are a very important aspect to engage and retain users.

Regarding the size of the gathered trips, SenseMyCity has on average sessions twice as long as

the other two platforms. This was expected as the users manually collect data only from long and

meaningful trips, and not the small 5 min trips from work to the nearby restaurant during lunch

time, sensed by SenseMyFEUP and SenseMyMood. These trips are also important to fine grained

mobility analysis, leading us to conclude that non-intrusiveness mechanisms play a major role in

the amount and completeness of the data collected.
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(a) Number of sessions collected per day time

(b) Number of sessions collected per week day

Figure 5.20: Distribution of the number of sessions collected per hour of the day and day of the
week.

Figures 5.20a and 5.20b show the distribution of sessions according to the hour of the day

and day of the week. SenseMyCity and SenseMyMood show similar time of day profiles, with

peaks in the morning and evening rush hours. SenseMyFEUP’s younger participants start their

daily sessions later in the day, and have a higher percentage of participants gathering data after

midnight. This illustrates the implications of the demographics on the collected data.

SenseMyCity has much less data collected during weekends when compared to the other two

campaigns. We assume this is also due to the lack of the automatic data collection capabilities.

Another factor reducing the usage during weekends may be the increased privacy awareness and

quantified self attitude of the participants, who were mostly researchers and collect data about
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specific trips or activities of personal interest.

5.4.6 Conclusions

In this work, we argue for the need to low intrusiveness mechanisms in mobile crowdsourcing

tools, and discuss different dissemination and engagement mechanisms. We show how these

mechanisms and dissemination impact the collected data sample, comparing three distinct data

collection campaigns totaling 641 participants. We conclude that engagement mechanisms or

incentives are the main factor driving users’ continuous usage of the application, and show the

impact of different populations on the collected data, highlighting that not only the population,

but also the application intrusiveness impact the resulting data sample. Reducing intrusiveness

through automatic data collection functionality significantly increases the number of trips col-

lected per participant, and reduces the bias towards collections only during weekdays.



Chapter 6

Extracting Unforeseen Types of
Information

While implementing the gathering units application we noticed that some sensors were able to

provide extra types of data than what was necessary for our goals. One such example is the data

from location providers, that can include information about the received signals from individual

GNSS satellites. We decided to collect and store some of this apparently useless data, since we

could always discard it and disable its collection later if necessary.

During the multiple data-analysis performed for the previous analysis and from the knowledge

obtained about GNSS technologies, we found an unexpected use for this particular type of data:

Detecting buildings and generating a city 3D map.

3D maps of urban environments are useful in various fields ranging from cellular network

planning to urban planning and climatology. These models are typically constructed using expen-

sive techniques such as manual annotation with 3D modeling tools, extrapolated from satellite or

aerial photography, or using specialized hardware with depth sensing devices.

In this work, published in [120], we show that 3D urban maps can be extracted from standard

GNSS data, by analyzing the received satellite signals that are attenuated by obstacles, such as

buildings. Furthermore, we show that these models can be extracted from low-accuracy GNSS

data, crowdsourced opportunistically from standard smartphones during their user’s uncontrolled

daily commute trips, unleashing the potential of applying the principle to wide areas. Our pro-

posal incorporates position inaccuracies in the calculations, and accommodates different sources

of variability of the satellite signals’ SNR. The diversity of collection conditions of crowdsourced

GNSS positions is used to mitigate bias and noise from the data.

A binary classification model is trained and evaluated on multiple urban scenarios using data

crowdsourced from over 900 users. Our results show that the generalization accuracy for a Ran-

dom Forest classifier in typical urban environments lies between 79% and 91% on 4 m wide voxels,

demonstrating the potential of the proposed method for building 3D maps for wide urban areas.

105
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6.1 Skyview - Generating 3D Maps from Gathered Low-accuracy
GPS Data

3D city models have proven useful in varied fields, from architecture and urban planning, telecom-

munications, facilities and utilities management, tourism and entertainment, environment [121,

122]. Although some use cases demand high precision models, like estimating noise propaga-

tion along a road, many others require less accurate building geometries, such as cellular network

planning, or estimating the sky view factor. The sky view factor is the fraction of sky that is

visible from a given point, and is an important parameter in urban climate research and urban

planning [123, 124], useful in modeling solar radiation and predicting the temperature evolution

in different parts of a city.

Multiple techniques have been explored to generate 3D models of buildings [122], such as

manually drawing them, converting from architectural files, merging information from laser scan-

ners or aerial photogrammetry, or analyzing street-view panoramas with a deep-learning model

[124]. Most of these methods are very time consuming or computationally expensive and do not

scale well, besides requiring very specific data that is costly to acquire. The most commonly avail-

able 3D maps are produced using very expensive aerial photogrammetry, such as those available in

Google Maps/Earth services. They are only available for the most important buildings or regions,

take multiple years between updates of the model, and are not available to download or export in

any way. There is a lack of urban 3D modeling methods that are cheap, can be continuously and

automatically revised, albeit with lower accuracy.

Previous works have shown that buildings can be detected by analyzing received GNSS signal

strength using dedicated devices in a controlled collection with high precision data around the

target buildings [125, 126] In our work, we show that buildings can be detected by analyzing the

GNSS data crowdsourced opportunistically from heterogeneous mobile phones in an uncontrolled

manner. Even though this data is unverifiable, and possibly far less accurate than alternative

methods, it can be collected at far lower costs and in wider areas. For example, most cities manage

their service vehicles using some kind of fleet tracking system. Buses, garbage trucks, municipal

police, etc, could be easily configured to collect satellite signals information alongside vehicle

locations. With a running fleet, a city municipality could generate 3D occupation map of serviced

roads, and estimate the SkyView Factor of a city or some of its particular regions or roads, updating

them as required and monitoring the impact on heat islands and other urban environment features.

The problem of optimizing the install location of new cellular antennas could also leverage a

rough but up-to-date terrain occupation map. Estimating the Line of Sight (LOS) or Non Line

of Sight (NLOS) conditions, detecting obstructions in the path from the proposed new antenna

position to any given point in the city, would be trivial.

We show that with insightful processing this uncontrolled but easily acquirable crowdsourced

data can be used to construct 3D occupation maps. We leverage big data and the law of large

numbers to even out non-permanent sources of attenuation, like clouds or vehicles, and detect the

remaining static obstacles attenuating GNSS satellite signals: buildings.
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In Section 6.2 we illustrate the approach and explain the reasoning with a case study to clarify

our contributions. We address the crowdsourced data collection procedure in Section 6.3, together

with the ground-truth manual annotations of the target regions. The projection of GNSS data

and associated information onto nearby voxels is described in Section 6.4. Section 6.5 details

feature engineering. Section 6.6 deals with searching for and choosing a suitable binary classifier,

and Section 6.7 presents final results. Section 6.8 reviews previous works on detecting buildings

from GNSS data. Section 6.9 discusses possible improvements for future work and Section 6.10

concludes the chapter.

6.2 Solution Overview

Our work is based on the fundamental observation that satellite signals are more strongly atten-

uated when the path between satellite and device (traces) crosses a building than when it does

not, as illustrated in Figure 6.1. By knowing the precise position of the device, the satellites rel-

ative position, and if no other source of attenuation exists between the satellites and the device,

it becomes relatively straightforward to transform a set of traces into a 3D representation of the

space they cross, as has been explored in [125, 126] and simulated in [127]. However, crowd-

sourced position data collected from uncontrolled trips of unknown volunteers and their multiple

heterogeneous devices, and held in different manners, can provide low position accuracies and

distinct satellite signals characteristics. Furthermore, the human body, nearby passing vehicles, or

even denser clouds, are transient non-static obstacles that may affect the received signal strengths

differently for each collected data point. Our proposal to deal with this heterogeneity is to lever-

age the diversity obtained from a large number of traces collected from different locations and

devices at different times. With a diverse dataset, we expect to be able to analyze the effects of

hardware heterogeneity at the received signals, to detect and mitigate the impact of transient atten-

uation sources, and to merge the information provided by data from multiple inaccurate locations

by incorporating their estimated accuracies as weights in the processing steps. After addressing

these sources of errors, the attenuation in the signals caused by stationary obstacles, like buildings,

should be detectable.

We performed a preliminary study to confirm the plausibility of our goals using crowdsourced

satellite SNRs values. We selected two points with distinct characteristics in an area with high

data availability: in the middle of a 35 m high building, and in an open road. We discretize

space in voxels, where each represent a position on a regular 3D grid. The received satellite

signal strengths collected less than 200 m away were processed to estimate the probability of the

corresponding trace crossing 4 m wide voxels at various heights at the selected locations (more

details in Section 6.4.1).

Figure 6.2 shows 4000 traces crossing the locations, where colors ranging from red to green

represent values of SNR from low to high, respectively. The expected building height at the left

location is marked with a white bar. It is visible that the traces crossing the building through

the white bar on the left point have much lower SNR than traces crossing at the same height on
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Figure 6.1: Impact of build-
ings on signal strength

Figure 6.2: Traces cross-
ing two test locations, over
a building (left) and an
open road (right).
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Figure 6.3: Normalized weighted av-
erage SNR, per voxel altitude, for a
building (blue) and a open road (or-
ange).

the open road on the right. This fact was verified numerically by calculating the average SNR

of all traces crossing 4 m voxels centered on those points. Due to inaccuracies in the location

of the receiving device, SNR values were weighted by the probability of the corresponding trace

crossing that voxel. The traces in Figure 6.3 confirm that crossing the building (blue line below

35 m) results in more strongly attenuated received signals, causing an average normalized SNR of

33, while the unblocked traces crossing similar heights in an open road showed an average SNR

of 60.

We can formulate our problem as estimating the probability of obstruction of an arbitrary voxel

in 3D space given a large number of GNSS data collected nearby without specific requirements,

given their estimated position error, visible satellites positions and received signal strength values:

pObstruction(X ,Y,Z,w) = (6.1)

f ([Lon,Lat,Alt,eH ,eV ,s, [SatID,α,θ ,SNR]n])

The variables X ,Y,Z,w are the longitude, latitude, altitude coordinates and width of the voxel;

Lon,Lat,Alt are the coordinates of each data point collected near the voxel position, with corre-

sponding horizontal (eH) and vertical (eV ) error distributions and instantaneous speed (s) in m/s.

Each collected data point also contains a list of visible satellites and their received signals, in-

cluding their PRN (Pseudo Random Noise code) identifiers (SatID), Azimuth (α , 0◦ =North),

Elevation (θ , 0◦ =Horizon), and received signal to noise ratio SNR. This information about the

visible satellites is available from nearly any GNSS receiver, and accessible in most smartphones.

Our proposed solution consists of 1) projecting the available filtered crowdsourced data to

nearby voxels, considering position inaccuracies; 2) extracting features per voxel based on the

received SNRs of all traces that may cross it, weighted by the probability of crossing, which is

calculated from the raw position inaccuracies; 3) training a supervised machine learning binary

classifier to determine whether a voxel is occupied by a building or not.

Our contributions are:

• A method that considers position inaccuracy when projecting geo-referenced data into nearby

voxels.
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• A thorough analysis of the satellite signals’ received SNR collected via opportunistic uncon-

trolled crowdsourcing.

• A set of features for each voxel that aggregates the information on the traces that cross it in

a meaningful manner from a data engineering perspective, as demonstrated by the classification

results.

• The combination of the previous individual contributions that enables building 3D maps of large

areas, neither requiring specific data collection conditions nor entailing any manual processing

steps.

6.3 Data Collection

We developed and deployed a crowdsensing application that automatically gathers GNSS data

from participant’s smartphones called SenseMyCity [45, 46], It was used in the last 5 years by

more than 900 distinct users of Android smartphones, and collected over 80 million geo-referenced

data points during their daily trips. The application is configured to detect the user’s movement

with an energy efficient low sampling rate sensing algorithm, activating high sample-rate data

collection only during a trip, and therefore the largest majority of data collected is during city

wide movement of the user. The data was collected anonymously with consent of the partici-

pants, and in compliance with up-to-date legal data protection laws. Further, data was collected

opportunistically, in a completely uncontrolled manner, without any instructions on what to do,

where to go, how to carry the smartphone, etc. The movement detection algorithm always running

in the background consumes around 0.5% battery per hour, depending on the smartphone model

and configurations, and the high frequency sensing during trips requires 4% of battery per hour,

resulting in a daily consumption of around 12% of battery in a 16 hours day with 1 hour of travel.

Figure 6.4 shows the histogram of the number of visible satellites on the whole dataset, with

an average of 14.1 satellites visible per GNSS location, similar to values reported in the liter-

ature [126]. This value increased slightly every year due to the addition of new satellites and

increasing smartphones’ support for other satellite navigation systems in addition to GPS, such as

GLONASS and Galileo.

Data quality issues are very relevant in opportunistic mobile crowdsensing, which gathers data

with almost no user interaction from heterogeneous mobile devices. The raw data collected in

these uncontrolled environments, such as users’ location traces, should be cleaned before pro-

cessing to improve data quality and enable the extraction of accurate information. We performed

a data cleaning step 1) ignoring rows of data with reported location accuracy worse than 100 m

(<1% ignored rows); 2) ignoring locations likely to be indoors, i.e. estimated from the list of

nearby WiFi hotspots through Android’s network location provider (around 15%), or with miss-

ing satellite data (around 35%). Nearly 50% of the collected data points were filtered out in this

pre-processing stage, and the resulting dataset contains 40 million GNSS data points with visible

satellites information, corresponding to more than 550 million traces. Each raw data point consists
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Figure 6.4: Histogram of the number of visible satellites per collected location

of [Lon,Lat,Alt,eH ,eV ,s, [SatID,α,θ ,SNR]n]. The 5th percentile (P5%), average, median and P95%

of the reported 1σ circular error of the filtered dataset was 4 m, 9.5 m, 10 m and 17 m.

6.3.1 Annotating the Training Dataset

6.3.1.1 Selecting Regions of Interest

Figure 6.5a shows the heatmap distribution of the urban area where the data was collected. A

very high data point concentration is clearly visible near the top (region A), corresponding to the

workplace of most of the volunteers, with some 50 m by 50 m grid cells containing more than

200 000 GPS readings. We searched the raw dataset for areas with significant amounts of data and

representative urban landscapes. We selected and manually annotated 5 distinct regions.

Next, we describe each of the selected 5 regions, which have distinct characteristics as can be

seen in Figure 6.6, containing a varying density of collected data points, roads and buildings.

Region A corresponds to a single building, measuring 30 m by 30 m with a height of around

34 m, surrounded by two open plazas and a road leading to an outdoor car park, located in the area

with the highest density of collected data points. As is visible in the heatmap in Figure 6.5b, there

were some long-standing smartphones collecting data in the north of the region, and also some

indoor collection, presenting challenges to the data filtering and classifier training steps. Region
B also contains a single building and is much wider but shorter than Region A, measuring 60 m by

90 m with a height of 19 m, having almost 3 times the volume of the building from region A. The

building is located in the city downtown and is surrounded by pedestrian areas, services and a park

with some trees. The area with trees was specifically selected since they may cause attenuation

to the received SNRs. This area’s voxels were annotated as "free" in order to train and test the

supervised classifiers with these partial obstructions. Data is available around the building with a

few small hot spots near meeting points, as shown in Figure 6.5c.
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(a) City wide, 50 m grid

(b) Region A, 4 m grid (c) Region B, 4 m grid

Figure 6.5: Crowdsourced data availability heatmaps

Region C is a 5-way intersection, with 3 annotated buildings with heights varying between

24 m and 35 m. In contrast to the first two regions, the data from this region was collected mostly

while driving, as there are not many ground-level services or shops.

Region D is a 100 m segment of a busy avenue, 22 m wide with 4 driving lanes plus roadside

parking, and 5- to 8-story tall buildings on both sides with 16 m to 28 m of height. Most of the

data of this region was also collected while on a vehicle.

Region E contains a narrow road with buildings on both sides, representing an urban canyon

with possibly very bad GPS reception. The road is a single lane + parking, resulting in a 7 m

clearance between the buildings on both sides. Buildings are between 15 m and 20 m high.
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6.3.1.2 Voxel Size

Our formulation allows for voxels of arbitrary dimensions, which influence the projection of the

raw data onto the voxels and their annotation. Their size can be chosen according to the desired

trade-off between granularity, processing time, and amount of information available.

The spatial precision of our method, and thus the minimum useful voxel size, is directly re-

lated to the precision of the location data. Our collected dataset has an average reported 1σ circular

accuracy of 9.5 m, with no locations reporting better than 3 m of accuracy, as can be seen in Fig-

ure 4.7. Thus, 4 m voxel size strikes us as a good compromise, corresponding to the 5th percentile

(P5%) of the reported accuracy of our dataset, and so the voxel-induced quantization noise will not

be a limiting factor. It is also the voxel size used in related works [126].

6.3.1.3 Training Dataset Annotation

Region A Region B

Region C Region D Region E

Figure 6.6: Selected regions and buildings and their manually annotated groundtruths using
Google Earth

We aim to use a supervised binary classifier to detect if an arbitrary voxel is located inside

a building or in free space. Running such models in collected data is an automated and scalable

process, but training the model requires annotated data to use as ground truth. The voxels from the

selected regions and buildings were manually annotated based on the Google Earth auto-generated
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3D maps (selecting options "3D Buildings" & "Terrain"). These publicly available 3D maps may

have positioning errors of a few meters, as hinted by Figure 6.7 which shows the location of the

same corner of a building according to satellite imagery from 2010, 2012, 2013, and 2014 onward.

The 3D building corner is aligned with the most recent satellite images, but the user-created and

positioned 3D model of the same building (selecting only option "3D Buildings") is located 6.2 m

away. We did not find any study about the location precision of these models, and therefore chose

the most recent ones to provide a ground truth for annotating our dataset.

Figure 6.7: Evolution of the location of a building corner according to Google Earth

Voxels located inside buildings in Google Earth were marked as "Building", and voxels par-

tially free and partially obstructed by the walls and ceilings were annotated as "Wall" and ignored

during training and evaluation. Voxels on the free areas surrounding the buildings were marked

as "Free". Figure 6.6 shows the ground truth annotations, with the "Free" voxels configured as

almost invisible to ease the visualization of the other classes. The annotations and raw dataset for

each region is described in Table 6.1, showing a high variability between the datasets in terms of

data availability and building density (e.g., 13% occupied voxels and 26 M traces in region A, vs.

30% and 42 k in region E). 1

1The raw and annotated datasets will be made available in CRAWDAD.
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Table 6.1: Raw and annotated datasets description

Collected Data Annotated Voxels
Locations Traces Free Building Wall

A - Building 2.2 M 26 M 1989 294 317
B - Building 580 k 7 M 4986 1106 1044
C - Intersection 300 k 4 M 3029 547 492
D - Avenue 460 k 5.8 M 1919 724 570
E - Canyon 4 k 42 k 647 276 202

6.4 Mapping Data to Voxels

The received signal information from the satellites must be projected to every voxel that is crossed

by the corresponding trace’s path. To be able to precisely calculate which voxels are crossed by

the trace between a satellite and the GNSS receiver device, it would be necessary to have accurate

device positions. Previous works addressed this by manually validating the collection paths, which

was possible because the precise paths were known for being either controlled or simulated. This

is not feasible for crowdsourced data, where collection paths and conditions are uncontrolled, and

many devices providing data use low-cost sensors and hardware. Moreover, manual validation

does not scale to over 100 000 trips in a city scale.

Furthermore, buildings may not be the only source of attenuation of the satellites’ signals.

Other SNR variability sources should be analyzed and addressed in the raw dataset, before map-

ping the signals to possibly hundreds of crossing voxels, reducing the processing and amount of

information required at each voxel.

6.4.1 Incorporating Position Inaccuracies

The original GPS technology was designed to offer a position accuracy of around 15 m in per-

fect conditions [50] with 68% confidence, but advances in the satellites and devices’ processing

capabilities has been able to improve it to 5 m or less, even in low-cost chipsets. Fortunately, by

analyzing the received signals and satellites positions, GNSS receivers are able to estimate an error

value, which follows a normal distribution around the reported position [50]. The error is typically

reported as a 68% (1σ ) or 95% (2σ ) confidence value.

The true position probability distribution of the receiver in 3D space is thus given by two inde-

pendent random variables: horizontal and vertical reported errors. Given a trace, this probability

distribution can be transformed to the probability pC that the trace arriving at [Lat,Lon,Alt,eH ,eV ,

α,θ ] crosses an arbitrary voxel [X ,Y,Z] with known dimensions. Furthermore, the horizontal cir-

cular accuracy can be decomposed in two independent orthogonal accuracies (eP = eO = eH/
√

2),

one parallel (P) and another orthogonal (O) to the trace direction, as illustrated in Figure 6.8.

The horizontal position uncertainty can have a big impact in choosing which voxels are crossed

by the trace. For example, a trace arriving at a common GNSS receiver with 10 m of horizontal

error, only has pH = 22% probability of crossing a 4 m wide voxel that is right in the center of
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the trace’s path (p(−2 < x < 2|µ = 0,σ = 10/
√

2) = 22%). In the same scenario, a voxel 12 m

away from the trace’s most probable path (dO = 12 m), still has 5% of probability of actually being

crossed by it.

We approximate the calculations to a voxel facing the direction of the traces, as shown in

Figure 6.8. This aligns the sides of the voxel with the 3D probability distributions, allowing for a

fast mathematical solution, which is also not dependent on the configured voxels’ grid orientation.

The probability of a trace crossing a voxel can be estimated by multiplying the two independent

probabilities: pC = pH ∗ pV .

Figure 6.8: Estimating probability of crossing a voxel

Figure 6.8 illustrates the variables required to estimate pH , which is the probability that the

trace crosses a w wide vertical plane centered at [X ,Y ]. dO is the orthogonal distance between

the voxel center and the trace, and dP (Figure 6.9) is the distance parallel to the trace between the

given location and the voxel center, and can be calculated given the earth radius (r) as:

[
dP

dO

]
=

[
r ∗ sin(α) r ∗ cos(α)

r ∗ cos(α) −r ∗ sin(α)

][
cos(Lat)∗ (X−Lon)

(Y −Lat)

]

pH is then equivalent to the probability of the receiving device being in any position under the

blue stripe in Figure 6.8, which can be calculated as:

pH = p(dO− w
2
< x < dO +

w
2
|µ = 0,σ = eO =

eH
√

2
) (6.2)

Similarly, pV is equivalent to the probability of the receiving device being in any position

under the blue stripe in Figure 6.9, which can be calculated from the horizontal and vertical error
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Figure 6.9: Vertical error projection

distributions as:

pV = p(AV < x < BV |µ = 0

,σ =

√
(cos(θ)∗ eV )2 +(sin(θ)∗ eH/

√
2)2) (6.3)

AV = (dP− w/2)∗ sin(θ)− (Z +w/2−Alt)∗ cos(θ)

BV = (dP+ w/2)∗ sin(θ)− (Z−w/2−Alt)∗ cos(θ)

The most used Linux GNSS software, gpsd, as well as one of the main receivers manufacturer,

Garmin, define and report both the horizontal and vertical uncertainty of position. However, we

noticed that only a very small fraction of our dataset contained the vertical error information eV ,

since it was only available in a very small amount of recent smartphones running at least Android

Oreo 8.0, released in 2017.

Even though eV can typically be estimated as 1.5 times the horizontal error, there is an alter-

native when dealing with a dataset not containing this information. We assume that the regions

around any voxel are mostly leveled, with altitude variations lower than typical GNSS vertical er-

rors (10 m to 25 m). We also know that the data from our dataset was collected from smartphones,

and can thus assume that the devices were approximately at a height of 1 m over the floors, roads or

crosswalks (pocket, or car dashboard). Locations collected via Android’s indoor location service

are ignored as described in Section 6.3, and we assume the cases where users move near win-

dows or thin walls with an active GNSS reception are in low quantity and low accuracy, therefore

contributing with a small pC for nearby voxels.

These assumptions allow us to further simplify the calculations, setting the altitude of all

location data to 1 m (Alt = 1) and ignoring the vertical error (eV = 0), with the added bonus of

changing our referential from absolute altitude to height relative to the ground. For a different

dataset the typical height of the GNSS devices should be considered; e.g., if data is collected from

a fleet of buses with the GNSS antenna located on the roof, it would be appropriate to set the

altitude of the data to the antenna’s height over ground.
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The steps presented in this section described the projection from location data and raw satel-

lite signals onto nearby voxels possibly crossed by the satellite traces, considering the location

inaccuracy. Since a normal distribution has tails going to infinity in both sides, any trace results

in pC > 0.0% for all voxels in the whole world. We thus limit the processing to traces having

pC > 1%. This pC probability is itself relevant to be later used as a weight or confidence value.

In other words, instead of calculating which voxels are crossed by a signal arriving at a given

position, our method selects all voxels that might be crossed by a signal arriving at an uncertain

position given its estimated accuracy, and for each voxel computes the corresponding crossing

probability. For example, a completely vertical signal arriving at a smartphone reporting a typical

accuracy of 10 m is mapped probabilistically with >1% to more than 200 voxels 4 m wide in the

region between 0 m and 40 m of altitude.

6.4.2 Coping with SNR Variability

Obstructions by buildings are not the only source of variability in the received satellites’ signals.

The distinct satellites’ and sensing devices’ hardware, such as the transmit power or the GNSS

chipset and antenna designs, could result in different and non comparable SNR values. The vari-

able distance to the satellites can also cause variability due to atmospheric attenuation. Finally,

some other attenuation sources are transient or dynamic, such as trees foliage, clouds, the hu-

man body, or surrounding vehicles. These sources of variability impact the comparability of SNR

values measured in different conditions and devices, and are thus noise superimposed on the ob-

servation of satellite SNR.

To search for the effects of different satellites’ hardware in the received SNR we selected an

area with a high density of points but no buildings, containing a few millions of samples of LOS

traces. We chose a road with very high concentration of data and where one side of the road is

occupied only by a few trees (no buildings). Satellite signals collected on that road with azimuths

coming from the free side of the road were annotated as being LOS and used for the following

analysis.

The LOS SNR histogram of the 6 most seen satellites was calculated and is shown in Fig-

ure 6.10. The satellites are identified by the NMEA PRN number, showing that these 6 satellites

belong to 6 distinct hardware revisions (blocks) from 2 constellations: GPS (USA) blocks I, II,

IIA, IIF - Sat 4, 16, 27, 32; and GLONASS (Russian) blocks I and III - Sats 65 and 86 2. A Kruskal-

Wallis test showed no significant difference (p > 0.99) in the reported SNR distributions arriving

from any of these satellites, validating the visual observation in Figure 6.10. Recent groups of

GPS and GLONASS satellites are known to broadcast at different, but known, transmit powers,

and therefore some authors [125] proposed applying a correction model per satellite ID. However,

as the histogram and tests showed, these differences were not visible in our dataset, probably due

to the smartphones GNSS chipsets or operating system already correcting or normalizing these

2More info available at https://en.wikipedia.org/wiki/List_of_GPS_satellites and
https://en.wikipedia.org/wiki/List_of_GLONASS_satellites

https://en.wikipedia.org/wiki/List_of_GPS_satellites
https://en.wikipedia.org/wiki/List_of_GLONASS_satellites
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Figure 6.10: Line-of-Sight SNR histogram for the top 6 satellites

values. We thus considered that the data in our dataset did not require any normalization per satel-

lite, but recommend this should be verified in future collections as new satellites are launched.

Different smartphones’ GNSS chipsets and antennas are expected to be calibrated, reporting

similar SNR values on signals received in similar conditions, even between different manufacturers

and smartphone generations. We verified this SNR variability across different smartphones by

analyzing the data from the top 6 distinct devices (different user and brand) with the highest

amount of gathered data in that same LOS region (∼40% of the data).

Figure 6.11: Line-of-Sight SNR histogram for the top 6 users

Figure 6.11 shows the distributions of SNRs received by these users, with some visibly distinct

distributions such as user 8 peaking almost 10 dB higher than user 24. This difference was however

not statistically significant, with a Kruskal-Wallis test showing no significant difference in the SNR

distributions of any of these 6 devices (p > 0.95 between user 8 and 24), hinting us that the GNSS

chipsets calculate the SNR in a similar and comparable fashion. We suspect that the visually
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perceptible differences in the distributions were probably due to different collection characteristics

between users, such as smartphone placement or transportation mode (e.g., smartphone in the

hand; vs in a pocket with signals arriving through the body; vs inside a bus with traces through the

metal roof).

Figure 6.12: Variation of received SNR with Elevation (θ )

On the other hand, the distance to the satellite and atmospheric attenuation mainly affect

signals from satellites near the horizon, where they are farther away from the user and the signal

travels through denser atmosphere. This effect is dependent on the satellites elevation in relation

to the smartphones position (θ ), and can therefore be modeled and corrected. In Figure 6.12 we

observe a significant attenuation for θ < 20◦ in the average and maximum SNR values, such as a

20% difference in average SNR between 20◦ and 10◦. This extra attenuation at lower elevations

may introduce noise and lower the classifier accuracy, and thus we decided to ignore traces with

θ < 10◦, as also suggested by prior works [125, 126]. The impact on the SNR caused by elevation

values θ > 10◦ was still visible and non-negligible, mainly between 10◦ and 20◦. It was addressed

in the feature engineering step by using a Hampel filter and normalization.

Other transient attenuation sources impact the signal received at the smartphone, such as the

local weather conditions where rain or thicker clouds further attenuate the signal, passing vehicles

may significantly block the signals for a few seconds, and the human body can reduce the strength

of some of the signals arriving at a smartphone placed in a pocket. It is hard to characterise these

attenuation sources, but it is possible to mitigate their impact on the algorithm through the use of

features that are robust to biased noise, e.g., using the higher percentiles of the SNRs.

6.5 Engineering Relevant Features

After mapping the received signals to every crossing voxels having pC > 1%, we must extract

features that might be relevant to classify each voxel as free or occupied. We performed this in 3

steps, described in more detail in the next sections:
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1. Generated a composite variable to compensate the atmospheric attenuation on the SNR,

following the insights from Section 6.4.2;

2. Generate filtered versions of the variables by removing data that might introduce noise and

bias;

3. Extract multiple statistical features from the variables, weighted by each trace’s pC.

Some machine learning algorithms are not able to efficiently capture interactions between the

variables, such as those based on decision trees. Composite variables, implemented as functions

of other existing variables, must be created when known interactions exist, helping the models

improve their accuracy. As such, we created a new composite variable SNRθ = f (SNR,θ) to

compensate for the effects of atmospheric attenuation verified in the previous section. This was

performed by filtering the SNR values using a Hampel identifier filter and scaling the results

between 0 and 100 for each value of θ (between the "Min" and "Hampel" plotted in Figure 6.12).

6.5.1 Accounting for Influential Positions

In perfect conditions, GNSS data would be collected with unobstructed antennas going around

the target regions. Crowdsourcing the data collection cannot guarantee such strict requirements.

However, we consider that transient obstacles such as the human body or car rooftops can be

ignored with the help of the law of large numbers, as long as the raw data includes enough users

with distinct paths and characteristics moving around the target area. However, a single stopped

smartphone collecting positions for a few hours is enough to introduce significant bias in nearby

voxels. During the data exploration phase, we found some devices collecting data for many hours

in static positions. Such traces pollute the dataset with many NLOS traces in the voxels in the

direction of surrounding obstacles, which may not be permanent.

To address this, we generated 8 new variables based on SNR and SNRθ , filtered using the

instantaneous speed (s) information to create features not subject to these influential subsets of

raw data points:

• SNRs05 and SNRθ_s05, with values s < 0.5m/s ignored;

• SNRs10 and SNRθ_s10, filtering out when s < 1.0m/s;

• SNRs15 and SNRθ_s15, filtering out when s < 1.5m/s;

• SNRmov and SNRθ_mov, filtering out data when the user moved less than 150 m in a 4 min

window. This features should eliminate the impact of long data collections at the same

position, while keeping data from short stops.

Even though most of these features are redundant or highly correlated, we leave it to the model

and training step to choose the best ones.
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6.5.2 Generating Weighted Features

After generating the features presented in the previous sections, each voxel is associated with

the following variables for each trace crossing it with probability pC > 1%: [SNR, SNRθ , SNRs05,

SNRθ_s05, SNRs10, SNRθ_s10, SNRs15, SNRθ_s15, SNRmov, SNRθ_mov, pC, eH , dP, dO]. Some voxels

in the chosen regions were crossed by more than 500 000 traces with pC > 1%.

For each voxel and variable, the following statistical metrics were generated across traces, in

both weigthed and non-weigthed variants: average, standard deviation, variance, Median absolute

deviation about the median (MADM), kurtosis, skew, and percentiles Px%,x =[0, 2, 5, 10, 15,

20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 85, 90, 95, 98, 100]. The weighted metrics were

calculated using pC as each trace’s weight. The height of the voxel, number of traces and their

total weight (sum of pC) were also added as voxel features.

6.6 Choosing a Classifier Model

Table 6.2: Balanced 5-fold cross validation accuracy and F1 score, evaluating different binary
classifiers. We use a color code between red and green representing lower to higher scores to
make an overview analysis easier.

Dataset Acc. F1 Acc. F1 Acc. F1 Acc. F1 Acc. F1 Decision function Acc. F1
A 98.1% 98.1% 97.1% 97.1% 96.8% 96.7% 88.8% 87.4% 92.3% 92.1% pC SNR noFilter AVG < 20.1db 84.8% 84.9%
B 99.1% 99.0% 98.2% 98.2% 98.6% 98.6% 83.7% 86.0% 82.7% 83.6% pC SNR noFilter p40 < 18.5db 72.2% 72.7%
C 95.0% 94.9% 90.6% 90.5% 89.3% 89.7% 75.0% 67.7% 79.7% 80.2% pC SNR speed>0.5 p90 < 34.5db 76.0% 76.9%
D 98.8% 98.8% 96.7% 96.7% 95.8% 95.8% 94.4% 94.1% 80.6% 81.2% pC SNR speed>1 p95 < 35.5db 73.6% 73.7%
E 95.8% 95.8% 92.0% 92.2% 91.7% 91.9% 92.6% 92.3% 85.7% 86.4% pC SNR speed>1 p65 < 21.5db 74.1% 72.3%

Avg SNR thresh.RF GB KNN SVM Decision Stump (Threshold on best feature)

Our proposed classifier outputs if a voxel belongs to a building or not based on its features. We

chose and compared four well known and widely used supervised classification models: Random

Forest (RF), Gradient Boosting (GB), K-Nearest Neighbors (KNN), and Support Vector Machine

(SVM). Additionally, we evaluate two baselines inspired by related work: a Decision Stump (a 1-

level decision tree, searching for the best single feature and threshold value), and another Decision

Stump that uses only the unweighted and unfiltered version of the average SNR of crossing traces.

The latter classifier, using only a threshold on the average SNR, is the most similar to related

works [125, 127], allowing us to analyze the potential gains of considering location inaccuracies

and removing biases from stopped points. The selected algorithms were evaluated by assessing

how well they classify some voxels, given some other nearby voxels’ ground truth.

The datasets of each region were considered separately, balanced to their minimum repre-

sentative class ("Building"). The balancing algorithm was a version of a random under sampler

modified to prioritize the selection of "Free" voxels that are adjacent to "Building"s or "Wall"s,

thus increasing the probability of training and evaluating the models with voxels that are close to

buildings. We expect this step to improve the classifier’s ability to detect the buildings’ edges. All

models were evaluated with 5-fold cross validation for each region. Results presented in Table 6.2

show that all the models were able to distinguish well between buildings and free space voxels.
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The Random Forest (RF) classifier was slightly better than the others, with 95% to 99% accuracy

and F1 scores across all datasets. It achieved these results without any parameter optimization

or feature selection step, and therefore we selected it for further evaluations. Thresholding using

the best feature obtained scores 3% to 12% better than using only the unweighted and unfiltered

average SNR. The Decision Stump classifier always selected the weighted version of the SNR as

feature, and in 3 of the 5 datasets it selected a high percentile filtered by speed. However, the best

feature and its threshold change for the different regions, hinting that none would provide a good

generalization.

6.7 Results

We train Random Forest classifiers from the datasets of each region, balanced to their minimum

representative class ("Building") using the same down-sampling procedure as above. The gener-

alization capability of these models is evaluated by testing if they are able to accurately classify

the unbalanced datasets of the other regions, with all their "Free" and "Building" voxels. We also

analyze the model’s accuracy at different altitudes, to better understand the source of classifica-

tion errors. Finally, we evaluate the data requirements for recognising occupation in new areas by

analyzing the evolution of the scoring metrics when applying the model to an increasing number

of trips.

The metrics typically used to evaluate classification results are accuracy, balanced accuracy,

recall, precision, and F1 scores. Accuracy is a generic metric, representing the percentage of all

voxels that were correctly classified. The accuracy metric depends equally on all voxels, and can

thus benefit from unbalances on the dataset, such as when there are many more "Free" voxels than

"Building"s. The balanced accuracy corrects this by calculating the average of the proportion of

corrects of each class individually. Recall is the percentage of true building voxels that were found,

assessing the ability of the classifier to find all the building voxels. Precision is the percentage of

voxels that are correctly classified as buildings , representing the classifier ability to not label as

building a voxel that is actually free space. The F1 score is the harmonic mean of the previous two

metrics, quantifying the compromise between the two. We consider balanced accuracy and recall

as the most important metrics for evaluating the classifiers. Precision and F1, more sensitive to

our unbalanced datasets (much more "Free" than "Building" voxels), are also presented to allow a

deeper analysis of the models.

6.7.1 Generalization Error

To evaluate the generalization capability each model trained was used to classify the full dataset

of the other regions, not used for training. Table 6.3 shows both the precision and recall scores,

while tables 6.4 and 6.5 show the F1 and balanced accuracy scores respectively.

These results show a good generalization capability of some models, with the model trained

at region D achieving 86% of average balanced accuracy and identifying 89% of the buildings’

voxels from other regions (recall), nonetheless obtaining a large amount of false positives (57%
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Table 6.3: Precision and recall generalization scores

Train on Prec. Rec. Prec. Rec. Prec. Rec. Prec. Rec. Prec. Rec. Prec. Rec.

A - - 86% 70% 75% 19% 100% 1% 82% 79% 86% 42%
B 49% 86% - - 79% 47% 81% 38% 61% 100% 67% 68%
C 25% 86% 60% 80% - - 60% 95% 50% 96% 49% 89%
D 37% 89% 62% 95% 81% 72% - - 51% 100% 57% 89%
E 87% 32% 98% 33% 89% 14% 100% 0% - - 93% 20%

avg
Precision and Recall evaluated on

A B C D E

Table 6.4: F1 generalization score

Train on A B C D E avg

A - 77% 31% 2% 80% 47%

B 63% - 59% 52% 76% 62%

C 39% 69% - 74% 66% 62%

D 54% 75% 76% - 67% 68%

E 47% 50% 25% 1% - 31%

F1 evaluated on

of average precision). The worse results on the precision metric may be due to the difference

in support between the classes as previously explained. It is also visible that the generalization

capabilities greatly depend on the characteristics of the training datasets, with the 3 most similar

models in terms of size (from regions B, C and D) being able to accurately classify each other

(accuracy > 84%). Models trained on regions with unique characteristics such as A, with a huge

number of traces and a single small building, and from region E, a worst-case urban canyon with

a very small raw dataset, are not able to accurately classify voxels from most of the other regions.

The models from these two regions fail to detect 99% of the building voxels from region D, and

86% or 81% from region C.

The model from region D was selected for further analysis.

6.7.2 Building Height Error

We expect that there are two types of voxels particularly hard to classify: Near the ground level,

where most smaller non-building obstacles are located, such as trees, vehicles or bus stops, and at

the layers just above the buildings’ roofs, where no trace can cross them and reach the streets and

users unobstructed.

The regions A and B with a single building with known heights were leveraged to verify

this, by evaluating the model at different altitudes and calculating the average accuracy at each

layer of voxels height. The results are shown in Figure 6.13, where the yellow bars represent

the voxels marked as "Wall" around the roof of each respective building. The graph validates our

expectations. The model applied to both regions shows lower accuracy at the ground level (0-8 m),

Table 6.5: Balanced accuracy generalization score

Train on A B C D E avg

A - 84% 59% 50% 86% 70%

B 87% - 72% 67% 87% 78%

C 74% 84% - 86% 78% 81%

D 87% 91% 84% - 79% 86%

E 66% 67% 57% 50% - 60%

Balanced accuracy evaluated on
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and near the buildings’ expected height3. The voxels above building B show worse accuracy than

above building A, as expected since building B is much wider (60 m vs 30 m), and is thus harder

for unobstructed traces to reach the voxels above the center of the building. It is also relevant to

note that the voxels at the ground level and right above the roofs are the least important locations

in many uses of 3D building models, such as the sky view factor estimation.
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Figure 6.13: Models accuracy for different altitudes

6.7.3 Required Amount of Data

Our dataset contains more than 120 k trips and 80 M geo-referenced data points. Such datasets,

even if crowdsensed, are not easily obtainable for every region we want to map. We used region

B, with a single building and around 800 trips around it, to evaluate how many trips are required

around a building to detect it, given a previously trained model on the whole dataset for that same

region.

Figure 6.14 shows the evolution of the scoring metrics when applying the model to an in-

creasing number of trips crossing region B. The first two trips contain points at different sides of

the building collected with walking speeds, and were enough to detect >70% of both free and

occupied voxels. The 80% thresholds were met at just 23 trips, with little more than 1 hour of

collected data in the region. With 45 trips, 99% of both classes had been correctly classified, but

due to the dataset unbalance (4986 free vs 1106 occupied voxels), 1% of false-positives represent

a precision of 86%. After 100 trips, or around 20 000 data points corresponding to 5.5 hours of

data collection, all the metrics stabilize at >99%.

6.7.4 Most Relevant Features

During the training of the Random Forest models we were also able to monitor the features impor-

tance by using the respective scikit python functions. This estimates the importance of a feature

3The line for testing on Building A shows two dips: one corresponding to the last voxel plane annotated as building
(26 m) and another corresponding to the first voxel plane annotated as free (38 m).
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Figure 6.14: Evaluating performance for different number of trips and corresponding amount of
data.

as the sum of importance of the nodes of the trees in which the feature was used. The top features

varied slightly between different training runs, due to their random nature, but we were able to gain

some understanding of the most important features, movement filters, and statistical derivations:

1) The features that appeared most often in the top places were mainly derived from SNR,

and slightly less frequent from SNRθ (SNR compensated for satellite distance or atmospheric

attenuation). This indicates that even though the distance to the satellites is a source of SNR

variability not related to buildings, its correction using SNR normalization after Hampel filtering

did not have a significant impact on the classification.

2) Other features that often appeared in the list of most important were the ones derived from

the orthogonal distance metric, mainly the unweighted version and low percentiles, with higher

orthogonal distances being mapped to "Building" voxels. This is explained by the fact that in a

building voxel many if not all of the traces that cross it may be completely blocked, not only at-

tenuated, and therefore not reaching any device. Such reduction or lack of "true traces" crossing

a voxel lead to its features being mostly defined by nearby traces, with higher orthogonal dis-

tance, that due to their receiving device’s inaccurate location are probabilistically mapped to the

voxel. Contrary to this, a free voxel also contains information of the true traces crossing it, with

statistically smaller orthogonal distances.

Another way of understanding this is looking at the hypothetical extreme case, with a big

dataset with perfect location accuracy and where buildings are also perfect obstacles with no re-

flections or multi-path. In this situation there are only high SNR traces crossing the free voxels,

while building voxels have no trace directly mapped to them, and thus the "distance to nearby

traces" becomes an important differentiating measurement, which is similar to our unweighted

orthogonal distance feature.

3) The most used versions of the variables were filtered for movement using one of the 2 softer

versions of the filter; SNRs05, SNRs10 were almost equally selected. This hints that removing bias



126 Extracting Unforeseen Types of Information

through movement filters is important, but that ignoring data when s < 1.5 m/s was too aggressive,

removing too much data that was otherwise useful for the classifier.

4) Every time we trained a Random Forest with our datasets, the most important features

based on SNR were dominated by the versions based on high percentiles, between P60% and P90%.

This was expected, validating the reasoning in Section 6.4.2, since most sources of noise in an

uncontrolled data collection are actually attenuation sources, lowering the SNR, and the higher

percentile values are more resilient to noise.

Another technique to obtain the most important features is by training simple decision tree

algorithms, such as Decision Stumps, that find the single best feature and threshold value to use as

a binary classifier. In the previous sections we showed the best thresholds to classify each region

individually (table6.2), which followed the observations on the features importance extracted from

the Random Forests.

6.7.5 Performance of a Decision Stump

In this section, we discuss the performance of a Decision Stump trained on our dataset. This is

an improved version of what is proposed in related works [125, 127] adapted to our dataset. We

extracted the best single threshold by training on the combination of the balanced datasets from

all regions. We then used that threshold to classify the voxels as occupied or free, and the scores

are represented in Table 6.6.

Table 6.6: The best single-feature threshold for the whole dataset and resulting scores obtained
against each dataset

Best threshold Acc. Prec. Rec. F1 Acc. Prec. Rec. F1 Acc. Prec. Rec. F1 Acc. Prec. Rec. F1 Acc. Prec. Rec. F1 Acc. Prec. Rec. F1

pC SNR Speed>1 p90 < 32.5db 79% 26% 100% 42% 90% 57% 97% 71% 88% 67% 83% 74% 86% 70% 86% 77% 68% 41% 96% 57% 82% 52% 92% 64%

Region A avgRegion ERegion DRegion CRegion B

With balanced training datasets randomly downsampled each time, the chosen decision func-

tion in 4 out of 5 runs was: "pC SNR speed>1.0 m/s p90% < 32.5 dB". With such a simple model

we are able to obtain good accuracy and recall across all regions, but unfortunately a very high

rate of false-positives (low precision), especially on the most distinct datasets from regions A and

E.

These results are training results, as they are obtained for the same dataset from which the

threshold was obtained. Thus, the metrics presented in Table 6.6 for this model cannot be directly

compared with our Random Forest generalization results in Table 6.3. The first were trained on

the whole balanced dataset while the latter are generalizations for different regions from the one

used in training. A direct comparison of DS and RF is discussed in Section 6.6.

6.7.6 Visualizing Results

The model trained with a balanced dataset from region D showed better generalization capability

in the previous section, therefore we selected it to produce 3D visualizations of the regions by
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mapping classified voxels in 3D using Google Earth. Furthermore, the implementation used for

the RandomForest Binary Classifier also outputs the forest confidence or probability of the voxel

being in a building, opposite of free space. We can take advantage of this output to improve the

results visualization, such as mapping the confidence value to the voxels color and/or transparency

values, between green and transparent for 0% confidence of being a building to red and opaque

for 100%.

(a) Region A (b) Region C

(c) Region B

Figure 6.15: Voxels classified as building by the model trained from region D

Sample results are presented in figures 6.15, showing the voxels classified as building in re-

gions A, B and C, with confidence value mapped to color and transparency. The main buildings

of all regions are clearly detected, as well as other nearby buildings. Some false-positives are also

visible mainly in the parks in region B. 4

The time-range selection tool of Google Earth allowed us to visualize the results in horizontal

or vertical layers, similar to a slice in the classified voxels. Figure 6.16 presents a sample slice of

4More results are available at https://sensemycity.up.pt/skyview/

https://sensemycity.up.pt/skyview/


128 Extracting Unforeseen Types of Information

region B, with the main building clearly detected in the middle and some small buildings detected

in the left. Higher altitude voxels were all correctly detected as free space.

Figure 6.16: A vertical slice of classified voxels in region B

6.8 Related Work

To the best of our knowledge, 3D occupation maps have never before been constructed leverag-

ing SNR measurements of GNSS signals that have been opportunistically crowdsourced from

uncontrolled devices. However, multiple works overlapping parts of our methodology can be

identified that motivate and confirm its feasibility.

Prior works have used non-GNSS SNR measurements to map obstacles in 2D based solely

on the signal between many pairs of WiFi nodes in precise locations surrounding an area [128]. A

single pair of WiFi-enabled unmanned aerial vehicles flying in known precise formation around a

target obstacle is able to coarsely map its structure in 3D [129].

GNSS signals are also used extensively in metrology, e.g., to estimate atmospheric water va-

por concentration [130] or measure the density of the atmosphere [131]. At lower altitudes, the

complete obstruction of GNSS signals by buildings was leveraged in 2005 by Swinford [132] to

generate building outlines or skylines around a target region, based solely on the non-availability

of some signals. The methodology did not address the low location accuracy of GNSS samples,

signal errors or multi-path interference, or lack of scalability due to the need to acquire controlled

data. Other works improved on this by using SNR measurements [125, 126], or by simulating

buildings and their effects on GNSS signals [127]. Most of these works used manually-defined

SNR thresholds (36 dB) to binary classify each trace in a voxel, and then searched for the agree-

ment of 10 traces [125] or for a relaxation point on the traces’ classification distribution [127].

[126] improved on this by using an inverse probability function from the standard propagation
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model (average LOS SNR = 42 dB) to classify each individual satellite trace, and a Bayesian al-

gorithm to classify each voxel given the evaluated traces that cross it. Values and thresholds used

are not generalizable, because they were manually set for the specific dataset. If these thresholds

were applied to our crowdsourced dataset, it would result in most LOS traces being detected as

NLOS, as can be seen in the SNR histogram in Figure 6.10.

In recent years, crowdsensing has gained popularity to perform large-scale measurements,

such as to generate on-street parking maps from collected location data [31], to monitor spectrum

utilization in an area using smartphones and low-cost radios [29], construct WiFi maps [26] and

improve indoor localization [27]. Multiple data-quality issues need to be addressed that are com-

mon in opportunistically and uncontrolled crowdsensed data. Specifically, it has been shown that

low accuracy of collected location traces [45] may significantly impact extracted information such

as user mobility patterns and estimated transportation modes [46].

The previous works above use data from a single dedicated device in a controlled collection

scenario, significantly reducing data noise and bias. Therefore, these works do not scale to larger

areas, multiple devices and uncontrolled conditions. Specifically, these prior works do not consider

the locations’ accuracy or the bias caused by points collected by stopped devices, which results in

a significant reduction of the accuracy of the models as can be seen in Table 6.2. Finally, related

works do not provide numeric evaluation metrics, such as accuracy, recall or F1. Thus, we are

not able to compare our results directly to theirs, and resorted to Decision Stumps to estimate the

classification capability of a single threshold.

6.9 Discussion and Future Work

Many aspects of our methodology and models can be improved in future work.

Voxel size: The voxel size should be reduced for datasets with more accurate location data, as

is expected in the near future, with the prevalence of dual-band GNSS chipsets with accuracies

between 1 m and 5 m, and with offline improvements of location data now enabled in recent

smartphones by raw GNSS measurements. Non-uniform or dynamic voxel sizes could also be

used, such as iteratively reducing voxels sizes only around previously detected building contours,

improving granularity with a smaller processing impact.

Calibrating devices: While we could not observe LOS SNR variability between our top users,

there have have been multiple reports of device problems leading to weak GNSS signals. We thus

consider this should be verified in crowdsourced datasets and a normalization function per device

could be introduced in the processing step.

Balancing per trace direction: During the exploration of the results from the different regions,

we noticed that some voxels classifications are completely defined by very high density of traces

coming from nearby hotspots, such as those around the building from region B (Figure 6.5c). In a

perfect scenario, the traces should be crossing the voxels coming uniformly from all directions of

the top hemisphere (azimuth and elevation of the traces). This could be achieved by grouping and

normalizing the main features per trace direction, such as by using the geohash coding system.
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Different classifier parameters: We did not report here on the exploration of ML models and

their parameters, although they play a significant role in performance improvement and execution

complexity. Future work includes testing different parameters of the whole process, like voxels’

size, or pC threshold, and other classifier hyper-parameters.

Features selection: The feature selection step was almost bypassed due to the Random Forest

models being less sensitive to their inter-dependency, but we consider it can bring significant

improvements to the generalization scores.

6.10 Conclusions

We showed that low accuracy, crowdsourced data collected in uncontrolled and unconstrained real-

world scenarios can provide sufficient information to detect and characterize buildings in 3D. This

was accomplished by leveraging crowdsourced location data, collected from participants’ smart-

phones without any interaction during their uncontrolled daily trips. The raw data was mapped to

nearby voxels and its (low) accuracy was overcome by transforming it into a confidence value used

as weights. Weighted metrics and statistics were estimated at each voxel, such as the weighted av-

erage and percentiles of the received signals’ SNR from the satellites. The voxels from 5 distinct

regions and buildings were annotated with a ground-truth, and used to train a robust machine

learning model that was able to classify whether a voxel is occupied or free. Results showed a

5-fold training accuracy and F1 scores >95%, and generalization (inter-region) accuracy between

79% and 91% (for the best training dataset). The proposed method, based on easily obtainable

crowdsensed GNSS data, has the potential of being scaled to entire urban areas.
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Conclusions

In this thesis we showed it is feasible to leverage heterogeneous and uncontrolled personal mobile

devices to sense human processes on a large scale, extracting accurate and useful information to

multiple transdisciplinary fields.

We presented the design and development of the SenseMyCity crowdsensing platform. Its

modular software architecture, data model and communication protocol are able to meet the re-

quirements of both participants and researchers in multiple research projects. It was iteratively

improved into a stable platform leveraging cloud infrastructures, Android smartphones and their

multiple integrated and external sensors. The use of a ubiquitous platform such as Android running

smartphones allowed for the participation of a large number of users, gathering massive amounts

of sensor data together with human input through surveys. The developed smartphone applica-

tion is light on resources to improve participants retention. To improve the app utilization while

maximizing the amount of useful data gathered, it includes a movement detection algorithm able

to detect when a user is on the move, activating high-frequency data collection only during the

participants trips.

The platform performance was evaluated in terms of both the costs of gathering the sensor

data, and the quality of such data originating from uncontrolled heterogeneous devices. The bat-

tery consumption analysis was performed in smartphones from multiple manufacturers and multi-

ple sensor configurations, allowing us to make better trade-offs between the energy consumption

and which sensors to use and their sample rates, according to each project’s requirements. An

efficiency analysis of the communication protocol provided us an estimation of the required band-

width to transfer the collected data to the cloud infrastructure, specially useful for projects with

real-time sensing requirements where paid mobile data connections are required. The data model

provided us an estimate of the storage requirements according to the sensors to gather data from,

the number of participants, an approximation of the duration of their trips and the collection period.

The performance evaluation contribution was complemented with the identification of recurring

data quality issues typical of crowdsensing platforms, and how we mitigate their effects. Data

quality issues are very relevant in opportunistic mobile crowdsensing, which gathers data with

almost no user interaction from their heterogeneous mobile devices. We identified and tackled
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the potential effects of having distinct non-synchronized clock sources timestamping the gathered

data, specially damaging on mobility analysis with important time metrics such as duration of

trips. Multiple location providers are now very common in smartphones, but they have different

characteristics and some of them can sporadically provide very inaccurate locations. These qual-

ity problems are compounded when fusing data from multiple sources, from the same or different

devices, and can result in very erroneous mobility metrics if they are not detected and addressed

in a pre-processing stage. We also address how to mitigate undesirable characteristics present in

datasets collected from uncontrolled opportunistic crowdsourcing systems.

The usefulness of the gathered data and the platform itself were ultimately validated by the

transdisciplinary research and scientific contributions they allowed. The SenseMyCity platform

has been used in many data collection campaigns and with very distinct goals. It has been used to

monitor the physiological effects of driving events on bus drivers [20] and work related events on

police officers [55]. The platform was also leveraged to develop an instantaneous fuel consump-

tion algorithm based solely on the location data available in smartphones [19]. A transdisciplinary

project allowed our platform to be used in the psychology field [58], aiming to map and understand

citizens’ emotions and their causes. Scientific contributions were also published in the transporta-

tion fields [46], showing our platform capability of automatically extracting the mobility patterns

of a community of participants, in the form of origin destination matrices with trip metrics and

used transportation mode. Multiple dissemination and engagement techniques were experimented

in the various data collection campaigns, and their analysis resulted in a scientific contribution

[45] presenting their effects on the participants’ recruitment and engagement, and the collected

datasets. Until January 2020, the platform has been used by more than 1200 distinct participants,

collecting more than 100M location points from 100k trips and totalling 40k hours of data collec-

tion.

We concluded the thesis presenting another case of useful information that we were able to

extract from the previously gathered datasets, unexpectedly: 3D maps of a city. We showed these

can be extracted from low-accuracy crowdsourced GNSS data even from heterogeneous devices

and uncontrolled paths, which are highly available in our platform datasets. We were able to

incorporate the position inaccuracies in the model, and mitigate bias and noise by leveraging the

diversity of collection conditions of crowdsourced data. The results showed that we were able

to classify arbitrary 4 m wide cubes in space between "occupied by a building" or "free" with a

generalization accuracy between 79% and 91% .



Chapter 8

Appendix

8.1 Communication Protocol Security Analysis

One of the most dangerous types of attack on a centralized architecture is a server impersonation
attack, where an attacker fakes or denies the server’s services. Faking a service requires at least

the attacker being able to decrypt messages that were sent to the server and faking or modifying

the server’s response. To prevent this, our protocol uses 4096-bits RSA public key cryptography

to exchange per-session random 128-bits AES symmetric keys, so we can consider it safe for the

foreseeable future. This key exchange also protects from man in the middle attacks, since every

transmitted message is encrypted in a way that only the intended destination can decrypt.

Denial of service attacks are impossible to completely prevent, either at the network level or

on the hardware/database access, but our system tries to minimize the damage done by such attacks

to the unavoidable delay of the service. We implement encrypted feedback at the application layer

to inform the gathering units of the successful storage of the data on the database. If the network

service is denied or the storage resources are depleted, the feedback is not transmitted and thus the

gathering unit keeps the data for a later synchronization.

The encrypted feedback or storage acknowledgement is implemented at the application level,

independent of the chosen transport layer. This allows the utilization of network friendly protocols

(such as TCP) with a high-quality connection, while using other more efficient or packet oriented

protocols (UDP) in other network environments, such as vehicular networks.

To minimize the resources utilization and damage done by lost packets, our server implementa-

tion works in a stateless mode, without keeping record of an internal communication state, treating

every new packet the same way. This also allows a gathering unit to transmit data in real-time or

on-demand at an arbitrary time. However, the gathering units must implement the re-transmission

mechanism and related logic.

As we mentioned, we are dealing with possibly sensitive information, so the users data can not

be visible to others. To this end, the only user identification automatically stored on our servers is a

normalized and hashed version of the user e-mail, which is not directly identifiable. Furthermore,
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the table relating an user’s hash to the internal user ID is protected, only accessible by the data

collection program and authentication mechanism.

For authentication and access control we avoid account creation and password handling by

using OpenID, an open and secure authentication method. We need to assume, however, that both

the gathering unit and the front-end can obtain a valid and authenticated e-mail address using

OpenID. To access the data, a user has to login in the front-end server via OpenID, with the same

e-mail used in the gathering unit.

Even in case of a server security breach we provide some anonymity by only storing an

hashed e-mail of the users, preventing them from being directly identified from the data. However,

an attacker could search for the data of a known person by hashing their e-mail and searching for

that hash. Also, an analyst with access to many sources of data could analyze patterns and discover

the identity of a user, even after destroying or corrupting a big part of the data [35].

Full anonymity and privacy is a sensible subject and cannot be guaranteed in participatory

sensing systems when performing collaborative or bulk analysis of data. However, there are some

techniques [35] that greatly improves them and should be taken into consideration when imple-

menting services.

From all of the typical attacks, our system is more vulnerable to a user impersonation attack.

The gathering unit is responsible for checking the user e-mail authenticity while gathering or

uploading data, but since we perform no user authentication on the server when storing the data,

a malicious user could replicate the protocol and upload data under a fake user ID. However, in

this situation the attacker can only add fake data, and is not able to access existing data. We

recommend tighter security for systems or services where a user impersonation attack results in

higher damage. The most common solution to prevent this attack is by requiring device-server user

authentication with prior account creation, or by using OpenID for every data stream, which would

require user input to authenticate every connection. Instead, we opted for a simpler but less secure

solution, further described on the implementation Section 3.5: We hard-code the server public key

in our developed applications, without publicizing it. Even though the application is accessible

to everyone without registration, it is not trivial to extract the public key from the compiled code

and to emulate the rest of the protocol. This slight vulnerability can also be used for the user’s

advantage, since the data can no longer be considered foolproof and thus be used by authorities

under subpoena, which can be considered a privacy problem of data gathering systems [133].

A data forgery attack is also impossible to prevent. For example, almost every smartphone

can be configured to return fake data from the integrated sensors. A user can also forge or falsify

gathered data just by changing the date and time of the mobile device internal clock. In our system

we can detect this attack in the post-processing phase, such as using the atomically precise GPS

timestamp to detect the correct system time.



8.2 DB Structure and Workflow 135

8.2 DB Structure and Workflow

A simplified example of the database structure used in our platform can be seen in Figure 8.1, with

sample tables for the 3 kinds of gathered data: Session information (top), Sensor data (middle),

and Auxiliary data (bottom).

Accelerometer

session_id
seconds
x_axis
y_axis
z_axis

User

user_id
hash

GPS

session_id
seconds
millis
gpstime
sats_count
lat
lon
alt
track
speed
climb
accuracy

OBD

session_id
seconds
millis
code
value

Vehicle

vehicle_id
vin
model
fuel_type
displacement
mileage
weight
year

Session

session_id
user_id
vehicle_id
aes_key
start_time
version

Pressure

session_id
seconds
data

WifiMonitor

session_id
seconds
mac_addr
snr
noise

WifiName

mac_addr
lastseconds
essid
channel
authentication
mode

BluetoothName

mac_addr
lastseconds
essid
class

BluetoothMonitor

session_id
seconds
mac_addr
snr

1

N

1 N
1

N

N

1

N

1

Figure 8.1: Simplified example of the database structure used by our platform

Figure 8.2 shows a sample data workflow analysis generated for the travel mode detection use

case. Arrows represent data dependencies, flowing from the tables containing the collected data

(purple), through multiple views (green), materialized views (yellow), functions (orange), pro-

cessing services (red), generating the machine learning classifier model (light blue), and finishing

in a view showing the classified travel mode per trip segment. Yellow crosses marked views used

only for visualization or debug purposes, while red crosses marked deprecated entities that were

useful for a specific temporary purpose, such as comparing the travel mode classification accuracy

using alternative datasets.
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Table
GSLocation

Table
GPS

View
Location

Merges all
location sources

Table
Annotations

View
location_pre_filtered

adds: gps_provider

fitlers: wrong_clock
duplicate

one_source
teleport

Service - Java
annotate_session.jar

wrong clock,
duplicated,

one source location,
teleport detector

Stop points detector,
Automatic start/stop check

View
travelmode_sessions

Limit  in time

Schema: Travelmode

Table
Session

View
session_offsets

calculates clock corrections

View
session

sessions from this instance

Table
Response

Questionnairs
answers

View
travelmode_survey

Also calculates
  not_foot_count

Table
Segments

Schema: Processed, per instance

Schema: Raw, per instance

Table
Sessions

statistics

Table
Trips

statistics

Service
segments.py

Python

Splits trips into
stopped-moving seg

View
UTC_travelmode

Matrix'ify surveys

Function
calc_session()

calculates session stats
Function

calc_trip()

trip chainning

M-View
travelmode_location_pre_filtered

Calculates P2P_S&A

M-View
travelmode_one_source

Calculates P2P_S&A

Schema: Public, protected

Table
User

M-View
travelmode_tripchain

tripchainning

View
travelmode_segments

Service
classifyProfile.py

Python

Apply trained RF model
to compute mode Prob's

Table
travelmode_profile

travelmode probabilities
from Speed & Accel

Table
learning_segments

Function
prepare_learning()

Prepares training data

Table
travelmode_gis

travelmode
from GIS

Service
classifyGIS.py

Python

Splits trips into
stopped-moving seg

Functions
metro_classify()
bus_classify()

Service
trainClassifiers.py

Python

Trains and stores model

classifier_model_*.pkl

session_end.sh - Process after each session

annotate_session.jar

calc_session()

calc_trip()

segments.py

classify_walking()

classifyProfile.py

classifyGIS.py

PhysioNet/wfdb.php

MapMatch.php

FuelConsumption.jar

 session_done() - SQL

newTrip.py - Travelmode

newTrip.py
runAll

View
survey_travelmode

Matrix'ify travelmode
responses

Function
classify_walking()

marks slow Walking Segments

View
dailystats

Used to produce 
graphics with stats

View
maps_*

stores generated maps
View

segments_with_travel_mode

stores generated maps

Table
metrostops

Metro Stations

Table
busstops

Bus Stops

Figure 8.2: Processing data flow through tables, views, and processing algorithms related to travel
mode detection. Entities marked with a red X were only used during the development of the travel
mode detection service.
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