
Lakehead University

Knowledge Commons,http://knowledgecommons.lakeheadu.ca

Electronic Theses and Dissertations Electronic Theses and Dissertations from 2009

2021

Towards designing AI-aided lightweight

solutions for key challenges in sensing,

communication and computing layers of

IoT: smart health use-cases

Sakib, Sadman

http://knowledgecommons.lakeheadu.ca/handle/2453/4776

Downloaded from Lakehead University, KnowledgeCommons

Towards Designing AI-aided Lightweight Solutions for Key
Challenges in Sensing, Communication and Computing

Layers of IoT: Smart Health Use-cases

by

Sadman Sakib

B.Sc. Ahsanullah University of Science and Technology, 2017

A THESIS

SUBMITTED TO THE DEPARTMENT OF COMPUTER SCIENCE

AND THE FACULTY OF GRADUATE STUDIES

OF LAKEHEAD UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

MASTER OF SCIENCE (SPECIALIZATION IN ARTIFICIAL

INTELLIGENCE)

© Copyright 2021 by Sadman Sakib

Lakehead University

Thunder Bay, Ontario, Canada

ii

Supervisory Committee

Dr. Zubair Fadlullah

Supervisor

(Research Chair, Thunder Bay Regional Health Research Institute

Associate Professor, Department of Computer Science, Lakehead University, Thunder Bay,

Ontario, Canada.)

Dr. Quazi Abidur Rahman

Internal Examiner

(Assistant Professor, Department of Computer Science, Lakehead University, Thunder Bay,

Ontario, Canada.)

Dr. Sameh Sorour

External Examiner

(Assistant Professor, School of Computing, Queen’s University, Kingston, Ontario, Canada)

iii

ABSTRACT

The advent of the 5G and Beyond 5G (B5G) communication system, along with the

proliferation of the Internet of Things (IoT) and Artificial Intelligence (AI), have started to

evolve the vision of the smart world into a reality. Similarly, the Internet of Medical Things

(IoMT) and AI have introduced numerous new dimensions towards attaining intelligent and

connected mobile health (mHealth). The demands of continuous remote health monitoring

with automated, lightweight, and secure systems have massively escalated. The AI-driven

IoT/IoMT can play an essential role in sufficing this demand, but there are several chal-

lenges in attaining it. We can look into these emerging hurdles in IoT from three directions:

the sensing layer, the communication layer, and the computing layer. Existing centralized

remote cloud-based AI analytics is not adequate for solving these challenges, and we need

to emphasize bringing the analytics into the ultra-edge IoT. Furthermore, from the commu-

nication perspective, the conventional techniques are not viable for the practical delivery of

health data in dynamic network conditions in 5G and B5G network systems. Therefore, we

need to go beyond the traditional realm and press the need to incorporate lightweight AI

architecture to solve various challenges in the three mentioned IoT planes, enhancing the

healthcare system in decision making and health data transmission.

In this thesis, we present different AI-enabled techniques to provide practical and lightweight

solutions to some selected challenges in the three IoT planes. Therefore, by exploring one

important use-case from a diverse pool of available use-cases in each of the IoT planes, we

summarize the contribution of the thesis as the following:

• Focusing on the sensing plane, chapter 3 employs Reservoir Computing (RC) for

noise-removal from the magnetocardiography (MCG) signal for continuous remote

monitoring of cardiovascular activities.

• In chapter 4, to tackle the challenging task of dynamic channel selection in the com-

munication plane, a deep learning-based predictive channel selection method is lever-

aged. The proposed AI-aided method will unravel the potential challenges associated

with the dynamic channel conditions in the B5G networks while transmitting massive

health data (big data) from countless IoT devices.

• Finally, to facilitate the computing plane of IoT, we investigate the use-case of ar-

rhythmia classification by analyzing electrocardiography (ECG). Hence, in chapter 5,

we explored how to design a lightweight AI model embedded into the ultra-edge IoT

nodes for arrhythmia classification. Then in chapter 6 we press the concept of design-

ing federated learning architecture based on asynchronously model updating online

and decentralized learning technique which uses the Ultra-Edge Nodes (UEN) as the

local users and utilizes the lightweight AI technique to detect irregular heartbeats.

iv

We have employed publicly available data sources to gain insights and evaluated the

proposed AI solutions by carefully identifying different performance indicators. Thus, we

envision that, in the forthcoming future of B5G networks, we can achieve a smart and

connected healthcare system in decision-making and efficient health data transmission by

blending lightweight AI computing with ultra-edge IoT sensors.

v

ACKNOWLEDGEMENTS

In the name of the Almighty Allah, the most gracious and the most merciful.

All praises belong to Allah and his blessing for the completion of this thesis. I thank

God for all the patience, opportunities, and strength that have been showered on me to

finish the thesis.

Apart from my efforts, the success of this thesis depends largely on the encouragement

and guidelines of many others. I would take this opportunity to express my gratefulness to

the people who have been instrumental in completing this thesis.

I am very grateful to the following funding sources for financial supporting my research:

• Lakehead University Faculty of Graduate Studies;

• Lakehead University Faculty of Science and Environmental Studies;

• Dr. Zubair Fadlullah (Faculty Research Award)

• Thunder Bay Regional Health Research Institute (TBRHRI)

• Mitacs Accelerate

I want to express my deepest gratitude and gratefulness to my supervisor, Dr. Zubair

Fadlullah, for advising me, mentoring me, encouraging me, and guiding me in my research

and academic life. Dr. Falullah’s patience, positive attitude, and unique research directions

always gave me inspiration and the freedom to perform my tasks with ease. I am always

grateful to him for his invaluable guidance in the last couple of years in both my academic

and personal life.

I would like to thank our research collaborators and co-authors for their participation

and contributions to the research works. My absolute gratitude and appreciation to Dr.

Mostafa Fouda (Assistant Professor, Idaho State University) for helping me in different

stages of my research with his valuable insights and opinions. Also, I am thankful to all of

my lab members from the ACCESS Lab for the stimulating research discussions. Thanks

to the examiners (Dr. Quazi Abidur Rahman and Dr. Sameh Sorour) for their valuable

comments and constructive suggestion. My utmost admiration and thanks to Dr. Salimur

Choudhury for all the academic as well as personal advice during the last few years.

Finally, I am sincerely grateful and forever in debt to all my family members: my

parents, mother-in-law, wife, and brother, for their immense patience, constant support,

and continuous prayer in my academic/research journey and life in general. I am also

grateful to my teachers, colleagues, friends, and everyone who helped me in my life and

motivated me to pursue my higher study.

vi

PUBLICATIONS

Parts of this thesis have been submitted for peer-review, published or accepted for

publication:

• Noise-Removal from Spectrally-Similar Signals Using Reservoir Comput-

ing for MCG Monitoring has been accepted in the IEEE International Conference

on Communications (ICC) 2021. (part of Chapter 3)

• An Efficient and Light-weight Predictive Channel Assignment Scheme for

Multi-Band B5G Enabled Massive IoT: A Deep Learning Approach is pub-

lished in IEEE Internet of Things Journal, doi: 10.1109/JIOT.2020.3032516. (part of

Chapter 4)

• A Deep Learning Method for Predictive Channel Assignment in Beyond

5G Networks is published in IEEE Network, vol. 35, no. 1, pp. 266-272, Jan-

uary/February 2021, doi: 10.1109/MNET.011.2000301. (part of Chapter 4)

• A Proof-of-Concept of Ultra-Edge Smart IoT Sensor: A Continuous and

Lightweight Arrhythmia Monitoring Approach is published in IEEE Access,

vol. 9, pp. 26093-26106, 2021, doi: 10.1109/ACCESS.2021.3056509. (part of Chapter

5)

• Migrating Intelligence from Cloud to Ultra-Edge Smart IoT Sensor Based

on Deep Learning: An Arrhythmia Monitoring Use-Case is published in 2020

International Wireless Communications and Mobile Computing (IWCMC), Limassol,

Cyprus, 2020, doi: 10.1109/IWCMC48107.2020.9148134. (part of Chapter 5)

• A Rigorous Analysis of Biomedical Edge Computing: An Arrhythmia Clas-

sification Use-Case Leveraging Deep Learning is published in 2020 IEEE Inter-

national Conference on Internet of Things and Intelligence System (IoTaIS), BALI,

Indonesia, 2020, doi: 10.1109/IoTaIS50849.2021.9359721. (part of Chapter 5)

Apart from the manuscripts mentioned above, during my MSc, I also authored a few

other papers outside the scope of the thesis. Following are the list of such published/accepted

papers:

• On COVID-19 Prediction Using Asynchronous Federated Learning-Based

Agile Radiograph Screening Booths has been accepted in the IEEE International

Conference on Communications (ICC) 2021.

• DL-CRC: Deep Learning-Based Chest Radiograph Classification for COVID-

19 Detection: A Novel Approach is published in IEEE Access, vol. 8, pp. 171575-

171589, 2020, doi: 10.1109/ACCESS.2020.3025010.

vii

Contents

Supervisory Committee ii

Abstract iii

Acknowledgements v

Publications vi

Table of Contents vii

List of Tables x

List of Figures xi

1 Introduction 1

2 Background 7

2.1 Preliminaries: IoT Sensing Layer . 7

2.2 Preliminaries: IoT Communication Layer 9

2.2.1 Traditional Cloud and Edge Architectures 9

2.2.2 Wireless Technologies in IoT . 11

2.3 Preliminaries: IoT Computing layer . 12

2.3.1 Fundamentals of Machine Learning Models 12

2.3.1.1 K-Nearest Neighbors . 12

2.3.1.2 Random Forest . 13

2.3.1.3 Linear Regression . 13

2.3.1.4 Auto Regression . 14

2.3.2 Fundamentals of Deep Learning Models 15

2.3.2.1 Artificial Neural Networks 15

2.3.2.2 Convolutional Neural Network 17

2.3.2.3 Reservoir Computing . 18

2.3.3 Federated Learning (FL) architecture 20

viii

3 Noise-Removal from Spectrally-Similar Signals Using Reservoir Com-

puting for MCG Monitoring 21

3.1 Introduction . 22

3.2 Preliminaries of Spintronic Sensors For Embedding Edge Intelligence and

Problem Description . 24

3.3 Envisioned RC-based Technique for Noise-Removal 25

3.4 Performance Evaluation . 26

3.4.1 Data Preparation . 27

3.4.2 Simulation Parameters . 28

3.4.3 Results and Discussion . 29

3.5 Summary . 32

4 Deep Learning-based Predictive Channel Assignment In Multi-Band

Multi-Channel Relay Networks for Offloading Medical Data of Under-

served Users 33

4.1 Introduction . 34

4.2 Related Work . 37

4.2.1 Wireless Network Condition Prediction Using AI 37

4.2.2 Multi-Band Scheduling Over Relay Networks 37

4.3 Proposed System Model . 38

4.3.1 Network Topology . 38

4.3.2 Packet Transmission Model . 39

4.4 Problem Statement . 39

4.5 Proposed Deep Learning-based Algorithm 40

4.6 Algorithmic Analysis . 43

4.6.1 Pre-processing Phase . 43

4.6.2 Training Phase . 44

4.6.3 Running Phase . 45

4.7 An Illustrative Example of the Proposed Model 45

4.8 Performance Evaluation . 47

4.8.1 Data Preparation . 47

4.8.2 Simulation Results and Discussion 48

4.8.2.1 Hyperparameter Tuning . 49

4.8.2.2 Numerical Analysis . 54

4.9 Summary . 56

5 A Proof-of-Concept of Ultra-Edge Smart IoT Sensor: A Continuous

and Lightweight Arrhythmia Monitoring Approach 58

5.1 Introduction . 59

ix

5.2 Related Work . 62

5.3 Problem Formulation . 63

5.4 Data Preparation . 65

5.5 Proposed Methodology . 66

5.5.1 Proposed CNN Model Structure . 66

5.5.2 Deep Learning-Based Lightweight Arrhythmia Classification (DL-LAC)

Algorithm . 68

5.5.3 Computational complexity analysis in terms of mathematical operation 71

5.5.3.1 Training phase . 72

5.5.3.2 Inference phase . 74

5.6 Performance Evaluation . 74

5.6.1 Performance Indicators . 75

5.6.2 Results and Discussion . 75

5.6.2.1 Hyperparameter Tuning . 76

5.6.2.2 Inference Results . 78

5.6.2.3 Numerical Analysis . 81

5.7 Summary . 82

6 Asynchronous Federated Learning-Based ECG Analysis for Arrhythmia

Detection: A Remote Health Monitoring Use-case 83

6.1 Introduction . 84

6.2 Related Work . 87

6.3 Problem Description . 87

6.4 System Design and Proposed Asynchronous Federated Learning-Based Algo-

rithm . 89

6.5 Performance Evaluation . 92

6.5.1 Data Preparation . 92

6.5.2 Simulation Setup . 93

6.5.3 Results and Discussion . 94

6.6 Summary . 96

7 Conclusions and Future Works 97

7.1 Contributions . 97

7.2 Future Directions . 99

Bibliography 101

x

List of Tables

Table 4.1 Considered Modulation and Coding Scheme (MCS) [1]. 43

Table 4.2 Comparison of average RMSE values across all time steps for LR, AR,

ANN, and CNN-based methods for DS1-indoor environment. 48

Table 4.3 Comparison of average RMSE values across all time steps for LR, AR,

ANN, and CNN-based methods for DS1-outdoor environment. 48

Table 4.4 Comparison of proposed shallow and deep-CNN models with baseline

techniques for different prediction window (Pw) sizes with respect to

training window (Tw) using DS2. Here, D indicates distances in meters,

S-CNN and D-CNN represents shallow and deep CNN, respectively. . 49

Table 5.1 Mapping DS1, DS2, DS3, and DS4 datasets to the AAMI heartbeat

classes [2]. 66

Table 5.2 Frequency of heartbeats of each class in DS1, DS2, DS3, and DS4. . . 66

Table 5.3 Selected parameters for each optimizer after employing grid search. . 78

Table 5.4 Performance comparison of CNN with traditional ML methods for the

second experimental setting using DS1 as the training dataset. 79

Table 6.1 Classification performance of adopted FL architectures over varying

number of Ultra-Edge Nodes (UENs) using three different test datasets. 93

Table 7.1 Summary of the contributions in sensing layer of IoT 98

Table 7.2 Summary of the contributions in the communication layer of IoT . . . 98

Table 7.3 Summary of the contributions in computing layer of IoT 98

xi

List of Figures

Figure 1.1 Focusing on the IoT from three directions: sensing layer, communica-

tion layer, and computing layer. The Artificial Intelligence (AI) acting

as the enabling bridge among the three layers. 2

Figure 1.2 Organization of all the chapters of the thesis. 4

Figure 2.1 Conventional architectures for IoT-based AI analytics. 10

Figure 2.2 Architecture of a typical ANN model. 16

Figure 3.1 Continuous MCG monitoring with conventional and proposed paradigms

without and with AI model for smart and localized noise processing

and medical analytics using spintronic devices. 23

Figure 3.2 Reservoir computing (RC) model for MCG noise-filtering to obtain

the ECG for continuous cardiac activities monitoring. 27

Figure 3.3 Performance evaluation demonstrating the original ECG cycle, syn-

thetic noisy MCG cycle used as input, comparison between conven-

tional moving average method, DL-based method, and proposed RC-

based (RC-10) approach to process and remove the input signal’s

noise. The curves are vertically shifted for clarity. 28

Figure 3.4 Inference performance comparison of RC with moving average and

deep learning methods.The different RC architectures consist of 10,

30, 50, and 70 units, respectively. 29

Figure 3.5 Dependence of noise power on spectral frequency for the RC-based

prediction method, DL-based prediction, and the moving average fil-

tering. Spectral frequency is normalized. 30

Figure 3.6 Memory and time requirement for the RC architectures and DL method.

The different RC architectures consist of 10, 30, 50, and 70 units, re-

spectively. 30

(a) Memory consumption rate in the training phase for different settings

of RC and DL methods. 30

(b) Required time (per cycle) in the training and inference phases for dif-

ferent settings of RC and DL methods. 30

xii

Figure 4.1 Our research focus compared to the traditional focus for selecting the

best channel of multi-band relay networks. 35

Figure 4.2 Proposed CNN-based training and inference model. 41

Figure 4.3 An illustration of how the data size evolves in the proposed CNN

model with single layer. 46

Figure 4.4 Comparison of CNN with respect to filter size (for DS1-indoor envi-

ronment). 50

Figure 4.5 Comparison of CNN with respect to filter size (for DS1-outdoor envi-

ronment). 51

Figure 4.6 Comparison of different activation functions for the proposed CNN

model using DS2. 51

Figure 4.7 Comparison between CNN and baseline techniques for different envi-

ronments of DS3. 52

Figure 4.8 CNN-based prediction methods compared to the original channel qual-

ity for different environments of DS3. 53

(a) Bus . 53

(b) Car . 53

(c) Pedestrian . 53

(d) Static . 53

(e) Train . 53

Figure 4.9 Processing time of different methods. 54

Figure 4.10 Memory consumption of different methods. 55

Figure 4.11 Throughput of different methods considering the additional processing

delay due to possible poor channel selection. 55

Figure 5.1 How migrate the pre-trained AI model towards the resource-constrained

sensor. 60

Figure 5.2 Steps of conventional ECG heartbeat classification. 64

Figure 5.3 Proposed training architecture leveraging CNN structure for the con-

sidered use-case. Once the model is trained at the cloud, it is trans-

ferred to the smart IoT sensor’s AI module. 67

Figure 5.4 Performance variation of the proposed/custom CNN model with vary-

ing numbers of layers. 76

Figure 5.5 Performance comparison for different activation functions with respect

to different filter size of the proposed CNN. 77

(a) Large filter size . 77

(b) Moderate filter size . 77

(c) Small filter size . 77

xiii

Figure 5.6 Performance of the proposed model for the third experimental set-

ting employing the four datasets individually (3-fold stratified cross-

validation). Here, DSi means the ith dataset. 79

Figure 5.7 Area Under the Receiver Operating Characteristic (AUROC) curve

derived for the third experimental settings utilizing 3-fold stratified

cross-validation. 80

(a) ROC curve employing DS1 (AUC Score: 0.9113) 80

(b) ROC curve employing DS2 (AUC Score: 0.9406) 80

(c) ROC curve employing DS3 (AUC Score: 0.9796) 80

(d) ROC curve employing DS4 (AUC Score: 0.9340) 80

Figure 5.8 Required execution time and memory consumption of various methods

on a workstation and different micro-controllers used as a proof-of-

concept for the smart sensor. 81

(a) Time required for different devices (in seconds) 81

(b) Memory consumption (%) by different methods for different devices . 81

Figure 6.1 Our main focus is to develop an asynchronously federated learning-

based ECG analytic methodology at the distributed Ultra-Edge nodes

(UENs) to classify irregular heartbeats while preserving patient-data

privacy. 85

Figure 6.2 Ultra-edge Node (UENs)-based Distributed System Design. 89

Figure 6.3 The performance comparison of two federated learning architectures

during the learning/training phase over varying communication rounds

(employing DS1). 92

(a) Learning accuracy . 92

(b) Value of loss function . 92

Figure 6.4 AUC score values acquired in the inference phase of the Sync-FL and

Async-FL methods using different test datasets (i.e., DS2, DS3, and

DS4). 94

(a) AUC Score (DS2) . 94

(b) AUC Score (DS3) . 94

(c) AUC Score (DS4) . 94

Figure 6.5 Required execution time and memory consumption for varying number

of UENs (inference phase). 95

(a) Time required for different devices (in seconds) 95

(b) Memory consumption (%) by different methods for different devices . 95

Chapter 1

Introduction

The recent universal advancement in the Internet of Things (IoT), Internet of Medical

Things (IoMT), fifth-generation (5G), and beyond 5G (B5G) wireless networks are envi-

sioned to pave the way towards Artificial Intelligence (AI)-based smart, secure, and con-

nected healthcare system in the upcoming future. The Healthcare system is increasingly

utilizing information technologies for delivering ubiquitous services aiming at speeding up

health diagnostics, and treatment [3]. The in-depth integration of the IoT/IoMT, 5G,

AI, big data, cloud computing, and other advanced technologies is already solving many

healthcare system challenges. Such systems are already allowing a substantial reduction

of cost and enhancing patient care by providing intelligent services for health monitoring

and medical automation in diverse contexts and environments (i.e., hospitals, home, office).

The AI-empowered automatic diagnostic techniques can also make healthcare and remote

health monitoring more effective and faster [4]. The emergence of a wide range of smart sen-

sors, IoT devices, and remote toolkits has observed remarkable advances in remote patient

monitoring and telehealth solutions. Using AI and virtual reality, medical professionals can

step into hospitals and medical facilities worldwide to provide prompt care to patients in

hazardous or remote regions. Wearable devices to monitor patient vital signs such as heart

rate, brain signals, oxygen saturation, and so forth to can minimize healthcare practitioners’

risk while ensuring remote patient care.

Medical 4.0 is now emerging as the fourth medical revolution where new modern tech-

nologies are integrated into the healthcare system, and proper decision-making processes are

implemented for extensive customized healthcare services [5]. However, lately, the spread

of novel coronavirus (COVID-19) has caused significant strain on medical centers’ resources

and escalated the demand for remote automated patient monitoring. The pandemic has

radically and suddenly altered how medical practitioners provide care to subjects. Health-

care providers are now responding to the urgency through the rapid adoption of digital tools

and technologies such as telemedicine and virtual care, which refer to delivering healthcare

2

Sensing health data,
noise-filtering for
denoising data

Ensure efficient
data (i.e., health
data) delivery,
channel quality
prediction

Medical data
analytics at the
ultra-edge
biomedical IoT
nodes, collaborative
learning

2. Communication

Looking at the thesis from three directions: sensing, communication, and
computing layers of IoT

1. Sensing

3. Computing

Artificial Intelligence (AI)

Figure 1.1: Focusing on the IoT from three directions: sensing layer, communication layer,
and computing layer. The Artificial Intelligence (AI) acting as the enabling bridge among
the three layers.

services remotely using information technologies to treat patients [6]. The pandemic is

forcing healthcare providers to stress on services such as telehealth and remote monitoring.

Prominent tech enablers such as Microsoft, Google, and Amazon Web Services (AWS) are

all pushing deeper into obtaining better digital and automated platforms for remote health

monitoring after the pandemic impact [7].

IoT/IoMT devices in the healthcare industry will generate massive data, including some

highly sensitive data, and some health data require quick analysis and immediate decision-

making. To facilitate the healthcare industry with decision-making intelligence, usually

remote cloud server-based AI analytics is used in various use-cases. However, the cloud

computing-based paradigm will not be suitable for the upcoming massive demand. Fur-

thermore, it will consume a tremendous amount of network bandwidth for mass-scale de-

ployment and will require a considerable amount of time. Along with these, there is massive

privacy concern due to sending sensitive health data to the remote server. For minimizing

these challenges to some extend, researchers have focused on combining edge/fog computing,

Mobile Edge Computing (MEC), and cloud computing to mitigate these challenges [8].

Currently, 4G and other communications are used to assist healthcare services and ap-

plications throughout the world. These technologies play a vital role in facilitating the

eHealth and smart health industries. However, with the rapid growth of remote healthcare

3

services and IoT and IoMT devices, the amount of data in different formats and sizes is

expected to increase drastically over the next few years. Such massive and diverse data

requires unique solutions considering end-to-end delay, network bandwidth consumption,

privacy issues. The current communication technologies are not likely to be sufficient for

fulfilling the requirements of dynamic and time-sensitive future smart and connected health-

care services [9]. Hence, the future-generation fully 5G and B5G networks can be utilized

to tackle the challenges in the communication layer of IoT to assist the healthcare system’s

services. With the 5G/B5G-enabled communication advancements, healthcare providers

can monitor patients remotely and transmit real-time data for preventative care and other

individually-tailored healthcare requirements.

Therefore, as shown in Fig. 1.1, this thesis investigates the development and viability of

lightweight AI models for solving challenges in three considered layers of IoT (i.e., sensing,

communication, and computing layer), which can be combined with the envisioned and

efficient 5G/B5G-aided networks to conceptualize next-generation smart and connected

remote healthcare systems. The term ”lightweight technique” in this thesis refers to the

task of designing such an AI-aided system so that the decision-making process consumes

less time and memory, especially in the inference/running phase of the considered use-case.

Thereby, we investigate the development of such AI systems that consume lower memory and

time compared to other traditional methods so that they can be regarded as lightweight,

and we can utilize these techniques with resource-constrained sensors for localized and

automatic decisions in the health monitoring use-case. To sum up, the seamless integration

of lightweight AI, ultra-edge IoT, and future-generation beyond 5G networks can facilitate

the healthcare providers as follows:

• Decreasing massive privacy concerns by restricting raw health-related data transmis-

sion over the internet.

• Reducing end-to-end transmission delay due to not sharing raw data for ultra-edge

analytics and only sharing learned knowledge for collaborative learning paradigms.

• Minimizing network overhead via reducing massive bandwidth consumption.

• Facilitating faster and smoother packet (i.e., model parameters) delivery in case of

collaborative and decentralized learning via distributed ultra-edge nodes.

• Providing a scalable system to meet the ever-growing demand and handling massive

medical data. Hence, improving the flexibility, scalability, and adaptability of the

system.

• Empowering real-time decision making for remote health monitoring with localized

intelligence and ultra-low latency via lightweight AI and ultra-edge IoT node.

4

Chapter 1
Introduction,

Motivation, and
Objective

Chapter 2
Preliminary ideas
about IoT, AI, and
wireless networks.

Chapter 3
Reservoir Computing (RC) for
noise-removal from the MCG

signal to obtain the ECG signal

Chapter 4
Deep Learning (DL)-based

approach to predict dynamic
channel conditions in the multi-

band relay of B5G networks

Chapter 5
Deep Learning (DL)-based

lightweight custom CNN model
for heartbeat classification model

for Ultra-Edge IoT nodes

Chapter 6
Asynchronous Federated Learning

architecture enabling online learning
with privacy preservation for

arrhythmia classification using the
local ECG data, deployed at the

Ultra-Edge Nodes

Sensing layer

Communication layer

Computing layer

Chapter 7
Focusing on the main

contributions and future
research directions

Figure 1.2: Organization of all the chapters of the thesis.

Fig. 1.2 outlines the organization and brief contributions in all the chapters of the

thesis. Therefore, this thesis investigates the development and viability of lightweight AI

models, which can be combined with the envisioned and efficient B5G networks systems to

conceptualize next-generation smart and connected remote healthcare systems.

The remaining chapters of this thesis is organized as follows:

Chapter 2 provides a general overview of the fundamental idea behind the technologies

and methodologies utilized in the later chapters of the thesis.

Chapter 3 considers the research problem of cardiac magnetic signal sensing use-case by

analyzing biosignal. Smart AI-based IoT sensors are typically envisioned to have onboard

intelligence and can interact collaboratively among themselves or with a remote server

through the internet. To achieve the high level of automation required in today’s intel-

ligent IoT applications, sensors incorporated into nodes must be efficient, context-aware,

reliable, and connected. To design smart edge computing-enabled IoT sensors with high

sensitivity and low-energy, recently developed spintronic sensors have a massive potential.

These sensors are capable of biosignal detection (i.e., Magnetocardiography (MCG), Mag-

netoEncephaloGraphy (MEG)) at room temperature and can be used to analyze health

data on-chip. However, one of the significant challenges associated with these sensors is the

1/f noise, which is inherently present in such devices, interfering with the bio-signals of

5

interest. Standard linear filtering techniques are not suitable to denoise the signal, and we

need to develop a noise-reduction process that is both efficient and can be integrated with

the sensors. Hence, we employ Reservoir Computing (RC) for noise-removal from the MCG

signal to obtain the ECG signal while conserving computing resources. Simulation results

(low training time and memory requirements) demonstrate the RC model’s potential when

coupled with the sensors for continuous health monitoring. The efficiency of the proposed

method is also observed to be superior to the conventional methods. The encouraging ex-

perimental outcomes can be the basis for the physical RC implementation to combinedly

sense and analyze the biosignals at the ultra-edge nodes of the IoT environment.

Chapter 4 presents the considered challenge in the communication layer/plane of the

IoT to assist faster data transmission of massive IoT data (i.e., medical/health data, model

parameters from collaborative learning, and so on) generated from the ultra-edge IoT nodes.

The AI-aided solution can facilitate several kinds of data delivery, such as medical or health-

related data generated from biomedical and IoMT sensors, and also suitable for generic types

of data generated by typical IoT devices. Here, we focus on a significant research challenge

of spectrum scarcity and overloading for the next generation B5G networks. An AI-enabled

technique is designed for the predictive smart channel selection method to unravel the po-

tential hurdles associated with the dynamic channel conditions in the multi-band relay of

B5G networks. A lightweight Deep Learning (DL)-based approach is proposed to select

the appropriate channels. Our DL-based customized Convolutional Neural Network (CNN)

model demonstrated efficiency in determining the best channel to transmit and receive data

based on its quality. Two proactive channel assignment strategies referred to as controlled

and smart prediction schemes are employed to compare the performances of shallow and

deep variants of the CNN model. Our proposal is evaluated on multiple publicly available

datasets from diverse network systems. The proposed technique outperformed existing ma-

chine/deep learning-based methods by proactively predicting the quality of the available

channels and selecting the most suitable channels in multi-band relay systems. Thus, this

paper can be regarded as a pioneering research work to encourage researchers and indus-

try experts to consider adopting the proposed AI-based technique to enhance spectrum

and energy efficiency while offloading massive IoT/IoMT traffic in next-generation B5G

networks.

In chapter 5 and chapter 6, in the computing layer/plane of IoT, we shed light on the

need for lightweight AI analytics at the ultra-edge nodes for localized intelligence to facilitate

a more secure, faster, and localized intelligence to serve the rapidly growing surge of remote

health monitoring. Arrhythmia (i.e., irregular heartbeat) classification is considered as the

use-case for health monitoring. We press the need to go beyond the conventional cloud-based

AI analytics and explore how to incorporate intelligence into the ultra-edge IoT sensors for

obtaining more secure, faster, and localized on-chip intelligence to serve the rapidly growing

6

surge of remote health monitoring. In both chapters, to evaluate the proposals, we have

employed publicly available four different real datasets from PhysioNet, complying with the

ANSI/AAMI EC57:1998 standard. We considered four heartbeat types as class labels to

detect arrhythmia.

Thereby, chapter 5 focuses on designing a lightweight AI model meeting the demand

of low time and memory as the ultra-edge nodes are resource-constrained. Accordingly,

we have developed a deep learning-based lightweight custom CNN model for heartbeat

classification model defined as DL-LAC, which utilizes raw single-lead ECG without any

manual pre-processing (i.e., noise-filtering from ECG). The proposed AI method is compared

with traditional machine learning techniques and the DDE-based optimization technique.

Experimental results show that the proposal can detect arrhythmia with high efficiency

and low computational overhead (i.e., memory and time consumption), making it a viable

solution for integrating with the ultra-edge IoT nodes.

Finally, chapter 6 extends the proposed lightweight AI methodology from the previous

chapter to design a distributed collaborative online learning architecture for remote long-

time health monitoring. Here, we introduce an asynchronously updating federated learning

architecture (Async-FL) for mobile and deployable ultra-edge nodes to obtain the AI model’s

online learning capability while also maintaining privacy concerns. The simulation outcomes

reflect the proposal’s effectiveness in addressing the aforementioned research objective.

Lastly, we summarize and conclude the thesis and put forward some future research

directions in Chapter 7.

7

Chapter 2

Background

This chapter depicts an overview of the preliminaries of the three considered layers/planes

of IoT (i.e., sensing, communication, and computing). We discuss the existing theories and

methodologies that are fundamental to perceive the remaining parts of the thesis.

2.1 Preliminaries: IoT Sensing Layer . 7

2.2 Preliminaries: IoT Communication Layer 9

2.2.1 Traditional Cloud and Edge Architectures 9

2.2.2 Wireless Technologies in IoT . 11

2.3 Preliminaries: IoT Computing layer . 12

2.3.1 Fundamentals of Machine Learning Models 12

2.3.1.1 K-Nearest Neighbors . 12

2.3.1.2 Random Forest . 13

2.3.1.3 Linear Regression . 13

2.3.1.4 Auto Regression . 14

2.3.2 Fundamentals of Deep Learning Models 15

2.3.2.1 Artificial Neural Networks 15

2.3.2.2 Convolutional Neural Network 17

2.3.2.3 Reservoir Computing . 18

2.3.3 Federated Learning (FL) architecture 20

2.1 Preliminaries: IoT Sensing Layer

Smart world is a trending term that envisions lower energy consumption, excellent public

services, and better quality of life for human beings. The IoT and AI are compelling plat-

8

forms connecting various sensors around us to the Internet, providing ample opportunities

to fulfill smart living and smart healthcare. The first considered plane of IoT is the sensing

plane/layer where the sensors are adopted in such as way that these can be used to read

the health data, remove unwanted noise, and intelligently analyze with AI logic.

Medical and healthcare applications still linger behind with only a few applications,

such as glucometers, ECG management, cancer prediction, biomarker identification, blood

pressure monitoring, and so on. There is a need to develop more point-of-care diagnosis

and prognosis-based biosensors, helping experts diagnose diseases as early as possible by

making intelligent judgments to enhance decision-making. Smart biosensor devices will

allow people to live a smart and connected lifestyle from the healthcare perspective and

in many other aspects of life. The advancement of artificial intelligence, machine learning,

big data analytics, next-generation wireless network, and the IoT/IoMT have opened up

the research gap of integrating these enabling technologies with biosensors for real-time

on-premise and remote monitoring, diagnosis, prediction, and decision-making [10].

Traditional monitoring systems with limited sensors and wired communication can

merely collect fragmented data in the application domains. Furthermore, for IoT-based

health monitoring, conventional sensors without embedded intelligence are assumed to be

used to sense health-related data/parameters and then use a cloud-based centralized server

to conduct AI analytics. However, conventional IoT sensors lack the on-chip intelligence

that is essential for ultra-edge analytics. To address this challenge, IoT devices utilizing a

spintronic-technology-based can be considered as a suitable solution to obtain smart sensing

with intelligence for a prolonged period of time [11, 12]. Hence, this sub-section depicts a

conceptual understanding of the spintronic-based sensors and its potential for embedding

intelligence to obtain the envisioned ultra-edge logic-in-sensor concept.

A smart logic-in-sensor is a device that has integrated electronics, and it can perform

certain functions such as logic functions, two-way communications and possess localized

intelligence that make them proficient in making decisions. Sensing with traditional IoT

sensors or biomedical devices can be challenging for effective and easy remote/home mon-

itoring. For example, ECG cannot be applied effectively to monitor the cardiac state of

patients. Hence, new applications with new values in the IoT industry for cardiovascu-

lar monitoring need to be considered. In this regard, spintronic sensors using Magnetic

Tunnel Junction (MTJ) devices offer a decisive advantage in terms of high sensitivity and

portability and its ability to facilitate the ultra-edge logic-in-sensor architecture with em-

bedded intelligence. Spintronic sensors can provide information on the magnetic field and

magnetic-field-related parameters. The tunnel magneto-resistance (TMR) effect in MTJ

devices developed by the physicists has tremendous potential for sensing human heart and

brain signals [13].

The TMR sensor consists of an MTJ that operates at room temperature and has been

9

developed for spintronic devices such as magnetic random access memory. The sensor’s mag-

netic random access memory characteristic enables the potential of embedding lightweight

AI models for ultra-edge analytics. These sensors are envisioned to measure the data more

accurately with noise filtering capability and analyze data with high accuracy, which makes

them viable for ultra-edge analytics of medical data. Smart sensors are used for moni-

toring and to do the controlling mechanism in many industrial applications. One of the

significant differences between a logic-in-sensor and a conventional sensor is that the smart

sensor is tinier in size and faster than the traditional type, and it is more accurate too. As

the envisioned logic-in-sensors are smaller in size than a typical sensor, they are resource-

constrained. Thereby, when our goal is to integrate AI logic into these sensors and to

achieve that, the developed AI paradigm should be lightweight. In this vein, in this thesis,

we have investigated different AI modules which can be integrated with the ultra-edge smart

logic-in-sensors for diverse health monitoring use-cases.

2.2 Preliminaries: IoT Communication Layer

In this sub-section, we focus on the fundamental architectures and basics ideas behind the

communication plane of IoT. Firstly, the conventional concepts of the IoT communication

plane are discussed. Then we shed light on the necessity of intelligent resource allocation

for efficient data delivery of IoT communication plane.

2.2.1 Traditional Cloud and Edge Architectures

The IoT has immensely transformed the way businesses work in recent years, and the indus-

try has seen a massive shift from on-premise software to cloud computing. After emerging

during the mid-1990s, Cloud computing is a rapidly developing and ubiquitous computing

architecture for AI analytics and smart health analytics. This paradigm is the on-demand

availability of computer system resources, especially data storage (remote cloud storage)

and computing power, without direct user direct active management. One of the significant

advantages of cloud computing services is that an organization can avoid the upfront cost

and complexity of maintaining its own IT infrastructure and, instead of that, use a remote

computing platform to perform a particular task. In most cloud services, charges are pay-

per-use, based on remote dedicated servers for computing tasks, sometimes also supports

parallel computing. By storing and processing data using cloud technology, we have liber-

ated ourselves from the relentless trouble of accessing data in a limited manner. Due to

cloud computing’s emergence, additional features can be accessed on our smart devices and

IoT devices without pondering too much about investing in computing and memory capac-

ities. A broad range of industries, including biomedical informatics enterprises, can take

advantage of the new computing paradigm [14]. Existing research in the literature state

10

Cloud analytics-based paradigm

Data sensing

Cloud-based AI
analytics of ECG

Smart devices
Privacy concern, higher delay,

network bandwidth
consumption.

Moving towards the edge device

Data sensing

Embedding AI with smart devices

Better data privacy,
less delay and

bandwidth
consumption than

the cloud computing
paradigm.

AI

Figure 2.1: Conventional architectures for IoT-based AI analytics.

that cloud computing has the potential to overcome health data management, and analysis

challenges [15]. Some striking features of cloud computing are resource outsourcing, a large

number of machines, automated resource management, virtualization, Parallel computing,

etc. [14]. However, as depicted in the first part of Fig. 2.1, cloud-based AI analytics has

some challenges, and it is not suitable for remote health monitoring for a long time, espe-

cially when the number of subjects is rising. For the cloud-based framework, the health

data need to deliver over to the remote server via the internet which causes the privacy

concern, network bandwidth consumption, and massive delay.

To address the challenges of the cloud paradigm, the researchers and industry experts

focus on edge and fog computing, which brings the cloud’s capabilities close to the end-user

or end-device. There are debates around edge computing and fog computing; however,

both have almost similar objectives. Both edge and fog paradigms shift the AI analytics

of data closer to the source of data generation. The main focus of doing so is to reduce

the amount of data sent to the remote cloud server. These paradigms decrease delay or

latency and enhance system response time, especially in remote time-sensitive tasks such as

health monitoring. One of the main differences is that fog computing can include running

intelligence on the end-device such as IoT devices. Moving computing power closer to the

edge of the network will help degrade cost and enhance security.

To sum up, the main difference between the IoT devices communicating with a remote

cloud server is that the bi-directional communication with a cloud server can take up to

several minutes, while it may only take up to a few milliseconds when interacting with AI

11

analytics placed near the device. While cloud analytics still remains the primary choice for

storing, analyzing, and processing data, different organizations are gradually progressing

towards edge and fog computing-based intelligence to enhance data privacy and reduce

costs (i.e., bandwidth, delay overhead). Keeping these fundamental architectures and their

challenges in mind, we focus on the compelling necessity of bringing lightweight AI analytics

from the cloud to the ultra-edge sensor itself to analyze the private health data where the

data will be generated.

2.2.2 Wireless Technologies in IoT

IoT-aided fifth-generation (5G) and beyond 5G (B5G) system will be a game-changer in the

future generation [16]. It will open a gateway for new wireless structures and smart services.

Existing cellular network LTE (4G) will not be sufficient and efficient to meet the demands

of multiple device connectivity, high data rate, more bandwidth, low-latency Quality of

Service (QoS) [17]. The IoT encompasses a large number of seemingly connected devices

around us, which includes all the smart devices, machines, flying devices such as Unmanned

aerial vehicles (UAVs). IoT interconnects an abundance of devices to a network that readily

shares information. Since IoT is a widely diverse and multifaceted realm, a one-size-fits-all

communication solution cannot efficiently accommodate the communication aspect, espe-

cially in the case of the massive data load generated from remote health monitoring using

IoT. While all IoT devices transmit and receive information via wireless technologies, they

don’t do it identically using the same band or channel. There are different options for

connectivity, and some are better suited to specific applications than others. Factors like

battery life, range of coverage, power requirements, and throughput must all be taken into

account when deciding which option to pick for any particular situation. Furthermore, the

IoT incorporates multiple long-range, short-range, and personal area wireless networks.

Along with other IoT sectors, the healthcare sector is generating a tremendous amount

of data due to the leap in remote monitoring of numerous subjects, and it is expected to

grow in the future as well. These massive IoT data needs to be delivered to the server

in terms of a cloud-based centralized analytics approach, or the local training knowledge

needs to be shared with the surrounding IoT nodes for distributed online training. With the

emergence of 5G, among diverse available Radio Frequency (RF)-based options, some of the

significant evolving wireless technologies in the IoT are ZigBee, Z-wave, LPWAN, Bluetooth

Low Energy (BLE), Radio Frequency Identification (RFID), LoRa, and the different versions

of Wi-Fi (i.e., 2.4 GHz and 5 GHz). All of these enabling wireless technologies for the IoT

communication layer vary in range, power consumption, and data rate [18]. Hence, to

maximize throughput and minimize delay, among several other challenges of IoT wireless

communication, one of the striking challenges of an enhanced IoT experience is to make use

of an AI-empowered lightweight model for intelligent selection of the channel among the

12

diverse range of channels and bands.

2.3 Preliminaries: IoT Computing layer

This sub-section depicts the fundamental ideas of diverse AI-enabled methods exploited in

the remaining chapters of the thesis for tackling challenges in different smart health use-

cases. Firstly, we discuss the traditional machine learning-based techniques, and then we

shed light on the neural network and deep learning techniques adopted in the thesis.

2.3.1 Fundamentals of Machine Learning Models

Here, we discuss the fundamentals of some simple ML techniques adopted in the later chap-

ter of the thesis for the purpose of health data analytics (i.e., classification) and intelligent

delivery of health data by prediction network’s channel quality. The ML techniques dis-

cussed in the following are under the supervised machine learning subset, requiring historical

data in the learning phase.

2.3.1.1 K-Nearest Neighbors

K Nearest Neighbour (KNN) algorithm [19] is a lazy and simple machine learning algorithm.

KNN can be used for both classification and regression predictive problems. However, it is

more widely used in classification problems in different domains. In KNN classification, the

output is a class member. An instance is classified by a majority vote of its neighbors, with

the object being assigned to the class most common among its K nearest neighbors. The

neighbors are found out by calculating the distance from a test instance and all the train-

ing instances. Different measures can be used for calculating distance, such as Euclidean

distance, Manhattan distance, Minkowski distance, Hamming distance, etc. The value of

K is a generally positive integer and usually small. If K = 1, then the object is directly

appointed to that individual nearest neighbor’s class. However, if the value of K = n where

n is the number of instances in the training data, then the algorithm becomes an eager

learning algorithm as it will explore all the examples. Traditionally, hyperparameter tuning

is conducted for selecting the best value of K. The drawback of the KNN method is that

the prediction time is relatively costly as it finds the distance between one point and all

other data points. Some of the conventional distance measures (i.e., Minkowski distance,

Euclidean distance) can be denoted as follows in Eq. 2.1 and 2.2:

dM (x, y) =

(
n∑
i=1

|xi − yi|p
)1/p

(2.1)

13

dE(x, y) =

√√√√ n∑
i=1

(xi − yi)2 (2.2)

2.3.1.2 Random Forest

Random Frest (RF) is a supervised ensemble learning method for both classification and

regression. Multiple decision trees are formed at the time of training, and a bootstrap

sample technique is used for outputting the class that is the mode of the classes of the

individual trees for classification objectives. A large number of nearly uncorrelated trees

operate as a combination, and a set of decision trees form a randomly selected subset of the

training set. All the leaf nodes of the trees are designated with a class. Then it aggregates

the majorities from all the trees to pick the final label of the test instance. In the RF

algorithm, measuring the quality of a split can be calculated utilizing gini impurity or

entropy. The gini impurity and entropy can be expressed as the Eq. 2.3 and 2.4:

Gini =

c∑
i=0

p2j (2.3)

Entropy =

c∑
i=0

pj log2 pj (2.4)

Here, c is expressing the number of classes in the considered problem, and pj is the

probability of the class j. Computationally, entropy is more complicated since it uses

logarithms, and consequently, the calculation of the Gini impurity will be more suitable for

resource-constrained edge nodes.

The performance of the RF algorithm is related to the correlation among trees and

the strength of the individual trees. If there is a more significant correlation among the

trees, it will decrease the error, whereas each tree’s strength will increase its performance.

One other important property of the RF is that they are instrumental when determining

feature importance as essential features tend to be at the top of each tree. Therefore, the

importance score of features can be calculated after applying the RF classifier. However,

one of the drawbacks of the RF algorithm is that, in the inference phase, it is slower than

many ML algorithms in creating predictions, which can be a challenge while deploying the

model with edge nodes for health data analytics.

2.3.1.3 Linear Regression

Linear Regression (LR) is also a supervised ML algorithm that is mainly utilized to predict

or forecast the value of an attribute by modeling the relationship between a scalar response

14

and one or multiple variables. A continuous range of values is considered for prediction

rather than classifying them into different categories. LR model assumes a linear relation-

ship between the input variables and the output variable. Mainly there are two main types

of LR technique: Simple regression and Multivariable regression. Denoted in Eq. 2.5, the

simple LR algorithm employs a conventional slope-intercept form, where m (slope) and b

(bias) are the variables that the algorithm will learn and generate accurate predictions with

minimum error. Here, X represents the input data, and y is the variable to predict.

y = mX + b (2.5)

When there are multiple input variables, it is referred to as multiple linear regression.

The Eq. 2.6 denotes the expression of multiple linear regression. Here wi represents the

coefficients or weights that the model will try to learn. The variables a, b, and c represent

the attributes/feature or distinct pieces of information about each observation.

f(a, b, c) = w0a+ w1b+ w2c (2.6)

The simple LR model can be interpreted graphically as a best-fit line between the data

sample. In contrast, the multiple LR can be depicted as a plane (in 2 dimensions) or a

hyperplane (in higher dimensions). Several procedures can be utilized to train the linear

regression equation from data, and the most common is Ordinary Least Squares. The

Ordinary Least Squares procedure attempts to minimize the sum of the squared residuals,

which means that for a regression line through the data, we calculate the distance from each

data point to the regression line, square it, and sum all of the squared errors collectively.

2.3.1.4 Auto Regression

A statistical model is autoregressive (AR) if it predicts future values based on past values.

An AR model might seek to predict the relay network’s channel quality utilizing past

samples in order to deliver health-related data. The order of an AR is the number of

prior values used to predict the present. In terms of multiple linear regression, the variable

of interest is predicted using linear combinations of values, whereas, in an AR model, we

forecast the variable of interest using a linear combination of historical data of the attributes.

In a multiple regression model, we forecast the variable of interest using a linear combi-

nation of predictors. In an autoregression model, we forecast the variable of interest using

a linear combination of the variable’s past values. The term autoregression indicates that

it is a regression of the variable against itself. Thus, an autoregressive model of order p can

be written as Eq. 2.7.

yt = c+ β1yt−1 + β2yt−2 + · · ·+ βpyt−p + εt (2.7)

15

Here εt is white noise. This model acts similar to a multiple regression but with lagged

values of yt as predictors. We refer to this as an AR(p) model, an autoregressive model of

order p. An AR(1) autoregressive process is adopted when the current value is based on

the immediately preceding value. In an AR(2) method, the current value is predicted based

on the previous two values, which means the value at time t is predicted from the values at

times t− 1 and t− 2.

2.3.2 Fundamentals of Deep Learning Models

This sub-section illustrates some fundamental ideas behind Neural Networks (NN) and Deep

Learning (DL). NN is a sub-category of machine learning, and the deep learning sub-field

mainly originated from the NN as well. Neural networks and deep learning methods can

be categorized into three categories such as supervised, semi-supervised, and unsupervised

learning. Additionally, Reinforcement Learning (RL) is also considered another type of

DL/NN approach. The NN-based deep learning approach is also called universal learning

because we can apply it to almost any application domain [20]. The DL can be considered

as a viable approach when we have a lot of data in hand to analyze. Therefore, these

are appropriate techniques to solve diverse problems in the computing plane of IoT that

generates a tremendous amount of data continuously. Among various available variations

of the DL algorithms, in the following chapters, we have mainly utilized diverse custom

Artificial Neural Network (ANN), Convolutional Neural Network (CNN), and Echo State

Network (ESN)-based Reservoir Computing (RC) technique in order to propose solutions

to the selected problems in the mentioned three IoT planes.

2.3.2.1 Artificial Neural Networks

Artificial Neural Networks (ANN) are mathematical models typically designed and utilized

to solve diverse problems such as pattern recognition, autonomous control, and smart health

through learning and a vast amount of historical data. Many organizations employ neural

networks to solve problems in multiple fields, and the economic sector traditionally falls

under the operations research domain [21]. Similar to the biological neural network, the

basic building block of an ANN is called an artificial neuron, also referred to as a node.

Hence, ANN can be considered an information handler model comparable to the human

brain’s biological nervous system function.

Fig. 2.2 exhibits a high-level architecture of an ANN model. Typically, an ANN model

consists of input, hidden, and output layers. The input layers can have up to n neurons

or nodes, which is equal to the number of features or attributes. In the hidden layers,

there can be multiple hidden layers in between the input and output layers. The output

layer contains n number of nodes in terms of the typical classification task, where n is

16

Input layer Hidden layers Output layer

.

.

.

1𝑠𝑡 input

2𝑛𝑑 input

𝑛𝑡ℎ input

.

.

.

1𝑠𝑡 output

2𝑛𝑑 output

𝑛𝑡ℎ output

.

.

.

.

.

.

Figure 2.2: Architecture of a typical ANN model.

the number of classes. In terms of regression/prediction tasks, usually, the output layer

contains only one node/neuron. The hidden layers are independent of one another; that is,

a specific hidden layer can have an arbitrary number of neurons or nodes. Generally, the

number of designed hidden nodes is higher than those of input nodes/neurons. In order to

determine the output of a node, firstly, the weighted sum of all the inputs, weighted by the

weights of the connections from the information of the node, is calculated. A bias term is

added to this sum and then passed through an activation function to produce the output.

As most real-world problems are non-linear in the pattern, the activation functions are

applied to introduce non-linearity in the model. Various optimizers (i.e., gradient descent-

based optimizers) are adopted to learn the weights or model parameters. The weights are

adjusted by the backpropagation technique until the end of the learning phase. We can use

Eq. 2.8 to summarize the computation of the ANN model:

OutputANN = f

(
n∑
i=0

wixi + b

)
(2.8)

Here. wi is the weight of the input xi, b is the bias term, n is the number of inputs for the

node, and f(.) denotes the activation function. Typically, the weights for all the nodes are

initialized randomly. In the forward pass, the element-wise non-linear activation function is

applied to the matrix dot products. Some popular and frequently-used activation functions

can be expressed as follows:

sigmoid(x) =
1

1 + e−x
(2.9)

17

tanh(x) =
ex − e−x

ex + e−x
(2.10)

ReLU(x) = max(0, x) (2.11)

ELU(x) =

{
x if x > 0

α (ex − 1) if x < 0
(2.12)

Here, Eq. 2.9, 2.10, 2.11, and 2.12, refers to Sigmoid, Tanh, Rectified Linear Unit

(ReLU), and Exponential Linear Unit (ELU), respectively, activation function equations

applied on input x. Here, in Eq. 2.9, e is the Euler’s number, and in Eq. 2.12, α is the

scale for the negative factor.

In summary, ANN is a very flexible yet compelling DL model. ANN can be customized

to approximate any complex function for getting an insight into any real-world problem.

With the emergence of massive health-related data, the ANN can be considered a robust

AI-based solution to many use-cases of both classification and prediction tasks of health

data to achieve a smart health system.

2.3.2.2 Convolutional Neural Network

Recently, one of the most popular categories of deep NNs is the Convolutional Neural

Network (CNN). CNN is a typical NN that is extended across space via sharing weights.

Popular variations of the CNN are 1-D and 2-D CNN. The 1-D CNNs are generally cus-

tomized to analyze tabular and time-series data, whereas the 2-D CNNs are widely adopted

for pattern detection from image data. As 1-D CNN requires significantly less computa-

tional complexity than 2-D CNN, it is more suitable for lightweight real-time applications

where resources are limited, such as the resource-hungry IoT sensors. A standard CNN

has multiple layers, including the convolutional layers, sub-sampling layers, regularization

layers, and fully-connected/dense layers. The dense layers and convolutional layers have

parameters for training/learning; however, regularization layers and pooling do not have

parameters. Various studies have concluded that CNN illustrates excellent performance in

a diverse range of AI tasks [22].

The typical architecture of CNNs consists of two fundamental parts: the feature ex-

tractor and the classification part. In the feature extraction layers, the previous layer’s

outcome is used as the input of a particular layer, and the result of that layer is then passed

to the next layer. Usually, the lower level or shallow layers are responsible for extracting

higher-level features from the input data. With the propagation to the higher-level layers or

the deep layers, the dimensions of the features are usually decreased depending on the size

of the kernel size of the convolution. The max-pooling layers are also crucial for downsam-

18

pling the dimension of the features, hence, reducing the computation. As the sub-sampling

layer, the max and average pooling are typically adopted to take the maximum and average

values, respectively. After several layers of convolutional and sub-sampling layers, usually

fully-connected/dense layers are used to conduct high-level reasoning. In the dense layers,

like typical NNs, each neuron is connected to every other neuron to generate global semantic

information. However, an atomic dimensioned (i.e., 1x1 Conv) convolution layer can replace

the fully-connected layer. The last layer of CNNs is an output layer. For classification tasks,

the softmax activation function is commonly employed, and for regression/prediction tasks,

the linear and sigmoid activation function is mostly applied [23].

In order to design a robust CNN model, we need to determine optimal values for dif-

ferent hyperparameters. Typically, in different layers of the CNN architecture, we need

to define a number of hyperparameters before the learning phase begins. Firstly, we have

the number of layers used in the CNN model, which determines how deep or shallow a

particular model is. In the convolution layers, typically, the kernel size and the number

of filters are the hyperparameters. The hyperparameter of the sub-sampling layer is usu-

ally the pool size for reducing the size of features. The regularization layer (i.e., dropout

layer) is often used in the CNN architecture to avoid overfitting. The dropout rate is the

general hyperparameter in the dropout layer. Other than these hyperparameters, we also

have a few other vital hyperparameter needed in the CNN model, such as the activation

function, optimizer, learning rate, batch size, and the number of epochs [24]. By finding

the appropriate values for the diverse set of hyperparameters of the CNN model, we can

control the trade-off between the performance (i.e., accuracy) and computation burden (i.e.,

memory and time requirements) of the resource-constrained IoT devices in order to analyze

health data. Hence, considering this trade-off, in the following chapter of the thesis, we

have emphasized the hyperparameter optimization for constructing suitable custom CNN

models to analyze medical data and efficient health data transmission.

2.3.2.3 Reservoir Computing

The Reservoir Computing (RC) [25] is closely related to Echo State Network (ESN) [26], and

Liquid State Machine (LSM) [27] has emerged as a unique variant of a Recurrent Neural

Networks (RNN). Unlike traditional DL/NN methods, only the output layer is trained

rather than the entire network’s weights in terms of the RC approach. The RC-based

paradigm can be considered a great alternative to gradient descent techniques for training

a recurrent neural network, as this requires only a simplistic and effective least-squares

estimation rather than the more expensive fully non-linear optimization needed with fully

training an RNN. In terms of the RC method, the learning/training is conducted only at

the readout stage, as the reservoir dynamics are kept fixed. Surprisingly, in spite of being a

straightforward method, the forecasting or predictive capacity of the RC technique can still

19

be quite robust even for complex, chaotic problems. The RC-based approach has gained

popularity for its easy training process and its ability to deal with temporal data.

The main idea of RC lies in leveraging a fixed non-linear system of higher dimensions

to obtain a rich non-linear representation of the inputs. After this mapping, a simplistic

readout layer is employed to harvest the reservoir’s state and train it to the desired output.

In principle, given a complex enough system, this architecture should be competent in any

computation. The overall RC structure has two main components or modules: Reservoir

and Readout.

• Reservoirs: In the first part of the RC system, we have the reservoirs with fixed weights

acting as black-box models. The reservoir in the reservoir computing paradigm has

two properties: it must be made up of individual, non-linear units, and it should be

capable of storing data. The reservoir module can have several units or nodes, and

for implementation, it can be considered as a hyperparameter that needs to be tuned

in order to design a robust model.

• Readout: The second part is known as readout, which is connected by a set of weights

to the reservoir units. The readout performs a linear transformation on the reservoir’s

output, and the weights are trained by analyzing the spatiotemporal patterns of the

reservoir after excitation by known inputs and utilizing a training method such as

linear regression or a ridge regression [28].

One of the vital aspects to consider during the construction of an RC model is the

activation function to characterize the reservoir’s nodes’ behavior. Typically, various types

of activation functions, starting from a simple linear model to more elaborated non-linear

ones, such as sigmoid function, have been employed in solving diverse problems using the RC

method. The fundamental characteristic of RC is that the input weights and the weights of

the recurrent model within the reservoir are not trained; instead, only the readout weights

are learned in the learning phase. Besides the striking efficiency of training algorithms, some

specific challenges are associated with the ESN-based RC method for solving a particular

task. The specification of selecting the most suitable parameters for the RC model, such as

input, reservoir connection, spectral radius, and the nodes’ connectivity status, need to be

cautiously selected for designing a robust model [29].

Furthermore, each reservoir node characteristic timescale and decay rate of information

decide the length of data in the time domain. However, in some cases, it can cause similar

obstacles to deep neural networks where the number of layers generates identical restric-

tions. Thereby, we need to be careful while designing the RC model to overcome these

challenges. Along with the virtual reservoirs, the RC architecture is distinctively viable

for hardware implementations using intelligent sensors such as spintronic technology-based

20

sensors. Thereby, solving resource-constrained complications, such as developing a smart

health monitoring system by exploiting intelligent IoT sensors, can be accomplished by RC

systems, as it meets the demands for low training cost and real-time processing in these

applications.

2.3.3 Federated Learning (FL) architecture

Conventional ML/DL models comprise a central cloud server that hosts the trained model

to make medical decisions. A drawback of this architecture is that the private data collected

by local devices and sensors are sent back to the remote cloud server for processing and

finally returned to the devices. Hence, this round-trip manner of AI analytics limits the

ability to learn in real-time. To overcome this issue of traditional computing architecture,

a distributed collaborative learning approach can be a viable alternate. Federated learning

(FL) is an approach that downloads the current AI model and computes an updated model

at the device using the edge node’s local and private data (i.e., smart devices or sensors).

Afterward, these local AI models are then sent to the cloud server, where they are aggre-

gated iteratively, and an improved global AI model is sent back to the edge nodes. The

term federated learning task is a loose federation of participating devices/sensors (typically

referred to as clients) regulated by a central server. Each client holds the local/private data

that is never transferred to the server. Alternatively, each client computes an upgrade to

the current global model kept-up by the cloud server [30].

The distributed FL architecture presents us with a number of unique features that are

crucial for many IoT-based sectors and remote health monitoring. As the FL architecture

occurs on the device/sensor level, it enables real-time AI decision-making. Thereby, the

time-delay usually occurs for the traditional approach because sending raw private data to

the cloud is minimized via sharing only the model parameters or the knowledge gained from

the data. Furthermore, since the local AI models are on the edge node, the prediction pro-

cess works even when there is no internet connectivity available, making it highly suitable

for remote health monitoring for a long time. However, along with various striking pros of

the FL architecture, some challenges are associated with it. Communication is a critical

issue because, in order to train an AI model using user’s local data, it is essential to employ

an intelligent communication method that can reduce the total number of required commu-

nication rounds and obtain faster convergence. Also, the FL architecture needs to be able

to handle dropped devices in the network because, in a dynamically changing environment,

all the devices/sensors may not participate in the learning process for the same amount of

time.

21

Chapter 3

Noise-Removal from

Spectrally-Similar Signals Using

Reservoir Computing for MCG

Monitoring

Continuous low-rate monitoring is an important IoT application, which requires high-

fidelity in observing signals with low frequency. However, most sensors exhibit noise that is

inversely-proportional to spectral frequency (1/f noise). Because both the relevant signal

and noise share the same spectral properties, standard linear filtering techniques cannot be

used. We are looking into a special application for remote healthcare of the magnetic field

sensing of cardiac activity, magnetocardiography (MCG). For such an application, we need

to develop a noise separation method, that is also resource-efficient. Previously, we demon-

strated AI-based removal of 1/f noise in MCG by a convolutional neural network coupled

with gated recurrent units. However, it needs a large amount of data for training, requir-

ing significant training time and computational power. In this work, we employ reservoir

computing (RC) for noise-removal, while being conservative in computing resources.

3.1 Introduction . 22

3.2 Preliminaries of Spintronic Sensors For Embedding Edge Intelligence and

Problem Description . 24

3.3 Envisioned RC-based Technique for Noise-Removal 25

3.4 Performance Evaluation . 26

3.4.1 Data Preparation . 27

22

3.4.2 Simulation Parameters . 28

3.4.3 Results and Discussion . 29

3.5 Summary . 32

3.1 Introduction

Recently, with the massive adoption of the IoT (Internet of Things) sensors and wearable

devices, there has been a significant push toward collecting and analyzing health data of

patients, elderly citizens, athletes, and ordinary users with an aim to enhance the everyday

quality of life of humans. Cardiac health is a crucial concern in both developed and develop-

ing countries, and numerous smartphone-based applications are now available to passively

monitor the heartbeat and even electrocardiography (ECG). However, the ECG data sensing

using these commodity devices are not accurate compared to clinical-grade ECG machines,

which are intrusive in general due to the need to place electrodes or leads on the human

body. During the ongoing pandemic of COVID-19, the continuous remote monitoring of

patients with cardiovascular conditions is needed to predict any complications, especially

that care will be limited in an overwhelmed medical system.

Therefore, we need a cardiac sensing technology that is portable, non-intrusive, and com-

patible with IoT technologies. In this vein, an earlier work [13] demonstrated the acquisition

of magnetocardiography (MCG) signals using spintronic magnetic tunnel junction (MTJ)

sensors that operate at room temperature. Therefore, our spintronics-based monitoring of

MCG is a high-impact solution for accurately monitoring the cardiac health of the masses.

However, there are two interlinked challenges, and in Fig. 3.1 we propose to combine MTJ

sensors [11] with AI-based signal and data analysis at the sensing node. The first challenge

is that sending unprocessed data consumes a lot of communication bandwidth and power

and constitutes a privacy risk. The second is the presence of noise, which requires cleaning

before transmission. While MCG does not require contacting leads, it typically requires

a magnetic-shielding to avoid environmental magnetic noise. Furthermore, the magnetic

sensors themselves produce noise that is inversely proportional to spectral frequency (1/f

noise). The 1/f noise can be seen as correlated fluctuations at short time scales, which can

obscure the similar dynamics of the cardiac activity [31]. Therefore, we need lightweight

local AI solutions that can remove noise and monitor cardiac irregularities, such as arrhyth-

mia, ischemia, and so forth. In this work, we are focusing on the more challenging task of

noise-removal.

In our previous work [11], AI noise filtering based on a convolutional neural network

(CNN) model with gated recurrent units (GRUs) reduced 1/f noise power by ten times com-

pared to the moving average filtering. However, such a model required extensive training,

23

Cardiac magnetic
field (10-12T)

MTJ sensor
array

MTJ sensor
array + AI

Cloud for
medical

AI analytics

High delay

High network
bandwidth

Low delay

Low network
bandwidth

Early warning and emergency
notification for cardiac

irregularities (arrhythmia,
heart attack, ischemia, etc)

User terminal

User terminal

IoT sensor

MCG

Smart society
use-cases

Figure 3.1: Continuous MCG monitoring with conventional and proposed paradigms with-
out and with AI model for smart and localized noise processing and medical analytics using
spintronic devices.

and in unpredictable environments, it may require retraining in the cloud. This repeated

process is both time-consuming and costly. The excellent performance and training chal-

lenge come from the recurrent part of the model. The recurrent neural networks (RNN)

can process the temporal context of sensor information and deal with multiple information

from different sources, but RNN training is expensive and complex [32]. Recently, a subset

of RNNs has come to prominence, called “Reservoir Computing” (RC) [33]. The reservoir

here refers to a large network of interconnected state variables that are non-linear to their

excitation with fixed connection weights as depicted in Fig. 3.2, akin to the dynamics of

waves in a water tank, magnetization dynamics, non-linear optics, etc.. RC has been in-

vestigated intensively in many spin, optical, memristor systems [28]. The rich dynamics of

the RC map temporal data sequences into different trajectories in a high-dimensional space

(hyperspace). Then, the training task is only limited to a readout layer to produce useful

classifications or inferences from the reservoir’s transient states. In this work, we show how

to utilize RC to remove 1/f noise from the MCG signal. Using computer-based simulations,

we demonstrate the RC method’s effectiveness in terms of accuracy, memory requirement,

and execution time.

The remainder of the chapter is organized as follows. Section 3.2 presents preliminar-

ies of spintronic sensors for embedding edge intelligence and describes the fundamental

problem considered in this work. Next, in section 3.3, we provide an RC-based 1/f noise

minimization of the envisioned smart IoT sensor. The performance of our proposed reservoir

computing methodology is evaluated and compared with existing techniques in section 3.4.

Finally, the chapter is concluded in section 3.5.

24

3.2 Preliminaries of Spintronic Sensors For Embedding Edge

Intelligence and Problem Description

The MTJ sensors are made from two ferromagnetic metals (FMs) separated by an insu-

lating tunneling barrier (e.g., magnesium oxide). The application of an external magnetic

field (H) changes the magnetization angles of the FMs. Owing to the tunneling magnetore-

sistance effect (TMR), the resistance of MTJs depends linearly on H. Thus, MTJ sensors

are simple to measure and can be combined with the integrated circuit fabrication process.

MTJ sensors and structures are the main drivers of spintronics research and information

storage applications, see Ref. [34] for a review. In the next generation networks, embed-

ded edge intelligence is regarded as a crucial enabler for reducing bandwidth use, energy

consumption, and end-to-end communication delay for network nodes [35]. Because embed-

ding intelligence onto typically resource-constrained IoT nodes to facilitate edge computing

is challenging [35], the implementation of the theoretically appealing logic-in-sensor concept

still remains illusive to implementation at a mass-scale.

The main challenge for sensors is the noise at the low-frequency side of the spectrum.

The MTJ sensor’s noise is dominated by a 1/f character, similar to many other systems [36].

According to [37], this issue worsens in the high sensitivity area. The power spectral density

(PSD) of low-frequency noise can be represented as [38]:

Sv ∝
χ

fβ
, (3.1)

where χ is related to the sensor sensitivity, f is the spectral frequency, and β is the exponent

of noise spectrum.

The cardiac dynamics are slowly-varying and stochastic. Therefore, the signal-of-interest

and noise share the same 1/f character, which introduces a problem of separating two

chaotic sources. The linear time-invariant filters, such as the moving average filtering,

are traditionally used for noise-removal but cannot separate cardiac activity noise with

considerable efficiency. The deep learning (DL) filtering in our earlier work [11] showed a 10-

times decrease in noise power over the moving average technique. However, the retraining

overhead could be a potential bottleneck for the practical deployment of deep learning

models to the resource-constrained IoT devices for monitoring time-series signals such as

MCG. Therefore, the challenge in this research is to model an alternative solution, which

is practical as well as lightweight, to significantly reduce the training time to mitigate the

1/f noise and provide the corresponding ECG from the noisy MCG with high accuracy.

We propose an RC technique based on Echo State Network (ESN) for predicting the ECG

signal from the sensed MCG signal.

25

3.3 Envisioned RC-based Technique for Noise-Removal

As a proposed noise filtering technique, we have adopted the ESN-based RC, which is

considered a subset of RNNs with randomly fixed connectivity weights [33]. The RC-

based noise filtering and ECG estimating method consists of a reservoir part represented as

sparsely connected units, and a readout part depicted as a regression paradigm. This ESN-

based RC method is suited for temporal or sequential data processing at a low cost, making

it a viable technique for noise filtering from the MCG signal to predict the corresponding

ECG. The reservoir parts are fixed in the learning phase, and only the readout part is

trained [39]. Hence, this fast learning method can result in lower requirements during the

training/learning phase [40]. This characteristic of the RC-based noise filtering makes it

feasible for hardware implementation utilizing physical systems such as the spintronic MTJ

sensors.

The ESN-based RC method maps input MCG signals into higher dimensional space to

achieve a deep non-linear representation of the input. A linear combination between the

high dimensional space and the readout units is learned for efficient noise filtering inputs

in a lightweight manner. The following eqs. 3.2, 3.3 depict the states of the reservoir nodes

and the output nodes:

xt+1 = xt(1− α) + Ω(Wiut +Wrxt)α (3.2)

yt = Wo × xt (3.3)

Here, Wi represents the connection weights between the input and the reservoir units, Wr

represents the weights of the recurrent connections within the reservoir, which are not

trained, and the Wo indicates the readout weights which are trained during the learn-

ing/training phase. The discrete time-step values are taken to be, (t = 1, 2, 3, · · ·). At the

time t, the state of each reservoir is represented by xt, the state of the output vector by yt,

and the input vector by ut. The element-wise activation function is denoted as Ω, and α

indicates the leaking rate. Here, the leaking rate (α) regulates the update frequency of the

states.

Algorithm 1 depicts the workflow of selecting the best RC architecture in the train-

ing/learning phase and then utilizing the model to predict unknown data in the test/inference

phase. The algorithm’s input section demonstrates the details of each of the inputs pro-

vided to the algorithm. Instead of utilizing the whole MCG cycle as input to the RC model,

smaller segments were used [11], each with a segment size of λ MCG samples. Therefore,

the pre-processed dataset, denoted by Xdata, contains a collection of λ MCG samples as

input features, and a single, corresponding ECG sample is the output label.

The algorithm begins with initializing the expected parameters in steps 1 and 2. In

26

Algorithm 1: Proposed RC-based training algorithm for 1/f noise filtering at
MTJ-based sensor for automated MCG-ECG mapping.

Input : Xdata (pre-processed dataset containing multiple instances of the schema
{λ MCG samples as input features : 1 corresponding ECG sample as
output}), U (the set of number of reservoir units), Ω (activation
function), α (leaking rate)

Output: Mt (the parameters of the selected model)
1 Mt ← ∅
2 εmin ← ∞
3 Xtrain, Xtest ← prepare the training and test data, respectively, from Xdata based

on the split ratios (strain and stest, respectively)
4 foreach index i = 1 to |U | do
5 Mi ← load the RC model employing U [i], Ω, α
6 train the model (Mi) for Xtrain employing Eqs. (3.2) and (3.3)
7 εi ← compute performance of model (Mi) utilizing Xtest

8 if (εi < εmin) then
9 εmin ← εi

10 Mt ← Mi

11 end

12 end
13 save the model parameters of the selected model (Mt)
14 return Mt

step 3, the pre-defined splitting ratios (strain and stest) are employed to distribute the

Xdata for training and test phases. From steps 4 to 12, the algorithm identifies the best

performing RC architecture by adopting a varying number of reservoir units (U). The

ith RC model is loaded and trained in step 5 and 6 using Xtrain. Afterward, the model’s

performance is evaluated in step 7, employing Xtest. As an initial performance indicator,

we have considered the prediction error in Root Mean Square Error (RMSE) [41]. The ith

model’s performance is checked with that of the previously evaluated models in steps 8 to

11 and updated accordingly. In step 13, the selected model (Mt) is saved. Finally, the

selected model (Mt) is returned in step 14. With this trained model, the 1/f noise filtering

for MCG-ECG mapping can be conducted at the MTJ sensor in an online manner.

3.4 Performance Evaluation

In this section, we evaluate the performance of our reservoir computing proposal and com-

pare it with the traditional moving average (MA) filtering technique and the deep learning

(DL) method described in [11]. We have adopted three different performance indicators

to evaluate the proposed system with the MA and DL techniques, which give us a strong

understanding of the effectiveness of the proposed approach. Firstly, we demonstrate the

27

RC Predicted
ECG

Reservoir
(spintronic sensors acting as

physical reservoir nodes)

.

.

.

.

.

.

Sensed
MCG

Input layer Output layer

Conceptualized logic-in-sensor setup which seamlessly
integrates spintronics device-based MCG sensing and

physical reservoir computing (RC)

Random/fixed
weight

Trained/linear
weight

Notations

Figure 3.2: Reservoir computing (RC) model for MCG noise-filtering to obtain the ECG
for continuous cardiac activities monitoring.

noise-filtered signal result visually to ensure that the proposed method can resemble the

original ECG signal. Then, we determine the Root Mean Squared Error (RMSE) to cal-

culate the error in signal prediction by each technique. Lastly, we illustrate the filtering

efficiency in the power spectral density of the remaining noise after prediction.

3.4.1 Data Preparation

For performance comparison, we used the same data preparation methods as our previous

work [11]. We synthesized MCG cycles from ECG cycles available in the open PTB Di-

agnostic Database [42–44], using the data preparation setup from our earlier work in [11].

We used the ECG traces from lead II of the healthy individuals. They were divided into

single cardiac cycles, starting from the R peak to the next QRS complex, with the following

sequence (RSTPQRS). The traces are upsampled to 3008 sample points without padded

zeros, corresponding to a sampling frequency (fs) of 2000 Hz. Then, the preconditioned

ECG cycle is added to numerically-generated 1/f noise. We generated 100 MCG cycles with

28

0 500 1000 1500 2000 2500 3000
Sample…number

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

M
ag

ni
tu

de
…

[a
rb

.…
un

it.
] ECG

MCG
MA
DL

RC

Figure 3.3: Performance evaluation demonstrating the original ECG cycle, synthetic noisy
MCG cycle used as input, comparison between conventional moving average method, DL-
based method, and proposed RC-based (RC-10) approach to process and remove the input
signal’s noise. The curves are vertically shifted for clarity.

different noise sequences for each ECG cycle. We generated the 1/f noise from a white noise

floor of PSD = 10−18V 2/Hz, based on the characters from real measurements [13]. The knee

frequency between 1/f and white noise is set at fk = 250 Hz = 0.125fs. After the data

collection and pre-processing, the MCG and original ECG cycles are used to train the RC

model depicted in Fig. 3.2.

3.4.2 Simulation Parameters

The simulations for experimental results were conducted using Python 3 libraries (e.g.,

NumPy, Pandas, Matplotlib, and Scikit-learn) for data processing and visualization pur-

poses. The RC and DL-based models are primarily implemented employing TensorFlow

with Keras library in python. For all the experimental simulations, we have equally split

Xdata, i.e., both strain and stest are set to 0.5. In terms of the proposed RC method, we

have examined different architectures considering U ∈ {10, 30, 50, 70}. For each RC archi-

tecture, the hyperbolic tangent (tanh) was used as the activation function (Ω). The value

of the leaking rate (α) was fixed at 0.1. The weight values for Wi and Wr were initialized

randomly. The number of input MCG samples per segment, λ, in both the RC and DL

models was set to 50.

The RC-based proposal was compared with a DL-based (CNN and GRU) noise-filtering

technique, the structure which was adopted from our previous work [11]. The epoch was

29

RC-10 RC-30 RC-50 RC-70 DL MA
0.06

0.065

0.07

0.075

0.08

0.085

0.09

Method

E
rr
or

(R
M
S
E
)

Figure 3.4: Inference performance comparison of RC with moving average and deep learning
methods.The different RC architectures consist of 10, 30, 50, and 70 units, respectively.

set to 30 for the DL training phase. In terms of the moving average filtering technique, we

have employed a striding length of 50 samples to filter the MCG to be consistent with the

value of λ.

3.4.3 Results and Discussion

The simulations are conducted multiple times, and the average is used as the result. First,

Fig. 3.3 demonstrates the filtering by the traditional moving average method, the deep

learning method [11], and our proposed RC approach to jointly sense and minimize the

1/f noise in the input MCG signal. For ease of reference, we refer to the moving average

filtering and deep learning method as MA and DL, respectively. Notice that the predicted

ECG from the reservoir computing model is quite close to the original ECG/MCG cycle

and successfully identifies the essential features such as the R-peak of the input ECG/MCG

signal.

Next, Fig. 3.4 demonstrates the error in terms of the root mean squared error (RMSE)

for the proposed reservoir computing-based model where the number of reservoir units is

varied between 10, 30, 50, and 70. The errors incurred for these different configurations

of the reservoir computing-based proposed method are compared with our earlier deep

learning-based approach and the traditional moving average technique for noise processing.

As shown in the result, when the number of reservoir units is set to 10, the error value

is just above 0.07%. For increasing the number of reservoir units, the echo state network

30

0.00 0.02 0.04 0.06 0.08 0.10
f/fs

101

102

103

104

105

106

107

108

PS
D

…
[a

rb
.…

un
it.

]

Noise…of…DL…prediction
Noise…of…RC…prediction
Noise…of…moving…average

Figure 3.5: Dependence of noise power on spectral frequency for the RC-based predic-
tion method, DL-based prediction, and the moving average filtering. Spectral frequency is
normalized.

RC-10 RC-30 RC-50 RC-70 DL
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

Method

M
em

or
y
co
n
su
m
p
ti
on

(%
)

(a) Memory consumption rate in the training phase
for different settings of RC and DL methods.

RC-10 RC-30 RC-50 RC-70 DL
0

5

10

15

20

25

30

35

Method

T
im

e
(s
ec
)

Average inference time Average training time

(b) Required time (per cycle) in the training and
inference phases for different settings of RC and DL
methods.

Figure 3.6: Memory and time requirement for the RC architectures and DL method. The
different RC architectures consist of 10, 30, 50, and 70 units, respectively.

experiences more chaotic behavior in the state variables that slightly increases the error.

Interestingly, the error remains much below 0.08% for the highest number of reservoir units

considered (i.e., 70). On the other hand, the deep learning-based method results in the

incurred error to reach 0.08%, whereas the moving average approach leads to the highest

error.

Fig. 3.5 shows the filtering efficiency as seen in the power spectral density of the remain-

31

ing noise after prediction, i.e., PSD (predicted-original). Notice that the spectral frequency

is normalized by the sampling frequency, i.e., f/fs. The RC and the deep learning predic-

tions show a noteworthy reduction in noise power compared to the moving average filtering

technique, especially at the crucial low-frequency region f/fs = 0.01 – 0.03. However, in

that region, the DL method outperforms both MA and RC-based techniques. Interestingly,

the proposed RC-based method exhibits better performance for f/fs > 0.04 as the un-

derlying ESN attenuates the high-frequency components that are not related to the QRS

complex. Overall, we can observe that the collective noise reduction in different portions of

the signal was quite significant in terms of the RC method compared to the other ones.

Next, whether the RC proposal is, indeed, lightweight or not, is shown in Fig. 3.6 by

taking into account the execution time and memory overhead of the adopted AI-aided (i.e.,

DL method) methods for the resource-constrained IoT device. Here, we only compare

the AI methods because the MA technique cannot be considered an AI-based method, and

hence there are no training and inference phases in terms of the MA. Therefore, we primarily

compare the time and memory required by the RC and DL methods. Fig. 3.6a demonstrates

the memory consumption rates during the training phase of the RC proposal for the various

settings of the proposal where the number of reservoir units is varied from 10 to 70. The

memory consumption for the lowest and highest numbers of reservoir units was found to

be 0.45% and 0.89%, respectively. In contrast, the memory required for the deep learning

prediction-based method was 0.77%, which is significantly higher than the proposal with

10, 30, and 50 reservoir units.

On the other hand, Fig. 3.6b exhibits the average training and inference time require-

ments for the different configurations of our RC proposal and the deep learning prediction-

based approach. Notice that while the average inference time for all the configurations is

reasonably low (with increasing error rates, however, as earlier reported in Fig. 3.4). The

average training time for all the configurations of our RC proposal is relatively constant

and much faster than the deep learning method. Because RC training is limited to the

output weights, the RC method has the advantage over the deep learning counterpart that

requires retraining in the cloud, which incurs further network overheads and transmission

delays. For remote health monitoring use-case employing distributed online learning, the

training/learning time is more vital than the inference time. Hence, for an online learning

scenario where the model training occurs continuously, the RC method will be more suitable

than the DL method, even the there is not much difference between the inference time of

both approaches. Thus, we may conclude that compared to other AI-aided techniques, our

RC-based proposal is a lightweight one and suitable for deploying at the IoT nodes.

32

3.5 Summary

Recently developed spintronic devices have a vast potential for constructing smart and

edge computing-capable IoT sensors with high sensitivity and low energy, particularly for

magnetic biosignal detection (e.g., MCG) at room temperature. However, their deployment

is challenged by the 1/f noise, which is inherently present in such devices, interfering with

the bio-signals of interest. This chapter addressed this problem in the cardiac magnetic

signal sensing use-case and proposed a reservoir computing model based on echo state

networks. Through simulations, we demonstrated that the RC model is lightweight in

terms of much lower training time and memory requirements. Therefore, it is promising for

continuous health monitoring. The accuracy of the RC method is also found to be better

than the conventional moving average filtering and comparable with a recent DL approach.

The simulation-based results are encouraging and can be regarded as a proof-of-concept

basis for the physical reservoir computing implementation, using the sensors as physical RC

model units to jointly sense and analyze the sensed bio-signals at the “ultra-edge” of the

IoT ecosystem.

33

Chapter 4

Deep Learning-based Predictive

Channel Assignment In

Multi-Band Multi-Channel Relay

Networks for Offloading Medical

Data of Under-served Users

Multi-hop Device-to-Device (D2D) enabled relay networks are envisaged to be utilized by

the Internet of Things (IoT) and massive Machine Type Communication (mMTC) traffic in

multi-band multi-channel relay networks for offloading medical data of under-served users

in the remote/rural areas. The emerging challenge of spectrum scarcity and overloading of

cellular base stations can be addressed using such relay nodes in terms of spectrum and

energy efficiency while transmitting medical or health-related data. In order to improve

spectral efficiency, in this chapter, we intend to employ several frequency bands in the relay

node of the Beyond Fifth Generation (B5G) networks rather than the traditional concept

of specifying one channel on a specific band at a time. It will allow data transmission at

multiple bands individually or simultaneously, accelerating the communication for a large

number of users (i.e., subjects for remote health monitoring). A deep learning-based pre-

dictive channel selection method is leveraged to unravel the potential challenges associated

with the dynamic channel conditions in the multi-band relay networks. For predicting

the most appropriate channel based on its quality, Signal-to-Interference-plus-Noise-Ratio

(SINR) is adopted as the metric, which is predicted by the proposed Convolutional Neural

Network (CNN) model. The best modulation and coding rates of the predicted band are

attained in order to transmit the packets received from the source or previous relay node to

34

the successive relay node/destination. Two proactive channel assignment strategies referred

to as controlled and smart prediction schemes are employed to exhibit the performance of

the shallow and deep-CNN models. The proposed model is evaluated on multiple publicly

available datasets from diverse network systems and compared with several machine/deep

learning methods. Our proposal leads to encouraging results for proactively predicting the

conditions of the channels and choosing the most suitable ones in multi-band relay systems

which will assist the communication efficiency while transmitting a vast amount of generic

data and health-related data, especially in remote areas.

4.1 Introduction . 34

4.2 Related Work . 37

4.2.1 Wireless Network Condition Prediction Using AI 37

4.2.2 Multi-Band Scheduling Over Relay Networks 37

4.3 Proposed System Model . 38

4.3.1 Network Topology . 38

4.3.2 Packet Transmission Model . 39

4.4 Problem Statement . 39

4.5 Proposed Deep Learning-based Algorithm 40

4.6 Algorithmic Analysis . 43

4.6.1 Pre-processing Phase . 43

4.6.2 Training Phase . 44

4.6.3 Running Phase . 45

4.7 An Illustrative Example of the Proposed Model 45

4.8 Performance Evaluation . 47

4.8.1 Data Preparation . 47

4.8.2 Simulation Results and Discussion 48

4.8.2.1 Hyperparameter Tuning . 49

4.8.2.2 Numerical Analysis . 54

4.9 Summary . 56

4.1 Introduction

In Beyond Fifth Generation (B5G) networks, wireless relay-based communication technolo-

gies (e.g., Device-to-Device (D2D) communications) are developing as a promising tech-

nique in the era of Internet of Things (IoT) and massive Machine Type Communication

35

Source (S)
Ultra-edge

Node

Relay
(R)

Destination (D)
Ultra-edge

Node

.

.

.

Multiple bands with
multi-channels

UAV

User-
smartphone

𝑏𝑘

𝑏2

𝑏1

Relay node pool
How to select frequency band and channel

with best quality to send medical/health data?

Optimization,
machine learning at

central controller

Traditional
methods

Light-weight
inference at relay

using deep learning

Our Focus

.

.

.𝑏𝑘

𝑏2

𝑏1

Wearables

Mobile
hotspot

Ultra-edge
Node

Figure 4.1: Our research focus compared to the traditional focus for selecting the best
channel of multi-band relay networks.

(mMTC) [45–50]. The legacy cellular networks were initially employed to fulfill human-

driven services and hence were unable to keep up with the surging IoT/IoMT traffic, es-

pecially in the rural/remote areas; it is very challenging to incorporate real-time decision-

making during the critical remote health monitoring use-cases. Various mobile devices,

user-smartphones, wearable devices, Unmanned Aerial Vehicles (UAVs), ultra-edge sensors,

and so forth, can be exploited as D2D nodes or relays [51] in order to augment cellular

base stations as represented in Fig. 4.1, which does not require any additional transmission

power [52–54]. Therefore, a greater coverage area can be attained to deploy IoT/IoMT

devices over remote communities, and a greater number of use-cases can be served (e.g., re-

mote health-monitoring, forest, oil-rigs, energy supply lines, and so forth). In such systems,

it is vital to preserve channel quality and minimize the delay and packet drop rate for a

more efficient spectrum and throughput while transmitting massive data or medical/health-

related data. In the traditional data transmission technique, namely, Decode, and Forward

(DF) [55,56], data are encoded and forwarded from a source to relay nodes where decoding

and demodulation are performed and re-encoded to pass to the succeeding relay/destination

node [57]. Nevertheless, this reception process followed by decoding, encoding, and for-

warding at the relay node triggers a considerable delay and high packet drop rate. Another

technique called Truncated Decode and Forward (TDF) was proposed by one of the co-

authors [1], which utilized multiple bands for concurrent data reception and transmission

over a wireless network. The propositioned concept was such that, while receiving data

through one of the channels of the node, data will be simultaneously transmitted to the

following node through another channel of the node. This chapter justifies the improvement

of throughput by implementing a preemptive approach of predicting and then selecting the

best channel and band for data transmission in advance in multi-hop relay systems offload-

36

ing massive IoT traffic. This technique can be adopted for IoT devices for heterogeneous

data delivery or IoMT devices for medical data transmission as well.

The prediction of network traffic flows and Channel State Information (CSI) using Ar-

tificial Intelligence (AI) have been heavily analyzed throughout the years [58–60]. However,

none of these systems have exploited the notion of predicting optimal band/channel in a

multi-band relay system, as shown in Fig. 4.1 where each relay node employs various bands

(e.g., 5GHz, 2.4GHz, and 920MHz). These stated relay nodes are considered to be resource-

constrained and, therefore, are unable to train a complex deep learning model locally. In

order to solve this problem of the multi-band, multi-channel prediction task with marginal

error, we intend to implement various pre-trained AI models [61–63] such as Linear Re-

gression (LR) [64], Auto Regression (AR) [65], Artificial Neural Network (ANN) [59], and

Convolutional Neural Network (CNN) [66] with shallow and deep layers. In the adopted

shallow architecture and deep architecture for both the ANN and CNN models, we em-

ployed one hidden layer for the shallow construct and multiple hidden layers (four layers)

for the deep construct. These pre-trained DL models will be installed locally in the relay

nodes to make precise channel quality predictions. From the experimental results, it is

found that, among these models, shallow-CNN provided the most promising outcome in

predicting the best channel for transmitting data in the resource-constrained relay nodes.

After an optimal channel is predicted in the relay node through our distinct deep learning

model, the modulation, coding rate, and sending rate are acquired from the Modulation

and Coding Scheme (MCS) table, which are used to calculate the link rates. The neces-

sity for these data transfers is determined by first transferring the data frame’s header to

the relay node followed by transferring the rest of the data based on a respective decision.

The data is then further forwarded to the destination node from the relay node through

another band. Since data is being transferred simultaneously in this method, the delay is

minimized significantly, and thus this method performs better than the conventional ap-

proach, where data is transmitted only after the reception of the entire data frame. The

model is validated using extensive computer-based simulations and real datasets in order to

ensure accuracy and efficiency. The proposed methodology has the potential to accelerate

the IoT/IoMT-based medical/health-related data sending process as well as generic data

transmission.

The rest of the chapter is constructed as follows. Sec. 4.2 surveys the relevant research

work. The proposed multi-band network architecture is described in Sec. 4.3. The following

Sec. 4.4 describes the existing problems related to channel selection in multi-band systems.

Our proposed input representation and deep learning model are demonstrated in Sec. 4.5.

Then, in the Sec. 4.6, the algorithmic analysis of the proposed method is conducted. An

illustrative example of how the proposed model produces the output from the input through

different stages is manifested in Sec. 4.7. The performance of our proposal is assessed in

37

Sec. 4.8 and contrasted with those of LR, and AR. Finally, Sec 4.9 concludes the chapter.

4.2 Related Work

In this section, an extensive literature review has been performed by assessing from the

standpoint of two domains – implementations of machine/deep learning models to predict

diverse parameters related to network condition and constructions of various algorithms to

improve spectral efficiency of the overall scheduling process.

4.2.1 Wireless Network Condition Prediction Using AI

An extensive survey conducted by Mao et al. [61] established the significance and possi-

bilities of deep learning in numerous wireless network scenarios. AI techniques have been

utilized to predict network traffic efficiently. Predictors from multiple classes, including

classic time series, ANN model-based, and wavelet transform-based predictors, have been

proved to be viable for predicting network traffic [67]. A deep learning architecture based

on the deep belief network is proposed for predicting network traffic in the wireless mesh

network [68]. In the wireless network domain, AI-based models have also been exceptionally

prevalent for predicting link qualities and links susceptible to failure [69–71]. The work

in [72], evaluated the link quality using channel rank measurement along with machine

learning algorithms based on the network’s Received Signal Strength Indicator (RSSI) and

Link Quality Indicator (LQI). Herath et al. [73] predicted a successive series of signal

strength data based on previous time-slots using Recurrent Neural Networks (RNNs) such

as Long Short Term Memory (LSTM) and Gated Recurrent Unit (GRU) models. The

proposed models in [73] were able to surpass baseline techniques like linear regression and

autoregression; however, their work assumed such complex computations to be conducted

at the base stations with adequate computational resources. Therefore, the deep learning

prediction can be further enhanced for light-weight real-time predictive channel assignment

by transferring to resource-constrained relay nodes.

4.2.2 Multi-Band Scheduling Over Relay Networks

In a prior study conducted by one of the coauthors’ [1], the spectral efficiency in a multi-

band relay transmission scenario was heightened while keeping the end-to-end communica-

tion delay minimal. A TDF method was integrated at the relay node instead of the tra-

ditional DF method to perform demodulation, de-interleaving, de-puncturing, and Viterbi

decoding. To evaluate the channel quality, Signal-to-Noise-Ratio (SNR) was considered for

each channel, and an MCS table was used in addition to calculating the transmission du-

ration and the channel with lowest transmission time was selected for data transfer. In an

38

extension to the work [74], the Signal-to-Interference-plus-Noise-Ratio (SINR) was assumed

while selecting the channel in addition to a finite buffer size at the relay node. Moreover,

the impact of physical proximity and channel conditions upon the interface of a multi-band

system in order to improve the efficiency was stated in [75]. The research works stated

above reveals a significant gap in the realms of channel selection and channel assignment in

wireless systems. Therefore, it can be established that the prevailing studies have not explic-

itly explored the problem of multi-band channel prediction in relay networks for proactive

assignment.

4.3 Proposed System Model

In this section, we discuss the multi-hop, multi-band network architecture, and transmission

model that has been regarded in this chapter.

4.3.1 Network Topology

The relay network topology is represented as a cohesive cellular-D2D system containing a

set of N transmitter-receiver (Tx-Rx) pairs. The Tx-Rx pair can contain different config-

urations as follows: (i) a source node S, such as an IoT device, that transfers its collected

data to a mobile User Equipment (UE) (e.g., an energy and performance constrained user-

smartphone); (ii) a D2D relay node R that transmits data to the succeeding node; and (iii)

A D2D Rx node also called destination node D (such as cellular gateway or base station),

that receives data from a D2D relay node. The Tx-Rx pair can communicate over links

having L frequency bands with a finite number of channels C. The regarded network topol-

ogy’s routing matrix can be stated as R = [rnlc] ∈ {0, 1}{N×L×C}. If the data is routed

across band l and channel c between nodes, the element rnlc equals 1; otherwise, it is 0. In

order to improve throughput of this whole architecture to perform improved scheduling, the

channel quality qC should be detected precisely. To perform a predictive channel assignment

system, the ground truth, i.e., the channel quality in terms of SINR, can be established by

the following formulation:

SINR = 10log10
PS

(PI + PN)
, (4.1)

where PS , PI , and PN denote the desired signal power, interference signal power, and noise

power, respectively. PS is measured as follows.

PS = PT (
v

4πdl
)2, (4.2)

where PT , v, d, and l denote the transmission power, the velocity of light and the dis-

tance between the Tx-Rx pair and the frequency band of the currently assigned channel,

39

respectively.

In addition to that, the interference signal power PI is computed as follows.

PI =

∫
ω
PT (

v

4πdl
)2 nI ∗ ρ(x, y)dS, (4.3)

where dS indicates an infinitesimal area (i.e., the communication range) in the circles cen-

tered both at the Tx and Rx nodes given by ω; ρ(x, y) denotes the probability density

function of the interfering nodes in the communication area of the Tx-Rx pair; and nI

represents the total number of nodes distributed around the Tx-Rx pair. For each channel

c on each band l, a separate nI value needs to be considered.

4.3.2 Packet Transmission Model

A TDF model was considered to carry out packet transmission, that employs multiple

channels for simultaneous data transfer from source to destination node using (N -2) relay

nodes. In order to comprehend the necessity of relay node transmission, the header of

the data block is forwarded to the subsequent relay node initially. If a successful header

transmission occurs, the rest of the data is also forwarded to the relay node. The link rate

Lr of the links between the source and relay (S-R), and relay to destination (R-D), can be

calculated as follows:

Lr = smrc, (4.4)

where s, m, and rc denote the symbol rate, symbol density, and coding rate, respectively.

s can be calculated as follows.

s =
W

1 +B
, (4.5)

whereW andB represent the roll-off rate and bandwidth, respectively. Next, m is calculated

as:

m = log2M, (4.6)

where M denotes the number of waveforms on which the binary digits are mapped. Ad-

ditionally, the transmission time of header Th, and data from source to relay TS−R and

relay to destination TR−D for each channel is calculated based on the data size Sd. In other

words,

Th =
Sd
Lr

(4.7)

4.4 Problem Statement

This section discusses the traditional optimization-based approaches employed in the litera-

ture and the challenges related to optimal channel selection in dynamic network conditions

40

in the multi-band relay system, in a resource-constrained manner. A communication method

comparable to that of [76] recognizes the channel selection problem in multi-band systems as

Mixed Integer Non-Linear Programming (MINLP) optimization problem. This communi-

cation architecture computes such a problem by relaxing the NP-hard problem into Master

Problems (MPs) and forming a column generation-based procedure to determine the MPs

in the multi-radio base stations, considering they have adequate computational resources.

However, a centralized server requires substantial processing power and memory or a pow-

erful Software Defined Network (SDN) controller in order to solve such an optimization

problem. Therefore, to address this issue, the computations should be performed locally,

in a light-weight manner at the resource-constrained relay node. Hence, our system model

in (Section 4.3) took into account such resource-constrained relay nodes that are unable

to solve the optimization problem locally in dynamic network conditions such as varying

network traffic, data size, the various distances among the relay nodes, etc. The problem

can be defined as utilizing a string of past data for Tw time steps, which can be represented

as, XT = {x}TT−(Tw−1), based on measures like SINR, SNR, CSI or RSSI, in order to predict

the next few time steps Pw, i.e., YT = {y}T+Pw
T+1 . Such inferencing task for channel qual-

ity prediction is expected to be performed in the resource-constrained relay nodes averting

the heavy computations. Thus, the channel assignment time can be considerably reduced

along with the improvement of throughput for the whole data transmission architecture as

potential packet loss at the relay node can be averted. In the following section, we fathom

a sustainable deep learning-based solution to the problem mentioned above.

4.5 Proposed Deep Learning-based Algorithm

This section presents a deep learning-based approach as a solution to the problem stated

in Section 4.4. In this approach, the model is first trained in a centralized network with

available traffic datasets containing channel conditions and other network signal measures.

For various bands, the trained model in intended to correctly predict the channel quality

(qC) in advance. At each relay node, the pre-trained channel inference model is then

transported.

The proposed deep learning-based CNN model is depicted in Fig. 4.2. Here, the number

of hidden layers used to construct the model is represented by k. Each hidden layer consists

of a 1-D (one-dimensional) convolution layer, a regularization layer (i.e., dropout), and a

1-D Max pooling layer. The 1-D convolution layers have an initial filter size of SF in the

first layer and Sigmoid as activation function, Ω [61]. We have used a dropout layer as the

regularization method, with a rate of α to avoid overfitting during the training phase [77].

Afterward, the 1-D max pooling layer is added, which reduces the feature size and decreases

the computational cost requirement of the model [35]. The channel prediction model utilizes

41

Input data
related to
channel

quality, 𝑞𝑐

Conv1-D Sigmoid

Dropout (𝛼)Max pooling 1-D

Flatten

Filter size, zi : λ * zi-1

Channel quality
prediction

1st

layer
kth

layer

ith layer

k = number of 1-D convnet layers; zn = filter size in nth layer;Hyper
parameters:

… …

λ = filter reduction factor.

Output layer
(Linear)

Dense layer
(Sigmoid)

Figure 4.2: Proposed CNN-based training and inference model.

the past signal data in a sliding window of Tw size in order to predict the channel quality

of the next Pw steps. The window is slid further Pw steps in order to predict the channel

quality of the next time frame. Two strategies are exploited by the model in order to

forecast the channel quality, which are: (i) controlled prediction, and ii) smart prediction.

The controlled prediction strategy operates by choosing the actual signal strength features

as the input of the deep-learning model rather than the newly predicted value. A speedier

convergence can be achieved with this strategy; however, due to the lack of accessibility of

the previous data during prediction in the test dataset, the model experiences difficulties

with generalization. Alternatively, the smart prediction strategy offers a prediction of

future time steps based on the newly predicted values. Thus, the prediction error can be

minimized through this online learning. To measure the performance of the model in the test

window, we have employed Root Mean Square Error (RMSE) [41] as an error measurement

method to find the difference between the predicted value (Vp) and the actual value (Va) as

calculated below employing Eq. 4.8.

Algorithm 2: Predict Channel Quality (Features).

Input : Various features (f) of signal strength with time
Output: Quality of a particular channel

1 Choose the best values for all the hyperparameters (i.e., k, SF and Ω), based on
experimental results from the considered corresponding values set

2 Scale and pass f through input layer and forward to hidden layers
3 Forward the sum of hidden layers through Ω followed by sub-sampling operation
4 Extract new features in the convolutional layers and forward to fully connected

layer
5 Predict qC in output layer

42

RMSE =

√√√√ 1

Pw

Pw∑
i=1

(Va − Vp)2. (4.8)

The deep learning-based CNN model to predict the quality of the channel is described

in Algorithm 2. The signal strength parameters such as band-specific channel quality mea-

surements of the channels in the training window Tw (e.g., SINR measured by Eq. 4.1 or

others such as RSSI, CSI) along with other features such as energy information, packet

loss, throughput, delay are passed to the deep learning-based model. The best value for

hyperparameters, such as the number of hidden layers (k), activation function (Ω), and size

of the filter (SF) are chosen after hyperparameter tuning. The features are passed through

input layers to the hidden layers where a sequence of convolutions is performed. The final

sum of the convolutions is forwarded through activation function and a sub-sampling oper-

ation is performed after that. New features are extracted from the layers and the features

are forwarded to fully connected layer where the output, i.e., the channel quality (qC) is

predicted for prediction window Pw. The channel quality is then used to perform schedul-

ing using the optimal channel as shown in Algorithm 3. A vector of channel quality QC

for all the channels in each band is predicted using the adopted CNN model. The vector

elements are then sorted according to their respective channel quality values, and thus, the

best channel is selected. Subsequently, the selected channel is used to find the coding rate

rc from MCS table (Table 4.1). The link rate and transmission time of the channels are

then computed as per Eq. 4.4 and Eq. 4.7, respectively. The channel where the transmission

time of source to relay is larger than that of relay to destination is thus selected in advance.

If the condition is not satisfied, the algorithm will look for another channel that fulfills the

specified condition.

Algorithm 3: Predictive channel assignment of each relay node.

Output: Optimal channel to be assigned to outgoing link of the relay node.

1 for Each band do
2 for All available channels do
3 QC+ = Invoke algo. 2 to obtain qC
4 end
5 Sort values in QC of each band from best to worst
6 The coding rate of best channel rc is collected from MCS table (Table 4.1)
7 Compute Link rate Lr using Eq. (4.4)
8 Calculate TS−R, Th and TR−D using Eq. (4.7)

9 end
10 while TS−R > TR−D + Th do
11 Select min(Th + TR−D − TS−R) such that (Th + TR−D − TS−R) > 0
12 end

43

Table 4.1: Considered Modulation and Coding Scheme (MCS) [1].

SINR Modulation Scheme m rc
SINR ≤ 2 No Tx 0 0

2 <SINR ≤ 5 BPSK 1 1/2

5 <SINR ≤ 9 QPSK 2 1/2

9 <SINR ≤ 11 QPSK 2 3/4

11 <SINR ≤ 15 16QAM 4 1/2

15 <SINR ≤ 18 16QAM 4 2/3

18 <SINR ≤ 20 16QAM 4 3/4

20 <SINR ≤ 25 64QAM 6 2/3

25 <SINR 64QAM 6 3/4

4.6 Algorithmic Analysis

In this section, we investigate the algorithm’s computational complexity and the time cost

to run the proposed deep learning-based channel quality estimator for multiple bands. The

analysis essentially centers around the algorithm complexity in the training phase and run-

ning phase via calculating the frequency of each operation (e.g., addition, subtraction,

multiplication, division, and square root, etc.). The time cost of every procedure is denoted

by ADD, SUB, MUL, DIV, and SQRT to precisely express the complexity. We analyze the

training and prediction steps’ complexity of the proposed model in terms of the number

of different operations required by various steps of the algorithm. The outcomes from the

complexity analysis are further explored in the performance evaluation section (Sec. VIII)

for conducting a numerical analysis of the proposed model to manifest results in terms

of processing time, throughput, and memory consumption to demonstrate the proposed

model’s applicability in the IoT environment.

4.6.1 Pre-processing Phase

Before starting the training phase, we scaled the dataset using the standardization technique

to normalize the feature values in a particular range and it also helps in speeding up the

calculations in the algorithm as mentioned in the steps 1-2 of Algorithm 2. Each ith feature

from input feature f is passed to the training phase after applying the standardization

formula denoted by Eq. 4.9,

x
′
i =

(xi − x̄i)
σ

(4.9)

σ =

√∑
(xi − x̄i)2
Nxi

(4.10)

Here, xi is the feature vector and x̄i, σ (expressed in Eq. 4.10) are the mean and the

standard deviation of the xi, respectively. For each ith feature xi, if we consider the length

44

of the feature vector as Nxi , then to compute the mean x̄i requires (Nxi − 1) ADD and

one DIV operations. Then, to calculate σ from Eq. 4.10, it requires (Nxi − 1) ADD, Nxi

SUB, one DIV, one MUL, and one SQRT operations. Finally for computing the scaled

values employing Eq. 4.9, one DIV and (Nxi − 1) SUB operations are necessary. Since the

scaling is performed for the number of features in the input vector denoted as fn, the overall

computation complexity of the pre-processing process for all the features can be expressed

in terms of (2 ∗ fn ∗ (Nxi − 1)) ADD, (fn ∗ (2Nxi − 1)) SUB, (3fn) DIV, (fn) MUL, and (fn)

SQRT operations.

4.6.2 Training Phase

The main purpose of the training phase is to harness previous data regarding the channels’

condition and predict future channel quality for Pw steps. In this phase, the proposed

CNN model’s computation complexity is analyzed during the learning or training period,

referring to the steps 3-5 of Algorithm 2. In the training phase, the model gets trained for

Tw time window, and later in the prediction phase, the trained model is used to estimate

the channels’ conditions. For each ith convolution layer having the number of neurons in,

filter size SF and activation function Ω, the computational complexity of ith convolution

layer can be expressed as Eq. 4.11,

Oconv = (in ∗ (SF ∗ (fn − (SF − 1)))− (fn ∗ (SF − 1))+

in))ADD, (in ∗ (SF ∗ (fn − (SF − 1))))MUL, (in)DIV.
(4.11)

After the convolutional layers, the model will have fully connected layers. If we assume

the number of node in jth fully connected or dense layer to be jn, the computation complexity

will be, Odl = (jn ∗ yi ∗ (fi − 1)) ADD, (jn ∗ yi ∗ fi) MUL. Step 5 of the Algorithm 2 will

return the predictions of the training phase. Since, according to the steps 1-4 of Algorithm 3

considering the number of bands = Bn, number of channels in each band = Cn and the

number of layers in the model to be k can be written as Eq. 4.12,

Otraining = (Bn ∗ Cn ∗ k ∗ (Oconv +Odl)) (4.12)

Hence, for each type of operation, the complexity will be increasing by k (number of layers).

Furthermore, for Bn bands and Cn channels, the required number of operations will be

multipled by Cn and Bn.

45

4.6.3 Running Phase

After getting the predicted channel quality from all channels of all the bands, step 5 of

Algorithm 3 will sort the predicted channel quality (qc) for each band. Considering the

sorting algorithm to be quick-sort of n number of channel quality of a band, the required

operations for the sorting will be 3n ADD, (n − 1) SUB. In steps 6-7, for all the bands

(Bn) the best channel’s coding rate will be selected, and the link rate Lr will be calculated.

Therefore, these steps will require Bn ADD, Bn MUL and Bn DIV. The following step 8 of

the algorithm will determine the values of TS−R, TR−D, and Th, which will result in 3 ∗Bn
DIV. In the last few steps of the algorithm, specifically from step 10-12, min(Th + TR−D −
TS−R) will be determined. Considering the loop in these steps will run for m number of

times, for Bn bands, it will require (Bn*(2*m ADD, m SUB)) operations to be performed.

Therefore, in the running phase of the model, the computation complexity required by the

proposed model can be written as Eq. 4.13,

Orunning = (3n ∗Bn +Bn +Bn ∗ 2 ∗m)ADD + ((Bn∗

(n− 1)) +Bn ∗m)SUB + (Bn)MUL, (4 ∗Bn)DIV
(4.13)

4.7 An Illustrative Example of the Proposed Model

In this section, we demonstrate a simple example for illustration of how our proposed algo-

rithm operates, and feature size evolves in diverse layers of the model. Fig. 4.3 represents

an illustrative example for this purpose. In this example, we have considered a shallow-CNN

model consisting of a single layer. We assume 14 features, for instance, to pass through the

layers of the proposed model. The number of filters is set to 150, and the kernel size is 3.

Therefore, the overall filter size (SF) is 150x3.

Firstly, the input will be passed to the convolution layer, and the filters will try to find

out insights and patterns in the data by performing the sum of element-wise multiplication

of the input and filter. We assume striding value of 1 for the filter, and hence after each

filter is applied on the dataset, the output size is going to be reduced to 12 from the

initial size of 14. Therefore, for 150 filters, the output size is going to be 150x12. Now

let us determine how the filters convolve over the input vector and update the values.

Assuming the input, f = [-8.41, 5.90, 7.35, 3.13 , -2.41 , -1.60, 5.92, 4.91, 22.7, 0, 15.92,

0, -8.39, -4.97] and the filter 1, τ1=[0.76, 0.08, 0.60]. The results after the filter are

applied on the input vector can be denoted as fτi , and the first step of fτi is determined

as (0.76 ∗ −8.41 + 0.08 ∗ 5.90 + 0.60 ∗ 7.35) = −1.48. Subsequently, the calculated fτi will

be passed to the sigmoid activation function (Ω) and hence, Ω(fτi)=0.190. This procedure

will be applied at each step using a striding value of 1 on the whole input sequence, which

46

Assuming 14 features (j=1, i=14)

Output of size (150x12)
Convolution 1-D for all the filters (Kernel size=3, Striding=1)

Dropout Rate 0.1 Retains the current shape

Filter 1 (𝜏1)

Filter 2 (𝜏2)

Filter 150 (𝜏150)

−2.41 -1.60 5.92 4.91 22.7 0.0 15.92 0.0 −8.39 −4.973.137.355.90−8.41

.

.

.

0.6030.0880.761

0.7130.2990.565

0.5210.7520.934

0.831 0.906 0.999 0.906 0.999 0.802 0.999 0.0230.7690.9880.9990.190

0.915 0.987 0.999 0.999 0.999 0.991 0.953 0.0020.4760.9660.9990.905

0.408 0.996 0.999 0.999 0.999 0.999 0.999 0.00010.5690.9990.9990.601

.

.

.

Max Pooling 1-D
(Pool size=2, Striding=2)

Output of size (150x6)

0.831 0.906 0.999 0.906 0.999 0.802 0.999 0.0230.7690.9880.9990.190

.

.

.

0.999 0.9990.9990.9060.9880.999

.

.

.

.

.

.

0.999 0.9530.9990.9870.9660.999

0.999 0.9990.9990.9960.9990.999

.

.

.

.

.

.
Input

𝐱𝒋𝟏

𝐱𝐣𝟐

𝐱𝒋𝟑

.

.

.

𝐱𝐣(𝐢−𝟏)

𝐱𝐣𝐢

𝐱𝟏𝟏

𝐱𝟏𝟐

𝐱𝟏𝟑

.

.

.

𝐱𝟏(𝐢−𝟏)

𝐱𝟏𝐢

0.6030.0880.761

0.7130.2990.565

0.5210.7520.934

.

.

.

.

.

.

.

.

.

𝟎. 𝟗𝟗𝟗

𝟎. 𝟗𝟖𝟖

𝟎. 𝟗𝟎𝟔

.

.

.

𝟎. 𝟗𝟗𝟗

𝟎. 𝟗𝟗𝟗

1.015

Output
(channel
quality)

Fully connected

Flatten layer
Output of length 900

0.699

0.61

0.884

0.184

0.621

Figure 4.3: An illustration of how the data size evolves in the proposed CNN model with
single layer.

will result in an output of size 12 for a single filter. Consequently, for 150 filters, the final

output shape in this step will be 150x12.

The dropout phase is a regularization technique of the proposed method will not change

the shape of the output as it will only ignore a few nodes in order to avoid overfitting. The

following step is the max pooling with a pool size of 2 and striding of 2. Therefore, the

maximum value will be selected from the pairwise comparison at each step. The size of the

output of this step is 6 for each input from a particular filter. Hence, for all 150 filters,

the output size will be 150x6. After the max-pooling layer, at the penultimate stage, the

flatten layer will be applied to the feature set, which will reconstruct a multi-dimensional

47

matrix of features into a vector that can be fed into a fully connected dense layer of the

neural network classifier. Therefore, the 150x6 sized output of the max-pooling layer will

be converted into a 900 length vector. Lastly, for determining the output scalar, the output

vector of the flatten layer will go through a fully connected layer. Summation of element-

wise multiplication of the output vector of the flatten layer and the weight vector will be

passed through the activation function (Ω) to get the final output value (1.015), which

indicates the channel quality of the corresponding band. This procedure is conducted in

terms of each band to obtain the predicted value for channel quality.

In this example case, we have considered a shallow-CNN of our proposed model, where

we assumed the number of convolution layers to be one to perceive how the input vector

transforms for different layers. The deeper architecture of the proposed model will employ

the output of the preceding layer as input to the subsequent layer and will contain similar

calculations in each of the layers.

4.8 Performance Evaluation

In this section, we demonstrate the experimental results to evaluate the performance of the

proposed deep learning-based proactive channel assignment to the multi-band relay nodes.

A brief description of the datasets used to feed to our proposed deep learning model is first

presented, followed by experimental results and discussion.

4.8.1 Data Preparation

We have employed three datasets, denoted by DS1, DS2, and DS3, respectively, for per-

forming the channel quality prediction. Brief details of the datasets are given below.

1. DS1: This dataset consists of RSSI data obtained with a mobile robot in two en-

vironments: indoor and outdoor [78]. RSSI data of five wireless receivers in indoor

conditions are collected using the a youBot mobile robot. For the outdoor environ-

ment, data for signal strength and location are collected from a mobile robot in a

semi-outdoor environment.

2. DS2: This dataset contains signal strength measurement of a Zigbee-based wireless

network [79]. It contains around 8000 data samples between a Tx-Rx pair is placed

over a distance of 10 to 35 meters, and it consists of information of energy, throughput,

delay, and loss of data transfer from source to destination nodes.

3. DS3: This particular dataset describes an extensive set of traces that represent the

radio channel conditions between the base station and the end-user device [80]. The

48

records were employed to design and simulate a mobile networking environment prac-

tically. The LTE signal strength values, Reference Signal Received Power (RSRP),

SNR, and RSSI. All of these features contribute a comprehensive insight into the

channel condition. Each of the annotated traces is of different environments (e.g,.

bus, train, pedestrian, static and train) and at different speeds.

4.8.2 Simulation Results and Discussion

We applied Linear Regression (LR), Auto Regression (AR), and a Artificial Neural Net-

work (ANN) [71] to compare the performance of our proposed CNN-based controlled and

smart channel prediction methods. The training and prediction window for both deep and

shallow architectures of the ANN and CNN models are selected based on tuning of these

parameters. The selected tuned values are: training window, Tw = 200, prediction window,

Pw = 50% of the training window size (i.e. 100), and the number of hidden layers in the DL

models, k ∈ {1, 4}. Note that these parameters are selected based on the results of manual

hyperparameter tuning without resorting to grid search.

Table 4.2: Comparison of average RMSE values across all time steps for LR, AR, ANN,
and CNN-based methods for DS1-indoor environment.

Method Controlled Prediction Smart Prediction

LR 6.933 1.441

AR 25.715 1.386

Shallow-ANN 0.726 0.392

Deep-ANN 0.725 0.414

Shallow-CNN 0.595 0.371

Deep-CNN 0.643 0.388

Table 4.3: Comparison of average RMSE values across all time steps for LR, AR, ANN,
and CNN-based methods for DS1-outdoor environment.

Method Controlled Prediction Smart Prediction

LR 2.753 34.656

AR 3.198 5.860

Shallow-ANN 1.210 1.308

Deep-ANN 1.144 1.297

Shallow-CNN 1.057 0.964

Deep-CNN 0.971 0.994

Tables 4.2 and 4.3 list the performance of ANN, and CNN compared to the LR and

AR technique, which is obtained from DS1 (indoor and outdoor conditions). The results

are represented in terms of the average RMSE across all the channels. We evaluated the

performance of the deep learning models in both controlled and smart prediction scenarios

by employing a shallow architecture (a single hidden layer), and a deep architecture (four

hidden layers). In all the cases, the deep learning-based prediction performance exhibits

49

Table 4.4: Comparison of proposed shallow and deep-CNN models with baseline techniques
for different prediction window (Pw) sizes with respect to training window (Tw) using DS2.
Here, D indicates distances in meters, S-CNN and D-CNN represents shallow and deep
CNN, respectively.

D (m)

RMSE of different methods for Size of (Pw) with respect to (Tw)

25% 50% 75%

LR AR
S-

CNN

D-

CNN
LR AR

S-

CNN

D-

CNN
LR AR

S-

CNN

D-

CNN

10 2.35 58.97 1.22 0.99 1.76 61.30 0.78 0.71 1.91 2.83 0.86 1.68

15 2.13 79.63 0.82 0.77 2.35 63.79 0.90 0.64 2.02 52.23 0.61 1.29

20 2.63 20.95 1.85 1.00 1.98 56.21 0.72 0.66 1.74 2.28 0.75 1.49

25 2.63 56.37 0.45 0.80 2.56 51.61 0.46 0.55 2.16 59.91 0.72 0.75

30 2.95 73.08 0.61 1.05 1.99 75.81 0.57 0.55 2.33 30.24 0.69 0.92

35 3.16 65.45 1.93 0.99 2.21 56.24 0.86 0.81 2.73 7.93 0.76 1.69

Mean

RMSE
2.64 59.08 1.15 0.93 2.14 60.82 0.71 0.65 2.14 25.90 0.73 1.30

better performance in contrast with that of AR and LR. Between controlled and smart

prediction schemes, the model demonstrated better estimation performance in terms of

the smart prediction than its controlled prediction counterpart. This implies that the

deep learning-based techniques were able to explore the search space more robustly in

contrast with the baseline techniques. Therefore, they were able to generalize the diverse

channel conditions, especially in the smart prediction strategy. Hence, we adopted the smart

prediction scheme for the next experimental setups to further optimize the hyperparameters

and evaluate the results. In the case of the outdoor environment, the proposed CNN-based

method can outperform the baseline approaches by a significant margin. This massive

performance gap between CNN and baseline techniques demonstrates that in noisy outdoor

environments, the traditional algorithms are unable to predict channel conditions accurately

compared to deep-learning-based techniques. Thus, it may be concluded that, although the

baseline techniques perform well in a single-hop, single-radio wireless network for predicting

channel conditions [73], are not appropriate for real-time channel prediction in multi-band

relay networks. Furthermore, the performance comparison between ANN, and CNN reveals

that CNN is more consistent and stable than the other neural networks. Hence, we have

not considered ANN for further experiments, and elected one and four-layer architectures

of CNN, referred to as shallow and deep-CNN, respectively, for further analysis.

4.8.2.1 Hyperparameter Tuning

To choose the best hyperparameters of the proposed CNN-based models, we have conducted

a systematic investigation. Firstly, as a part of determining the best prediction window-

size, we tuned the prediction window-size, Pw, by adopting varying ratios with respect to

50

1% 25% 50% 75% 100%
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Filter size (SF) with respect to training window size (Tw)

A
ve
ra
ge

R
M
S
E

Shallow-CNN Deep-CNN

Figure 4.4: Comparison of CNN with respect to filter size (for DS1-indoor environment).

the training window Tw. Table. 4.4 illustrates the RMSE values for various distances from

dataset DS2 for Pw values varied among 25%, 50%, and 75% of Tw, respectively. In all these

cases, the baseline techniques are significantly outperformed by the proposed CNN-based

approach. As the distance between the sender and the receiver nodes increased from 10 to

35 meters, the estimation error (i.e., RMSE) of LR showed a dramatically progressing trend.

Therefore, this implies that the baseline techniques are not able to interpret channel quality

in diverse situations with a growing distance as much as the proposed deep-learning-based

technique. Hence, the CNN-based approach can perform the prediction task with much

less error compared to that incurred in AR and LR. Among these three proportions, both

the shallow and deep-CNN models manifest the best average RMSE values of 0.71 and

0.65, respectively, when 50% of the training window Tw is taken into consideration for the

prediction window size (Pw). Initially, the training window size (Tw) is set to 200 time

steps. Hence, after the hyperparameter tuning, the selected prediction window size (Pw) is

100 time steps. Among the baseline techniques, particularly, the AR suffers drastically for

all the considered distances. Therefore, we considered Pw to be half (50%) of the training

window Tw to accurately predict the most suitable bands and channels in order to transmit

IoT data at a greater throughput in the multi-hop relay system. The trade-off in choosing

the training and prediction window is that the training window should not be too large to

reduce the time-delay to train the model. The prediction window size should not be more

than 50% of the training window size to decrease prediction error, and it should not be too

small in size as it will slow down the prediction process.

51

1% 25% 50% 75% 100%
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Filter size (SF) with respect to training window size (Tw)

A
ve
ra
ge

R
M
S
E

Shallow-CNN Deep-CNN

Figure 4.5: Comparison of CNN with respect to filter size (for DS1-outdoor environment).

Sigmoid Tanh ReLU SELU
0

10

20

30

40

50

60

70

80

Activation Function

A
ve
ra
ge

R
M
S
E

Shallow-CNN Deep-CNN

Figure 4.6: Comparison of different activation functions for the proposed CNN model using
DS2.

Next, as a part of the hyperparameter tuning, we tuned the filter size (SF) of the 1-D

convolutional layers with respect to the training window (Tw) employing DS1. Figs. 4.4

and 4.5 demonstrate the outcomes in terms of average RMSE for different size of filter. In

both cases, the least error is recorded when the initial filter size (SF) is equal to 75% of

the training window (Tw). Therefore, we elected this parameter to be the starting filter

52

Bus Car Pedestrian Static Train
0

5

10

15

20

25

30

Environment

A
ve
ra
ge

R
M
S
E

LR AR Deep-CNN Shallow-CNN

Figure 4.7: Comparison between CNN and baseline techniques for different environments
of DS3.

size of our proposed model. The filter size reduction factor, α, is set to 0.5 as we have

decreased filter size by 50% each time for the deeper layers compared to the previous

layer. Furthermore, to pick the most suitable activation function (Ω) for the proposed

deep learning-based CNN model, we have performed manual hyperparameter tuning from

a set of proper activation functions (i.e., Sigmoid, Tanh, ReLU, and SELU) [81]. Fig.

4.6 portrays the results for the different activation functions in terms of average RMSE

noted using DS2. The best performance is evident when the Sigmoid activation function

is used in all the layers of the proposed shallow and deep architecture of CNN. Although

the sigmoid activation function suffers from vanishing gradient problem in some cases,

however, in this experiment, we observe that the utilization of sigmoid function provides

robust performance. Apart from the prediction efficiency, the sigmoid activation function

is generally less computationally expensive compared to many other activation functions,

which is a striking advantage of adopting this function in the proposed AI model. Therefore,

this verifies the selection of Sigmoid activation function for the channel quality prediction

task in the multi-band relay communication system.

After the hyperparameter tuning experimental phase, we evaluated the model with an-

other distinct dataset (DS3). Fig. 4.7 depicts the comparison of error (average RMSE)

between deep-CNN, shallow-CNN, AR, and LR in varying environments of DS3. The fig-

ure demonstrates that shallow-CNN outperformed deep-CNN by a slight margin and the

baseline ML techniques by a considerable margin. Therefore, this result verifies the pro-

53

posed CNN-based model’s acceptability for being selected as a channel quality estimator

for real-time channel prediction in multi-band relay networks for efficient data delivery.

0 25 50 75 100 125 150 175 200
Time-steps

6
4
2
0
2
4
6
8

C
ha

nn
el

…
qu

al
ity

…
(d

B
m

)

Original
Shallow-CNN

Deep-CNN

(a) Bus

0 25 50 75 100 125 150 175 200
Time-steps

6
4
2
0
2
4
6

C
ha

nn
el

…
qu

al
ity

…
(d

B
m

)

Original
Shallow-CNN

Deep-CNN

(b) Car

0 25 50 75 100 125 150 175 200
Time-steps

6
4
2
0
2
4
6
8

C
ha

nn
el

…
qu

al
ity

…
(d

B
m

)

Original
Shallow-CNN

Deep-CNN

(c) Pedestrian

0 25 50 75 100 125 150 175 200
Time-steps

4

2

0

2

4

6
C

ha
nn

el
…

qu
al

ity
…

(d
B

m
)

Original
Shallow-CNN

Deep-CNN

(d) Static

0 25 50 75 100 125 150 175 200
Time-steps

6
4
2
0
2
4
6
8

C
ha

nn
el

…
qu

al
ity

…
(d

B
m

)

Original
Shallow-CNN

Deep-CNN

(e) Train

Figure 4.8: CNN-based prediction methods compared to the original channel quality for
different environments of DS3.

We also plotted the predicted channel conditions over time and compared with the

original values for visual comparison. Fig. 4.8 manifests a fragment of a few example cases

54

of the actual and predicted qC values for varying conditions from DS3 employing smart

predictive strategy. The experimental outcomes exhibit that the proposed CNN model’s

performance is very much indistinguishable to the original signal for most time steps. In

the case of static and pedestrian, the overall prediction performance of the CNN models

is more robust than other situations. In terms of the other environmental conditions, also

the models’ prediction is representative of the actual channel quality and is able to find the

trend of channel quality.

4.8.2.2 Numerical Analysis

AR LR Shallow-CNN Deep-CNN
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.11

0.26

0.57

0.88

Methods

P
ro
ce
ss
in
g
ti
m
e
(s
ec
)

Figure 4.9: Processing time of different methods.

As the proposed CNN-based method’s prediction performance manifested encouraging

results, we conducted a numerical analysis of the model in terms of memory consumption,

processing time delay, and throughput. Fig. 4.9 displays the processing delay for the model,

while Fig. 4.10 illustrates the model’s memory consumption at each time step with respect

to the node’s overall capability. In this case, the trade-off is: although the proposed DL-

based approach’s predictive performance is significantly more prominent than that of the

baseline techniques, it consumes more memory and requires a higher time-dealy. However,

the additional processing delay can be considered negligible by considering the prediction

efficiency of the proposed technique. Admittedly, the proposed model will predict all the

channels’ conditions over many time-steps ahead of time, considerably minimizing the over-

all communication delay. Consequently, the acquired experimental outcomes illustrate that

the proposed DL-based CNN model is suitable for efficient channel prediction and proactive

55

AR LR Shallow-CNN Deep-CNN
0

2

4

6

8

10

12

14

16

18

7.99

11.3

15.56
16.19

Methods

M
em

or
y
co
n
su
m
p
ti
on

(%
)

Figure 4.10: Memory consumption of different methods.

AR LR Shallow-CNN Deep-CNN
0

2

4

6

8

10

12

14

16

18

20

7.21 7.48

12.78

8.5

Methods

T
h
ro
u
gh
p
u
t
(M

b
p
s)

Figure 4.11: Throughput of different methods considering the additional processing delay
due to possible poor channel selection.

channel distribution in a multi-band relay network system. Next, we estimate the through-

put analysis to ensure how much the processing delay and performance trade-off influences

the throughput during IoT data delivery.

Fig. 4.11 depicts the throughput comparison for transmitting data over the heteroge-

neous band relay-based network. We have considered an average data generation rate of

1MB/s from the nodes. A latency of 1 second is considered because of poor channel selec-

56

tion from the baseline techniques (i.e., LR, AR) as the predictive performances for these

are worse than the proposed CNN model. We estimated the CNN-based model’s latency

considering the difference of error for poor channel selection between CNN and the baseline

techniques (in percentage). Afterward, we determined the throughput by considering the

processing delay and the possible delay in choosing a lousy quality channel. Note that, ac-

cording to the average results observed in Fig. 4.7, the shallow CNN performed the best in

diverse environments, indicating that the shallow-CNN would incur the slightest delay due

to poor channel selection. On the other hand, even though AR and LR’s processing time

is less than that of the proposed DL-based CNN model, the throughput is approximated

to be considerably lower. Hence, it unveils that traditional baseline techniques cannot be

as effective as the proposed CNN in dynamic network conditions in multi-band relay net-

works, and possible packet loss may occur for specific relay nodes where the resources are

inadequate.

The experimental results clearly demonstrate that the proposed shallow-CNN model

emerges as the most viable light-weight, predictive channel inference model to deploy at

the resource-constrained relay node for enhanced spectral efficiency and throughput for

offloading IoT traffic. The proposed DL-based model’s generalization capability in terms

of prediction performance was evaluated on three different datasets from diverse setup.

Furthermore, the prediction performance, as well as memory consumption, processing time,

and throughput, were compared with popular AI-based prediction models. The encouraging

outcomes illustrate that the proposed model performed efficiently in all three datasets.

Hence, the model can be generalized and utilized for other varieties of wireless network

setups along with the IoT environment.

4.9 Summary

This chapter focuses on the prevalent resource-constrained multi-band relay nodes for of-

floading massive IoT traffic in next-generation networks and the measures taken to overcome

the most appropriate channel selection barriers for efficient data transmission. The trans-

mission process involves sending the data header first, followed by the rest of the data on

one band, and simultaneously forwarding it to the next node through another band. In

order to select a channel, a lightweight deep-learning technique is proposed that will ac-

curately determine the best channel to transmit and receive data based on its quality. To

construct the Convolutional Neural Network (CNN) model, original datasets were used to

forecast the channel quality for both smart and controlled prediction strategies. Afterward,

the channel quality measures are utilized by a scheduling algorithm in order to determine

the coding and modulation rates to forward the data to the next node. The model was

assessed by comparing it with other predictive algorithms such as LR, AR, and ANN. The

57

performance of these algorithms at the relay node was comparatively inferior to CNN based

channel prediction algorithm with respect to throughput, memory consumption, and pro-

cessing delay. The results of deep-CNN and shallow-CNN were analogous; however, the

processing delay and power consumption of shallow-CNN were relatively lower, thus im-

proving throughput. Hence, the propositioned shallow-CNN model was nominated as the

most feasible architecture to predict the channel state of a resource-constrained relay node.

58

Chapter 5

A Proof-of-Concept of Ultra-Edge

Smart IoT Sensor: A Continuous

and Lightweight Arrhythmia

Monitoring Approach

Due to the proliferation of the Internet of Things (IoT), the IoT devices are becoming uti-

lized at the edge network at a much higher rate. Conventionally, the IoT devices lack the

computation resources required for carrying out ultra-edge analytics. In this chapter, we go

beyond the typical edge analytics paradigm, which is mostly limited to user-smartphones,

and investigate how to embed intelligence into the ultra-edge IoT sensors. To conceptualize

the smart IoT sensors with enhanced intelligence, we select the arrhythmia detection task

employing Electrocardiogram (ECG) trace as one of the mobile health (mHealth) cases.

The existing approaches are not feasible for ultra-edge IoT sensors due to the extensive

noise-filtering and manual feature extraction phase. Hence, in this chapter, to facilitate

the analytics, we propose a Deep Learning-based Lightweight Arrhythmia Classification

(DL-LAC) method, which employs only single-lead ECG trace and does not require noise-

filtering and manual feature extraction steps. As the proposed technique, we design a

one-dimensional Convolutional Neural Network (CNN) architecture. Complying with the

ANSI/AAMI EC57:1998 standard, four heartbeat types are taken into consideration as class

labels. The efficiency and the generalization ability of the proposed model are evaluated,

employing four different datasets from PhysioNet. The experimental results demonstrate

that the proposed DL method outperforms traditional methods such as the Delay Differen-

tial Equation (DDE)-based optimization, K-Nearest Neighbor (KNN), and Random Forest

(RF). The proposed DL-LAC illustrates encouraging performance in terms of time and

memory requirement when the trained model is transferred to virtualized microcontrollers

59

connected to IoT sensors.

5.1 Introduction . 59

5.2 Related Work . 62

5.3 Problem Formulation . 63

5.4 Data Preparation . 65

5.5 Proposed Methodology . 66

5.5.1 Proposed CNN Model Structure . 66

5.5.2 Deep Learning-Based Lightweight Arrhythmia Classification (DL-LAC)

Algorithm . 68

5.5.3 Computational complexity analysis in terms of mathematical operation 71

5.5.3.1 Training phase . 72

5.5.3.2 Inference phase . 74

5.6 Performance Evaluation . 74

5.6.1 Performance Indicators . 75

5.6.2 Results and Discussion . 75

5.6.2.1 Hyperparameter Tuning . 76

5.6.2.2 Inference Results . 78

5.6.2.3 Numerical Analysis . 81

5.7 Summary . 82

5.1 Introduction

The escalation of Artificial Intelligence (AI), Internet of Things (IoT) sensors, and numerous

wearable devices have radically enhanced mobile health (mHealth). However, due to the

hurdle of incorporating intelligence into these resource-constrained IoT devices, the IoT

sensors continue to be routine monitors. The conventional technique is to employ the IoT

sensors and wearables to sense user’s day to day health data such as Electrocardiogram

(ECG), Electroencephalogram (EEG), temperature, respiration patterns, diabetes level,

sleep patterns, weight change, and so forth. These health data accumulated by the regular

IoT devices are dispatched to a remote cloud for medical analytics, as portrayed in Fig.

5.1. Although this IoT and cloud-based medical analytics serve the purpose of health

monitoring, it still raises a few major concerns that cloud-based architecture cannot avoid

easily. This paradigm of ECG data analytics results in bandwidth consumption, delay due

to transmitting the enormous amount of health data, and privacy concerns associated with

the user’s health data.

60

Non-intelligent,
continuous sensing

Edge
node

Cloud

AI model for
analytics

Ultra-edge IoT
node

Traditional

Our focus

AI inference

Delay, bandwidth
overheads

Sensing Move pre-trained AI model

Figure 5.1: How migrate the pre-trained AI model towards the resource-constrained sensor.

Our goal in this chapter is to analyze how to exploit the logic-in-sensor concept, re-

cently introduced by the coauthors’ earlier research work [11]. The logic-in-sensor archi-

tecture, which is based on Magnetic Tunnel Junction (MTJ)-based spintronic technology,

can revolutionize the mHealth industry by enhancing the Quality of Service (QoS) such as

communication delay, network bandwidth consumption and privacy of user’s health data.

Considering the user-smartphone as an edge device that is capable of some analytics, the

proposed ultra-edge architecture shown in Fig.5.1 aims to bring the intelligence or the an-

alytics from the cloud to the edge device using the logic-in-sensor concept. Following the

hardware enhancement and AI-based intrinsic noise processing, as demonstrated in [11], in

this chapter, we intend to obtain a lightweight solution to relocate the cloud-based medical

analytics to the ultra-edge smart IoT nodes, and hence, overcoming the issues as mentioned

earlier.

We have chosen an essential use-case of cardiac arrhythmia, one of the major causes

of Cardiovascular Diseases (CVDs) [82]. Cardiovascular diseases are the leading cause of

death worldwide, which results in approximately 31% of all global deaths; however, the risk

can be eliminated if detected and diagnosed with timely treatment [83]. Arrhythmias cause

the heart not to pump blood in the body adequately, and the patients usually experience

symptoms of faster or slower heart pulsations. Conventional clinically graded 12-lead ECG

or consumer-grade wearables can be employed to monitor the heart activity of a person. The

electrical activity of the heart is known as the ECG waveform, which is a crucial diagnostic

tool used to monitor the conditions of the heart and can be used to identify arrhythmias [84].

Automatic detection of irregular heartbeats from ECG signals is a significant task for the

smart diagnosis of CVDs, and it is becoming a prominent area where AI can be employed

61

extensively to automate the process.

Recent advances in AI and the availability of more health data, the utilization of the deep

neural network has proven to be indispensable for automating the smart healthcare system

[84]. ECG data analytics using Machine Learning (ML) or AI techniques and analyzing

time series ECG with nonlinear Delay Differential Equations (DDEs) are explored broadly

by traditional cloud-based medical analytics. However, the adaptation of localized embed

intelligence at the ultra-edge devices is still not extensively studied in the literature. For

diminishing the communication delay and network bandwidth with the cloud and preserve

user-data privacy by considering the localized analysis of the health data, a more effective

and lightweight analytics technique on-sensor is critical. Therefore, in this chapter, we

considered several ML techniques to pave the way to move the arrhythmia analytics from

the centralized cloud paradigm to ultra-edge smart IoT. Among different AI approaches, we

propose a Deep Learning-based Lightweight Arrhythmia Classification (DL-LAC) algorithm

employing the one-dimensional Convolutional Neural Network (CNN) that emerges as the

most viable solution for ultra-edge ECG analytics.

The proposed CNN-based model is trained at a central node and then can be trans-

ferred to the logic-in-sensor simulation for inference. The proposed model can be used to

classify heartbeats employing raw single-lead, and it does not require any noise-filtering

of the ECG signal, which makes the system lightweight and easy to integrate with the

ultra-edge node. In this vein, the proposed deep learning-based CNN employs the recom-

mendation of Association for the Advancement of Medical Instrumentation (AAMI) for the

arrhythmia classification task. We have considered four classes of heartbeats, namely N ,

S, V , and F , in this chapter, which represents normal, supraventricular ectopic, ventricular

ectopic, and fusion beats, respectively [85]. To evaluate the model’s generalization ability,

we experimented using four clinically graded ECG datasets and considered different ex-

perimental settings to test the model’s performance using accuracy, precision, and f-score

as performance metrics. Lastly, due to the high fabrication cost of a single logic-in-sensor

(approaching $15k for the entire circuit and a further $10k for further customization), we

illustrate the viability of the proposed method’s feasibility as a lightweight solution in an

emulated ECG sensor with a Raspberry Pi and a few other IoT devices.

The remainder of the chapter is constructed as follows. Sec. 5.2 surveys the rele-

vant research work. The problem of traditional cloud-based analytics and the necessity

of lightweight analytics at the smart logic-in-sensor is discussed in Sec. 5.3. The data

preparation is outlined in Sec. 5.4. Our proposed input representation and deep learning

model are manifested in Sec. 5.5. The performance of our proposal is assessed in Sec. 5.6

and contrasted with those of K-Nearest-Neighbour (KNN), Support Vector Machine (SVM)

and Random Forest (RF). Finally, Sec 5.7 concludes the chapter.

62

5.2 Related Work

Due to the availability of IoT devices that can deliver health data, researchers are have

been working on ECG classification [86]. As an indispensable strategy for diagnosing heart

diseases, ECG monitoring is comprehensively studied and analyzed. It is vital to detect

cardiovascular diseases timely, and for that purpose, continuous observation of ECG for a

prolonged period is essential. However, the conventional method of long-time ECG monitor-

ing is invasive and expensive, and it hinders the daily activity of the patients. To overcome

this issue and introduce some level of automation in the ECG monitoring system, cloud-

based ECG analytics can be employed where the ECG signal is usually transmitted using

wireless transmission techniques such as Bluetooth, Zigbee, or Wi-Fi [87–89]. Therefore,

most of these traditional automated ECG monitoring systems analyze the data at the cloud

and then send feedback back to the user or care-providers. One of the proposed cloud-based

analytics where the ECG data are collected using a wearable monitoring node and are trans-

mitted straight to the IoT cloud using Wi-Fi [90]. An IoT-based patient monitoring system

is proposed where data is then processed using a Raspberry Pi, and useful information is

delivered to the IoT cloud for cloud-based analytics [91].

In this proposed system [92], AdaBoost and Gradient Boosting algorithm were applied

to classify ECG using single-lead ECG. An automatic and fast ECG arrhythmia classi-

fier based on a brain-inspired ML approach known as Echo State Networks (ESN) was

implemented in for faster ECG analytics [93]. In another work, an accurate arrhythmia

classification method for ECG was proposed based on extreme weighted gradient boosting

(XGBoost) using a broad range of feature set [94]. In [95], to tackle the patients’ privacy

concerns, Baza et al. have proposed a mimic learning-based machine learning approach

for automatic, secure, and efficient analysis of Cardiovascular activities. A clustering-based

feature extraction algorithm followed by employing a number of well-known ML classifiers

for accurate recognition and classification of arrhythmias is proposed in [96]. Researchers

have also employed mathematical methods to decompose ECG, such as a nonlinear DDE

was utilized to classify ECG by differentiating features for various heart diseases [97].

Apart from traditional ML techniques, researchers have also employed neural networks

and deep learning-based approaches for the classification of ECG heartbeats. In one of the

research works, the convolutional neural network of 34-layer was adopted to classify with

high accuracy that transcends the cardiologist performance [98]. Principal Component

Analysis (PCA) based feature extraction followed by a Multi-Layer Perceptron (MLP) was

utilized in another research [99]. Deep-learning-based, Long Short-Term Memory (LSTM)

algorithm was proposed in [100], having considerable low computational costs. Recurrent

Neural Networks (RNN) was used for binary classification (normal and abnormal) of heart-

beat in this research [101]. A Deep Genetic Ensemble of Classifiers (DGEC) was proposed

63

by combining deep learning algorithms with an ensemble learning and genetic optimization

of parameters for the classification of various types of arrhythmias [102]. In our recent

work [35], these issues were raised and an attempt was made to embed AI at the IoT sensor

level to perform ECG prediction at the ultra-edge network. However, the work concluded

the need for a systematic investigation and computational analysis to conceptualize a fusion

of logic and sensing to render a continuous and lightweight arrhythmia monitoring system.

5.3 Problem Formulation

As manifested in the previous section, the healthcare sector still needs accelerating improve-

ment in establishing smart healthcare with embedded intelligent sensors. As our research

focus in this chapter is lightweight arrhythmia monitoring, we will discuss the drawbacks

of the existing ECG/arrhythmia monitoring system and the hurdles associated with trans-

ferring the existing analytics to ultra-edge IoT. Traditionally, researchers have employed

diverse heartbeat classification techniques that generally require a number of pre-processing

steps such as noise filtering, manual feature extraction, and so forth. The steps needed by

the conventional heartbeat classification employing ML methods are exhibited in Fig. 5.2.

Diverse methods such as DWT, DDEs [103], and ML techniques are commonly utilized in

the conventional feature extraction and classification tasks. Though these ECG analytics

techniques overcome many drawbacks of the manual ECG monitoring, it still lacks the

potential to be integrated with logic-in-sensors due to the extensive computational steps.

These conventional ECG monitoring approaches mostly rely on multi-lead ECG signal and

requires multiple preparatory steps (i.e., noise filtering), which is a significant issue for

combining these models with the ultra-edge IoT logic-in-sensors [35,104].

Apart from ML techniques, traditionally DDE-based optimization techniques have also

been proposed for the ECG monitoring task. However, the non-linear DDE for the time-

series ECG analysis technique cannot adequately infer the system models in varying heart

conditions. In this approach, exhaustive search or heuristics must be developed to select the

most competent model for any given classification task, which is a considerable challenge for

lightweight ECG analytics. Conventionally a non-linear DDE can be expressed as follows:

f(ai, xτj) = a1xτ1 + a2xτ2 + a3xτ3 + ...+ ai−1xτn

+ aixτ1xτ1 + ai+1xτ1xτ2 + ai+2xτ1xτ3 + ...+ aj−1x
2
τn + ajx

3
τ1 + aj+1xτ12xτ2 + ...

...

...+ a1x
m
τn ,

(5.1)

Here, xτj can be expressed as: xτj = x(t − τj), in Eq. 5.1, n, t, m, and τj represents

the number of delays, time, the degree of non-linearity, and time delays, respectively. The

64

ECG sensed by
wearable device

High pass

Band reject

Low pass

1. Filters

4. Heartbeat
classification 2. Heartbeat (HB)

segmentation

3. Feature
extraction

P

Q

R

S

T

HB interval

HB amplitude

Morphology
features

DWT
DDE

AI

ML

DL
Can deal with

raw ECG
input signals

Localized
intelligence/analytics

NP-hard,
without

intelligence

ECG features or
attributes need to

be explicitly
given

How to design a
light-weight,

embedded
intelligence at the

wearable device that
does not require these
pre-processing steps?

Figure 5.2: Steps of conventional ECG heartbeat classification.

selection of optimal time-delays and monomials is imperative for building an effective DDE-

based classification system. For example, to select the optimal model for classification using

the DDE-based model, the authors applied the genetic algorithm in [105]. Therefore, these

approaches are not appropriate for integrating with the logic-in-sensors for ultra-edge IoT

analytics in polynomial time.

Apart from expensive computational requirements, some of the other issues with the

traditional ECG monitoring system are that it requires internet connectivity to communi-

cate with the cloud servers for ECG analytics. Hence, it consumes considerable network

bandwidth if the number of users is high. Furthermore, due to continuous data transmis-

sion, cloud-based analytics can also raise significant privacy concerns for the user’s private

data. Therefore, this approach can be a hindrance to secure ECG analytics for arrhythmia

detection. To address this challenge, we focus on developing an automated, efficient, and

lightweight system with localized intelligence that can be deployed and integrated with the

logic-in-sensors for ultra-edge IoT analytics. To develop a lightweight ECG/arrhythmia

monitoring system, we envision an AI-aided technique for classifying heartbeats employ-

65

ing a raw single-lead ECG signal and compared the proposed model with traditional ML

techniques adopting the architecture depicted in Fig 5.2.

5.4 Data Preparation

We have conducted ECG signal analysis to detect arrhythmia by utilizing the MIT-BIH

Supraventricular Arrhythmia Database (DS1) [106], MIT-BIH Arrhythmia Database (DS2)

[107], St Petersburg INCART 12-lead Arrhythmia Database (DS3), and Sudden Cardiac

Death Holter Database (DS4) [108] from PhysioNet [43]. The datasets contain recordings

of many traditional and life-threatening arrhythmias along with cases of normal heartbeat

rhythm. Various researchers have employed these datasets for diverse ECG based research

[109] [110].

The datasets comprise a text header file, a binary file, and a binary annotation file with

.txt, .dat, and .atr extensions, respectively.

• Header file (.hea): This file contains a brief text file that explains the signals’ contents,

such as the name of the record’s file, number of examples, type and format of the ECG

signal, and so forth.

• Binary file (.dat): The binary files include digitized representations of the ECG signals

of each record.

• Annotation files (.atr): The annotation files contain heartbeat labels that define the

type of ECG signals at a particular time in the ECG record.

We generated four separate heartbeat categories following the Association for the Ad-

vancement of Medical Instrumentation (AAMI) EC57 standard from the annotation files

in each of the datasets. The summary of mappings between the heartbeat annotations for

each class is demonstrated in Table 5.1. We have employed the DS1 (MIT-BIH Supraven-

tricular Arrhythmia Database) for the hyperparameter tuning and the training phase. In

the running/inference stage, we test the model using the other three datasets (i.e., DS2,

DS3, and DS4). We exploited multiple datasets to evaluate the generalization ability of the

proposed model. Although each of the datasets contains multiple ECG lead’s data, we have

employed the lead II in our experiment as our model only requires single-lead-ECG tracing.

The distribution of four heartbeat labels is manifested in the Table 5.2.

66

Table 5.1: Mapping DS1, DS2, DS3, and DS4 datasets to the AAMI heartbeat classes [2].

Heartbeat Class Heartbeat Annotation

N

(Normal)

N (Normal)

L (Left bundle branch block beat)

R (Right bundle branch block beat)

e (Atrial escape beat)

j (Nodal (junctional) escape beat)

S

(Supraventricular ectopic beat)

A (Atrial premature beat)

a (Aberrated atrial premature beat)

J (Nodal (junctional) premature beat)

S (Supraventricular premature beat)

V (Premature ventricular contraction)

V

(Ventricular ectopic beat)
E (Ventricular escape beat)

F

(Fusion beat)

F

(Fusion of ventricular & normal beats)

Table 5.2: Frequency of heartbeats of each class in DS1, DS2, DS3, and DS4.

Heartbeat Class DS1 DS2 DS3 DS4

N 1,62,323 90,621 1,53,672 7,45,671

S 12,197 2,781 1,960 1,893

V 9,941 7,236 20,012 23,616

F 23 803 219 309

5.5 Proposed Methodology

5.5.1 Proposed CNN Model Structure

In this section, we illustrate the proposed lightweight heartbeat classification technique for

arrhythmia detection that can be deployed and integrated with AI-aided logic-in-sensor. A

lightweight model for classification is an essential part of integrating the AI-aided model

at the ultra-edge IoT sensors for faster analysis. Hence, we primarily focused on designing

the deep learning-based model that only requires a single lead raw ECG signal so that the

model can be sufficiently lightweight. Sensors with embedded intelligence can be utilized

for long-term, accurate monitoring of a person’s cardiac activity, which is demonstrated in

one of the coauthors’ previous works [11]. Keeping the concept of logic-in-sensor in focus,

we developed a deep-learning-based lightweight model that can be integrated with these

AI-aided sensors for analysis of ECG at the ultra-edge device. The acquired results of the

ECG analytics can then be sent from the IoT nodes to the care-providers.

We propose an automated deep learning-based one dimensional (1-D) CNN that does

67

Raw single-lead
ECG input

Automated
Classification (AC)

Flatten

Dense
Units: 𝛾

Dropout (𝛼)

Output layer
(Softmax)

ReLU
Arrhythmia

Classification

Automated Feature Extraction (AFE)
𝑛𝑙𝐴𝐹𝐸 = number of 1-D conv layers. zn = filter size in nth layer.
λ = filter reduction ratio.

Conv 1D
Dropout

(𝛼)
Max

Pooling 1D
ReLU

1st layer

Filters: 𝑧1 = 𝛾

Conv 1D Max
Pooling 1DReLU

2nd layer

Filters: 𝑧2 = λ ∗ z1

.

.

.𝑛𝑙𝐴𝐹𝐸
th layer

Filters: 𝑧𝑛𝑙𝐴𝐹𝐸 = λ ∗ 𝑧𝑛𝑙𝐴𝐹𝐸 -1

𝛾 = initial number of filters.

.

.

.

.

.

.

Conv 1D Max
Pooling 1DReLU

Data Size
Validation

Figure 5.3: Proposed training architecture leveraging CNN structure for the considered
use-case. Once the model is trained at the cloud, it is transferred to the smart IoT sensor’s
AI module.

not necessitate any noise-filtering and manual feature extraction. The CNN model detects

unique patterns automatically from the raw single-lead ECG signal. The ECG signals

are sampled at a frequency of fs before passing to CNN as input. The lightweight ECG

analysis for arrhythmia detection task takes an ECG signal as input X = [x1, x2, x3, . . . xn],

and outputs a sequence of labels Y = [y1, y2, y3, . . . yn]. Here each yi represents one of

four different heartbeat classes and in terms of arrhythmia classification yi ∈ {F,N, V, S}.
Table 5.1 exhibit of the summary of each of the classes. We consider a minimum length of

ECG signal noted as δ to be passed as input to the model. Every output label corresponds to

a portion of the input ECG signal, and collectively the output labels cover the full sequence

of the ECG signal record of a subject.

As the deep learning-based solution, a 1-D CNN is designed and used because of its

exceptional performance in automatically detecting patterns in the ECG signal. The pro-

posed CNN model can be defined briefly as the combination of the convolution layers,

max-pooling layer, and fully-connected layers. Fig. 5.3 represents the architecture of the

proposed CNN model. Here the model receives raw ECG signal as input and generates

heartbeat classes as output. CNN consists of two segments; the first segment comprises

nlAFE number of 1-D convolution layers performing Automated Feature Extraction (AFE)

from the raw single-lead ECG signal and an Automated Classification (AC) module that

process the extracted features using nlAC number of fully connected layer followed by the

output layer for classification. The 1-D convolution operation can be expressed as in Eq. 5.2.

68

xlk =
∑

i∈nlAFE

(xl−1i ∗ wli + blk) (5.2)

Here, xlk and blk can be defined as the input and bias for the kth node of lth layer,

respectively. The kernel is defined as wli and the input of the ith node of the (l− 1)th layer

is denoted as xl−1i . To select the optimal activation function for the proposed model, we

performed hyperparameter tuning. The Rectified Linear Unit (ReLU) [111] is selected as

activation function, Ω, defined previously in Eq. 2.11.

In the first convolution layer, we also apply dropout with a rate of α as the regularization

technique, which will serve the network in avoiding overfitting. Hence, the model can gain

enhanced generalization ability by randomly disregarding some selected neurons in the

hidden layers. After the regularization layer, we employ the subsampling technique to

compress the size of the ECG data and reduce computation time. We have employed the

max-pooling layer to obtain the maximum value in a particular region. Eq. 5.3 determines

the output of the jth unit of the subsampling layer l. where xlj represents the output of the

jth unit of layer l and xl−1joutput
represents the jth output group of layer l− 1. The kernel size

of the max-pooling layer is set to a constant kminit for each of the layers.

xlj = subsample(xl−1joutput
) (5.3)

The nth layer of the AFE module produces a feature matrix from the ECG data. The

extracted features by the initial module are relinquished to the subsequent stage for further

analysis. In the next stage, the AC module consists of a single flatten layer, followed by a

fully connected layer and an output layer. The flatten layer is responsible for transforming

the features into a vector that can be forwarded into a fully connected [112]. ReLU and

softmax activation functions are selected to be used in the fully-connected layer and output

layer, respectively.

5.5.2 Deep Learning-Based Lightweight Arrhythmia Classification (DL-

LAC) Algorithm

In this subsection, we present the steps of the training and inference phases of our proposed

DL-LAC algorithm.

The training phase of the proposed DL-LAC algorithm includes Algorithms 4, 5, and 6.

The training stage of DL-LAC commences from Algorithm 4 with the inputs D, k, ξ, B, Ω,

and δ. The details of each of the inputs are provided in the algorithm’s input section. The

training phase of the algorithm returns the trained model (Mt), which is further harnessed

in the inference phase. The algorithm initiates with initializing the required parameters in

the steps 1 to 3. Then, in step 4, the ECG signal and the corresponding heartbeat class

69

labels are loaded from the dataset, which is later utilized in training. After that, in step

5, the ECG data is validated by checking with a pre-defined size threshold in the DSV

algorithm described in Algorithm 5. Afterward, in the steps 6-11, the training ECG data

and the heartbeat labels are employed to train the model (Mt) using k-fold stratified cross-

validation. At the penultimate step, the trained model (Mt) is stored for further testing

and validation. Finally, in step 13, the algorithm concludes by returning the trained model.

Algorithm 4: Training phase of DL-LAC

Input: D (ECG data collection for training), k (number of fold in
cross-validation), ξ (number of epoch), B (mini-batch size), Ω (activation
function), δ (threshold for data size)

Output: Mt (Trained model)
1 Mt ← ∅
2 Xδ ← []
3 yδ ← []
4 X, y ← read ECG signal and annotated heartbeats from D
5 Xδ yδ ← call DSV(X, y) from algo. 5
6 for (fold no. j=1 to k) do
7 Xtrain, ytrain, Xval, yval ← set data and labels of jth fold from Xδ, yδ
8 Ftrain ← call AFE(Xtrain, Ω) from algo. 6
9 update the model parameters of Mt by passing Ftrain through the AC module

as depicted in Fig 5.3
10 compute validation performance using Xval, yval
11 end
12 save the model parameters of Mt

13 return Mt

For the data size validation purpose, our proposed DSV algorithm is demonstrated in

Algorithm 5. This algorithm’s main objective is to validate the length or size of the ECG

signal by checking with a pre-defined threshold of δ. The algorithm takes X, y, and δ as

input and produces an updated version of X and y, denoted as Xδ and yδ, respectively.

We utilize this algorithm in both the training and inference phase before the start of their

workflow.

In the Algorithm 6, the required steps for the AFE module of the proposed model is

manifested. We utilize this algorithm from step 8 of the Algorithm 4, to extract the unique

features from the ECG signal. The extracted feature matrix from this algorithm is then

employed in the later module for classification. The inputs to the algorithm are X and Ω,

whereas the extracted unique features (Ftrain) are returned as the output of the algorithm.

Step 1 and 2 initialize the required parameters. In steps 3 to 10, the automated feature

extraction module’s main workflow is illustrated for nlAFE number of convolution layers.

In step 4, the input is passed through the 1-D convolution, the results of which will then be

70

Algorithm 5: Data Size Validation (DSV)

Input: X (data), y (heartbeat labels), δ (threshold for data size)
Output: Xδ (updated data after size validation), yδ (updated heartbeat labels

after size validation)
1 Xδ ← []
2 yδ ← []
3 for (i=1 to length(X)) do
4 if (length(Xi) < δ) then
5 continue
6 else
7 Xδ ← add Xi[1 : δ]
8 yδ ← add yi
9 end

10 end
11 return Xδ, yδ

Algorithm 6: Automated Feature Extraction (AFE)

Input: Xt (training data), Ω (activation function)
Output: Fx (extracted features)

1 initialize γ (initial filter size), λ (filter size reduction factor), nlAFE (number of
conv. layers), α (dropout rate)

2 z1 ← γ
3 foreach layer i ∈ nlAFE do
4 Fx ← pass Xt through the convolution layer with zi and Ω
5 if (i = 1) then
6 Fx ← apply regularization of rate α (dropout)
7 end
8 Fx ← update Fx by passing through sub-sampling layers (max-pooling)
9 zi+1 ← zi * λ

10 end
11 return Fx

71

forwarded to the later layers. We employed dropout with a rate of α for the first convolution

layer (i = 1), which is expressed in steps 5 to 7. Step 8 performs the sub-sampling operation

using the max-pooling technique described in the previous subsection (Eq. 5.3). After that,

we update the number of filters to be used by the reduction factor λ, in the next convolution

layer in step 9. Finally, in step 11, the extracted feature matrix is returned for the next

module to use.

In the inference phase, the proposed DL-LAC algorithm is exhibited in the Algorithm 7.

It receives the location of test ECG data for inference and returns the predicted class labels

(ypred) for the corresponding sample. After loading the testing ECG data from step 1, the

pre-trained model (Mt) is loaded in the subsequent step. Step 3 is responsible for updating

the test data by validating the data length from Algorithm 5. In step 4, the model Mt is

used to predict the probabilities for a sample ECG test data to belong in each of the four

classes. In step 5, the class with the highest probability is selected as the classified class for

each sample data. Ultimately, in the last step, the collection of predictions for all the data

is returned.

Algorithm 7: Inference phase of DL-LAC

Input: pathtest (test data location)
Output: ypred (predictions by the model)

1 Xtest, ytest ← load all test ECG data and corresponding class labels from pathtest
2 Mt ← load the pre-trained model
3 Xtest, ytest ← call DSV(Xtest, ytest) from algo. 5
4 yprob ← predict the probabilities for each sample of Xtest employing the model Mt

5 ypred ← argmax(yprob)
6 return ypred

5.5.3 Computational complexity analysis in terms of mathematical oper-

ation

This section investigates the algorithm’s complexity and the time cost to run the proposed

deep learning-based lightweight ECG monitoring system to detect arrhythmia. We analyze

the complexity of the proposed model’s training and inference steps in terms of the number

of different operations required by various stages of the model. The analysis primarily

encompasses the mathematical analysis of the algorithm complexity in the training phase

and inference phase through determining the recurrence of each operation (e.g., addition,

subtraction, multiplication, and division, etc.). We express the addition and multiplication

operations as ADD and MUL, respectively. In addition, we also analyze the occurrence of

comparisons denoted as COMP.

72

5.5.3.1 Training phase

The training phase comprises the DSV algorithm for data augmentation and the DL-LAC

training phase for the proposed CNN model. In the training phase of DL-LAC, depicted

in Algorithm 4, we perform computational overhead analysis, considering that the appro-

priate hyperparameters of the proposed models are already selected after hyperparameter

tuning employing the grid search technique. We divide the overall analysis of the training

phase, mainly into three different fragments, such as the required data size validation phase,

feature extraction phase, and the classification phase. Therefore, the total computational

complexity can be expressed as Eq. 5.4:

C(Training) = C(DSV) + C(AFE) + C(AC). (5.4)

Here, C(DSV), C(AFE), and C(AC) indicate the required computational overhead in

the data size validation, automated feature extraction, and automated classification phases,

respectively. For each of these three phases, the computation complexity is divided into

three parts: the required number of additions, multiplications, and comparisons. In the first

stage, to calculate the complexity of the data size validation phase, we mainly analyze the

complexity of the Algorithm 5, which is invoked from the training procedure (Algorithm 4).

The first four steps of the training algorithm are initializing steps; hence these do not require

any mathematical operations (i.e., addition and multiplication). In step 5, the Algorithm 5

is invoked for validating the ECG data size. If the length of considered training ECG trace

is len(Xtrain), then the required number of comparisons is also len(Xtrain) as the condition

will be validated for each ECG trace.

In the next phase, the computational overhead is determined for the feature extraction

phase manifested in the Algorithm 6 of the training procedure. For a particular layer

(lth layer) of the AFE module, if we consider that there are N l number of nodes for the

convolution layer, then the number of required operations can be defined as Eqs. 5.5 and

5.6.

(5.5)C(AFEADD) = nlAFE ∗ ξ ∗N l ∗ (len(xl)/B)∗ ((len(kl)∗ len(xl−1))− (len(kl)−η)+1)

− (len(xl−1)− (len(kl)− η)) ∗ zl)),

(5.6)C(AFEMUL) = nlAFE ∗ ξ ∗N l ∗ (len(xl)/B)

∗ (zl ∗ ((len(kl) ∗ len(xl−1))− (len(kl)− η) + 1)) + (nlAFE − 1).

Here, xl, kl, and zl indicate the input, kernel, and the number of filters of layer l. The

striding window length, the number of epoch, and batch sizes are denoted by η, ξ, and B,

respectively.

73

Also, in terms of the AFE phase, the number of comparisons required for nlAFE layers

can be denoted as eq. 5.7. Here, xl and zl implies the input and the number of filters in the

lth layer of the AFE phase. For zl number of filters, the number of comparisons required at

the layer l due to passing the input xl through the activation function (Ω) is ((zl ∗ len(xl)).

In the sub-sampling layer (i.e., max-pooling layer), the number of comparisons required is

(len(xl)− (zl − 1)).

(5.7)C(AFECOMP) =

nlAFE∑
l=1

(ξ ∗N l ∗ (len(xl)/B) ∗ ((zl ∗ len(xl)) + (len(xl)− (zl − 1)))).

The extracted features set (Fx) of the AFE phase will be relinquished to the AC module

of the proposed model for the classification task. For a particular layer denoted as l, if the

output of the ith layer is γi, then the computational complexity for the ith layer can be

(len(γi) ∗ (len(Fx) − 1)) ADD, (len(γi) ∗ len(Fx)) MUL. Thus considering the number

of fully-connected layers to be nlAC , the computational complexity of this phase can be

denoted as Eqs. 5.8 and 5.9.

C(ACADD) =

nlAC∑
i=1

(ξ + (len(γi)) ∗ (len(Fx)− 1), (5.8)

C(ACMUL) =

nlAC∑
i=1

(len(γi)) ∗ len(Fx) ∗ ξ. (5.9)

In terms of the number of comparisons required in the AC phase, considering nlAC

layers, the cumulative comparisons due to the comparisons as are necessary for computing

the activation functions can be denoted as Eq. 5.10.

C(ACCOMP) =

nlAC∑
i=1

(ξ ∗ len(γi)). (5.10)

Hence, by substituting the equations, as mentioned earlier in the Eq. 5.4, the overall

computational complexity in terms of the number of mathematical operations required in

the training phase of the proposed DL-LAC algorithm can be expressed as Eq. 5.11. The

number of comparisons needed in different stages of the DL-LAC algorithm’s training phase

is also considered in this equation.

C(Training) =



ADD : C(AFEADD) + C(ACADD)

MUL : C(AFEMUL) + C(ACMUL)

COMP : len(Xtrain) + C(AFECOMP)

+ C(ACCOMP).

(5.11)

74

5.5.3.2 Inference phase

The inference/running phase is conducted to infer classes of each testing ECG data employ-

ing the pre-trained lightweight model (Mt) and then evaluating it using the unseen data.

In correspondence with Algorithm 7, if we consider the test data to be Xtest, and the size

of test data after validating ECG signal is len(Xtest), then the computational complexity

of the inference phase can be denoted as follows:

C(Inference) =



ADD :
∑nlAFE

i=1 (len(xi)− (η + 1))

+
∑nlAC

j=1 (len(γj)− 1)

MUL :
∑nlAFE

i=1 (len(xi)− η)

+
∑nlAC

j=1 (len(γj))

COMP :
∑nlAFE

i=1 (len(xi))

+
∑nlAC

j=1 (len(γj))

+len(Xtest)

(5.12)

Eq. 5.12 illustrates that, in the inference phase, the pre-trained model is able to produce

results with considerably lower computational operations (i.e., upper bound time-complexity

of O(len(Xtest), in Big O notation). The complexity analysis indicates that it can be utilized

for lightweight arrhythmia classification at the resource-constrained ultra-edge IoT node.

5.6 Performance Evaluation

This section manifests the simulation results to establish the algorithmic analysis of the

proposed lightweight DL-LAC method that is estimated in the previous section. As we

have employed four different datasets with single-lead ECG, no existing research considered

these many datasets with one lead ECG. The methodologies in the current literature can

be slightly are mostly heavyweight, which makes them slower and not suitable for real-time

analysis at the ultra-edge nodes. Most contemporary work utilizes extensive pre-processing

and feature extraction phases with either binary or multi-class labels (i.e., more than four

heartbeat classes) by analyzing multi-lead ECG data [113]. Therefore, we could not conduct

a comparative analysis from the literature due to the lack of identical experimental settings

(i.e., ECG lead usage and heartbeat class labels). Thus, the proposed method (DL-LAC)

is compared with the traditional techniques (employing single-lead ECG) in terms of clas-

sification performance, memory consumption, and required inference time, using these four

datasets. As the analyzed datasets comprise already segmented heartbeats, our analysis

did not consider the cost of heartbeat segmentation during the inference phase, which may

be required as a fixed cost in real-life use-cases during the running stage. In running phase,

75

standard heartbeat segmentation techniques (e.g., Pan and Tompikins) can be employed

before passing the ECG data to the AI model [114]. However, we did not consider the fixed

cost for heartbeat segmentation in our analysis as the considered dataset already contained

segmented heartbeats.

5.6.1 Performance Indicators

To evaluate the classification results, we adopted the combination of three measurement

indicators, accuracy, weighted precision, and weighted F1 score. The accuracy of a test is

its ability to correctly differentiate the three cases. Considering, C = Number of classes in

the considered classification task, len(yi) = number of samples in the ith class, TPi = the

number of cases correctly identified to be in the ith class, and len(Y) = total number of

samples in all the class, the accuracy can be denoted as Eq. 5.13:

Accuracy =

∑C
i=1(TPi)

len(Y)
. (5.13)

The weighted precision can be expressed as Eq. 5.14. It addresses how precise the model

is out of those predicted to be in ith class, how many of them are actually in ith class, and

the value is multiplied by the weight of the ith class as follows:

Weighted precision =
C∑
i=1

(
len(yi)

len(Y)
∗ TPi
TPi + FPi

). (5.14)

Here, FPi represents the number of cases incorrectly identified to be in the ith class.

Weighted F1 score is the weighted average of precision and recall. Hence, although we

did not use recall directly as a performance measure, because of using the F1 score, it is

implicitly used. The weighted F1 score can be obtained as follows:

Weighted F1 score =

C∑
i=1

(
len(yi)

len(Y)
∗ 2

Pi ∗Ri
Pi +Ri

). (5.15)

In the above equation, the precision and recall of ith class are indicated by Pi and Ri,

respectively. Pi can be expressed as TPi/(TPi+FPi) and Ri can be denoted as TPi/(TPi+

FNi). FNi denotes the number of cases incorrectly identified as a class other than the ith

class.

5.6.2 Results and Discussion

We have conducted comprehensive experiments in a systematic approach to identify the

optimal model. Here, the experimental results can be summarized as follows:

76

1 2 3 4 5
0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

Number of layers in CNN model

P
er
fo
rm

an
ce

m
ea
su
re

Accuracy Precision F1-score

Figure 5.4: Performance variation of the proposed/custom CNN model with varying num-
bers of layers.

• The first phase of the experiment encompasses the hyperparameter tuning to find the

optimal structure of the model. The selected hyperparameters were applied in the

proposed DL-based model.

• In the second phase, we measured the model’s performance employing the trained

model obtained from DS1 and then tested it using MIT-BIH Arrhythmia Database

(DS2), St Petersburg INCART 12-lead Arrhythmia Database (DS3), and Sudden Car-

diac Death Holter Database (DS4).

• In the third phase of the experiment, we evaluated the proposed model’s generalization

ability by utilizing each of the four datasets individually for training and testing

purposes using k-fold cross-validation.

• Finally, numerical analysis is carried out to assess the proposed CNN models’ effec-

tiveness in terms of execution time required and memory consumption in various IoT

devices and compared to the traditional ML techniques.

5.6.2.1 Hyperparameter Tuning

We performed hyperparameter tuning to select the optimal parameters for the proposed

CNN-based model in the initial phase of the experiment. Figure 5.4 demonstrates the

results of manual tuning for the number of convolution layers used in the model by varying

the number from one to five. The experimental results illustrate that, for three convolution

layers, the best performance is achieved with 96.26%, 0.9606, and 0.9604 accuracy, precision,

77

ReLU SELU TanhSigmoid ELU
0.8

0.85

0.9

0.95

1

Activation functions

P
er

fo
rm

a
n

ce
m

ea
su

re
Accuracy Precision F1-score

(a) Large filter size

ReLU SELU TanhSigmoid ELU
0.8

0.85

0.9

0.95

1

Activation functions

P
er

fo
rm

a
n

ce
m

ea
su

re

Accuracy Precision F1-score

(b) Moderate filter size

ReLU SELU TanhSigmoid ELU
0.8

0.85

0.9

0.95

1

Activation functions

P
er

fo
rm

an
ce

m
ea

su
re

Accuracy Precision F1-score

(c) Small filter size

Figure 5.5: Performance comparison for different activation functions with respect to dif-
ferent filter size of the proposed CNN.

and F1-score, respectively. Therefore, we conducted further analysis using three number of

convolution layers in the proposed DL-based architecture.

Furthermore, to select the optimal activation function (Ω) and the number of the initial

filter size (γ), we performed a grid search technique. Figure 5.5 demonstrates the results

obtained from the grid search where 5.5a, 5.5b, 5.5c represents the initial number of filter

equals to large, moderate, and small, respectively. For the grid search, we considered

three sizes for the filters of the first convolution layer, such as large, moderate, and small,

with the value of 300, 150, and 50, respectively. For selecting activation function (Ω), we

experimented with a set of five activation functions: ReLU, SELU, ELU, Tanh, and Sigmoid.

According to performance, the best combination is evident when the activation is ReLU,

78

and the number of filters is large with the accuracy, precision, and F1-score, respectively

96.23%, 0.96004, and 0.9601.

Additionally, to elect the optimal optimizer, batch size, dropout, and epochs, we per-

formed a grid search, which is manifested in Table 5.3. We have conducted the grid search

among six widely used optimizers such as Adadelta, Nadam (Nesterov-accelerated Adaptive

Moment Estimation), SGD (Stochastic Gradient Descent), RMSprop (Root Mean Square

Propagation), Adagrad (Adaptive Gradient Algorithm), and Adam (Adaptive Moment Es-

timation). For the batch size, we tuned the value employing a set of three different values,

such as 1000, 2500, and 5000. For selecting the optimal dropout rate (α), we considered

values from 0.1 to 0.5. We varied the number of epochs (ξ) using three values (i.e., 10, 50,

and 100). The best performing combination is obtained for the Adam optimizer along with

batch size 5000, dropout rate 0.5, and the number of epochs 10. Hence, for further analysis

of the experiment, we employed these parameter values for the model.

5.6.2.2 Inference Results

In the second phase of the experiment, we utilized DS1 as the training dataset and then

tested the model’s performance using DS2, DS3, and DS4 as test datasets. Table 5.4 illus-

trates the results for this phase. In all three test datasets, the proposed model outperformed

the traditional ML methods (i.e., random forest, KNN) in terms of accuracy, precision, and

F1-score. The proposed CNN achieved an accuracy of 94.07%, 92.04%, and 95.83%, while

DS2, DS3, and DS4 are harnessed as the test dataset, respectively. The proposed custom

CNN model is showing superior performance over traditional ML techniques because the

combination of Convolution, sum-sampling, and regularization layers are able to capture

the detailed features from the ECG signal automatically. Furthermore, due to the adaptive

filter reduction in the deep convolution layers, the proposed model can identify significant

points from the ECG with higher efficiency, and because of the use of the regularization

layer, the proposed approach is able to avoid overfitting during training. However, the

traditional methods are lacking the ability to automatically retrieve significant features

Table 5.3: Selected parameters for each optimizer after employing grid search.

Optimizer
Selected paramters

Accuracy
Batch size Dropout rate Epochs

Adadelta 5000 0.2 100 88.55%

Nadam 2500 0.2 10 88.67%

SGD 5000 0.4 100 88.81%

RMSprop 1000 0.4 10 89.19%

Adagrad 1000 0.5 10 89.56%

Adam 5000 0.5 10 91.85%

79

Table 5.4: Performance comparison of CNN with traditional ML methods for the second
experimental setting using DS1 as the training dataset.

Method
Test

Dataset
Accuracy Precision F1-Score

Noise
filtering

Feature
extraction

ECG
type

KNN
DS2 89.83% 0.8541 0.8646

3-phased
noise filtering

Required
Single
lead

DS3 89.76% 0.9281 0.9124
DS4 56.53% 0.7383 0.6991

RF
DS2 89.31% 0.901 0.8957

3-phased noise
filtering

Required
Single
lead

DS3 90.21% 0.8921 0.8844
DS4 85.77% 0.9126 0.8947

CNN
DS2 94.07% 0.9071 0.9176

Not
required

Not
required

Single
lead

DS3 92.04% 0.8991 0.9018
DS4 95.83% 0.9563 0.9573

DS1 DS2 DS3 DS4
0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

Dataset used

P
er
fo
rm

an
ce

m
ea
su
re

Accuracy Precision F1-score

Figure 5.6: Performance of the proposed model for the third experimental setting employing
the four datasets individually (3-fold stratified cross-validation). Here, DSi means the ith

dataset.

from the ECG even after extensive noise-filtering stages. The proposed model outperforms

the traditional methods in terms of performance, but the vital part is that the proposed

technique can achieve great accuracy even with raw ECG signals, without adopting noise-

filtering and typical feature extraction of the ECG. Although the proposed technique does

not require noise-filtering and feature extraction phases, in the inference phase, some pre-

processing costs will be needed due to the standard heartbeat segmentation phase, and this

heartbeat segmentation part results in a fixed cost for all the methods. The results reveal

that the custom CNN-based model is robust in detecting arrhythmia with high accuracy

and lightweight because of using raw single-lead ECG.

In the penultimate experimental phase (third phase), we experimented using each dataset

80

0.0 0.2 0.4 0.6 0.8 1.0
False…Positive…Rate

0.0

0.2

0.4

0.6

0.8

1.0
T

ru
e…

Po
si

tiv
e…

R
at

e

ROC…for…class…F…(area…=…0.94)
ROC…for…class…N…(area…=…0.91)
ROC…for…class…S…(area…=…0.83)
ROC…for…class…V…(area…=…0.98)

(a) ROC curve employing DS1 (AUC Score:
0.9113)

0.0 0.2 0.4 0.6 0.8 1.0
False…Positive…Rate

0.0

0.2

0.4

0.6

0.8

1.0

T
ru

e…
Po

si
tiv

e…
R

at
e

ROC…for…class…F…(area…=…0.98)
ROC…for…class…N…(area…=…0.94)
ROC…for…class…S…(area…=…0.90)
ROC…for…class…V…(area…=…0.99)

(b) ROC curve employing DS2 (AUC Score:
0.9406)

0.0 0.2 0.4 0.6 0.8 1.0
False…Positive…Rate

0.0

0.2

0.4

0.6

0.8

1.0

T
ru

e…
Po

si
tiv

e…
R

at
e

ROC…for…class…F…(area…=…0.90)
ROC…for…class…N…(area…=…0.98)
ROC…for…class…S…(area…=…0.92)
ROC…for…class…V…(area…=…0.98)

(c) ROC curve employing DS3 (AUC Score:
0.9796)

0.0 0.2 0.4 0.6 0.8 1.0
False…Positive…Rate

0.0

0.2

0.4

0.6

0.8

1.0

T
ru

e…
Po

si
tiv

e…
R

at
e

ROC…for…class…F…(area…=…0.91)
ROC…for…class…N…(area…=…0.93)
ROC…for…class…S…(area…=…0.95)
ROC…for…class…V…(area…=…0.93)

(d) ROC curve employing DS4 (AUC Score:
0.9340)

Figure 5.7: Area Under the Receiver Operating Characteristic (AUROC) curve derived for
the third experimental settings utilizing 3-fold stratified cross-validation.

individually, as manifested in Fig. 5.6, employing 3-fold stratified cross-validation to validate

the generalization capability of the proposed model. Stratification is a method in which

the samples are rearranged to have a stable representation of the whole dataset by pre-

serving the portion of samples for each class [115]. The cross-validation is performed after

splitting each of the four datasets into 80%-20% for training and testing purposes. On the

testing part of the dataset, the accuracy values of the model are 94.79%, 94.12%, 94.97%,

and 96.67%, respectively, for DS1, DS2, DS3, and DS4. The encouraging results illustrate

the model’s ability to generalize diverse types of ECG signals to classify arrhythmias. To

investigate the classification efficiency for each class, we manifested the AUROC curve for

each class. Figure 5.7 exhibits the ROC curves where 5.7a, 5.7b, 5.7c, and 5.7d corresponds

to the ROC curves for DS1, DS2, DS3, and DS4, respectively. For each dataset, the model

81

Core-i7 Cortex-A57 Cortex-A72 Cortex-A53
0

5

10

15

20

25

30

35

40

45

Devices

T
im

e
(s
ec
)

CNN KNN RF DDE

(a) Time required for different devices (in seconds)

Core-i7 Cortex-A57 Cortex-A72 Cortex-A53
0

20

40

60

80

100

Devices

M
em

or
y
co
n
su
m
p
ti
on

(%
)

CNN KNN RF DDE

(b) Memory consumption (%) by different methods
for different devices

Figure 5.8: Required execution time and memory consumption of various methods on a
workstation and different micro-controllers used as a proof-of-concept for the smart sensor.

demonstrated a high AUC score. The AUC scores for the four datasets are 0.9113, 0.9406,

0.9796, and 0.9340 for DS1 to DS4, respectively. The promising results prove the model’s ef-

ficiency in distinguishing different classes of heartbeats to classify arrhythmia by employing

a raw ECG signal.

5.6.2.3 Numerical Analysis

Finally, we conducted the numerical analysis in terms of time delay and memory consump-

tion (in percentage) of the proposed model and compared it with traditional ML approaches

(i.e., KNN, RF). Here, we have numerically calculated the approximated time and memory

requirements for the proposed and traditional methods, considering that the ECG heartbeat

segmentation is already performed because the segmentation was already completed in the

adopted datasets. However, in the real-life arrhythmia monitoring use-case, the automatic

heartbeat segmentation is expected to consume a fixed time and memory for all the meth-

ods. Figure 5.8 illustrates the results obtained from the analysis. The initial experiment

was conducted on a workstation with Intel Core i7, 3.00GHz CPU, 16 GB RAM, powered

by Nvidia RTX 2060 GPU. We approximated the time and memory consumption required

for different IoT devices to determine the model’s potential to integrate with the logic-in-

sensor. The microprocessor-based IoT devices we considered for the numerical analysis are

Jetson Nano (Quad-core ARM A57 @ 1.43GHz), Raspberry Pi 4 (Quad-core Cortex-A72

@ 1.5GHz), and Raspberry Pi 3 (Quad-core Cortex-A53 @ 1.4GHz). Figs. 5.8a and 5.8b

exhibit that the proposed CNN-based model can be beneficial for real-time analysis of the

ECG signal as the model can perform efficiently with limited resources due to employing

raw-ECG signal without any manual feature extraction.

The complexity analysis explained in Sec. V and the experimental outcomes presented in

82

this section precisely confirm that the proposed lightweight ECG classification method can

be considered as a viable solution for embedding intelligence into the resource-constrained

ultra-edge IoT nodes. The proposed DL-LAC method’s generalization aptitude was eval-

uated on four separate, publicly available real datasets by adopting multiple experimental

settings. Promising experimental results signify that the proposed method performed with

efficiency in all the experiments. Therefore, the model can be utilized for the ultra-edge

IoT sensors to enhance healthcare services.

5.7 Summary

Centralized cloud-based analytics and edge analytics on smart devices are the traditional

health automatic monitoring approaches. To make smart health even effective and secure, in

this chapter, we focus on the necessity to go beyond the realms of conventional methods and

investigate how to incorporate intelligence into the ultra-edge IoT nodes. As an example

of smart ultra-edge health monitoring, we selected arrhythmia (a cardiovascular disease)

classification by analyzing the ECG signal. As the sensors are resource-constrained, we

designed a DL-based lightweight heartbeat classification model named DL-LAC that uti-

lizes raw single-lead ECG to classify arrhythmia with encouraging efficiency, eliminating

the necessity of pre-processing (i.e., noise-filtering) and feature extraction. We compared

the proposed method with traditional machine learning (e.g., KNN, random forest) and the

DDE-based optimization technique. The proposed method’s generalization ability was eval-

uated using four different datasets. The datasets contain segmented heartbeats of the ECG

signal; hence, we did not consider the expected cost (i.e., time and memory requirements)

of the heartbeat segmentation. However, in a real-life use case for all the methods analyzed

in this chapter, there would be a fixed cost for the heartbeat segmentation. By adopting

multiple experimental settings, the promising results manifest that the proposed DL-LAC

technique has the potential to be coupled with smart IoT sensors for ultra-edge computing

to enhance the existing ECG monitoring system. Therefore, this research can be considered

as a pioneering footprint to encourage the sensor foundries to consider embedding intelli-

gence into IoT devices, and if it can be produced in mass production, the fabrication cost

of the intelligent sensors can be significantly reduced.

83

Chapter 6

Asynchronous Federated

Learning-Based ECG Analysis for

Arrhythmia Detection: A Remote

Health Monitoring Use-case

With the rapid elevation of technologies such as the Internet of Things (IoT) and Artificial

Intelligence (AI), the traditional cloud analytics-based approach is not suitable for a long

time and secure health monitoring. The privacy issues of the acquired ECG data and other

health data of the patients have also arisen much concern in the cloud analytics approach.

Although the recent push towards moving intelligence closer to the edge has the potential

to minimize the massive privacy concern of the conventional cloud-based method, it still

lacks the ability to enhance itself via online learning. To accelerate the healthcare system for

remote patient monitoring, we have considered a critical use-case of cardiac activity monitor-

ing by detecting arrhythmia from analyzing Electrocardiogram (ECG). We have envisioned

an asynchronous Federated Learning (FL) architecture for arrhythmia classification using

the local ECG data acquired within each mobile smart sensor, deployed at the Ultra-Edge

Nodes (UENs). The envisioned paradigm allows privacy-preservation as well as the ability

to accomplish online knowledge sharing by performing localized and distributed learning

in a lightweight manner. Our proposed federated learning architecture for ECG analysis

is further customized by asynchronously updating the shallow and deep model parameters

of a custom Convolutional Neural Network (CNN)-based lightweight AI model to minimize

valuable communication bandwidth consumption. By considering four different heartbeats

classes, the proposed model’s performance and generalization abilities are assessed, employ-

ing four distinct publicly available datasets. The experimental results demonstrate that

the proposed asynchronous federated learning approach can obtain identical classification

84

performance compared to the existing techniques while also ensuring privacy, adaptability

to different subjects, and minimizing the network bandwidth consumption.

6.1 Introduction . 84

6.2 Related Work . 87

6.3 Problem Description . 87

6.4 System Design and Proposed Asynchronous Federated Learning-Based Algo-

rithm . 89

6.5 Performance Evaluation . 92

6.5.1 Data Preparation . 92

6.5.2 Simulation Setup . 93

6.5.3 Results and Discussion . 94

6.6 Summary . 96

6.1 Introduction

The Internet of Things (IoT) is apprehended to be an indispensable enabler of the next gen-

eration smart society. With the growing demand for remote health monitoring, the need for

a paradigm shift from Artificial Intelligence (AI)-aided centralized remote cloud computing

toward edge analytics for biomedical devices is rapidly growing [116]. Conventionally, the

IoT devices and wearables have been utilized to collect and trace various well-being indi-

cators such as Electrocardiogram (ECG), Electroencephalogram (EEG), and so forth. For

implementing remote health monitoring, this traditional cloud-based analytics paradigm of

regular IoT monitors contributes to prolonged delay, massive bandwidth consumption, and

privacy concerns associated with the user’s health data. In recent research, these challenges

of traditional analytics were addressed and overcame with the emergence of a lightweight AI

model deployed at the ultra-edge IoT nodes [117]. However, the ultra-edge health monitor-

ing system lacks online learning capability, which cannot be achieved without re-training.

Hence, in this paper, we address this pressing need of designing a distributed online learning

technique (i.e., Federated Learning) using the Ultra-Edge Node (UENs) as the participating

users, as depicted in Fig. 6.1, to bring localized intelligence to biomedical edge devices as

well as ensuring the online learning capability.

We can summarize the main contributions of the paper as follows:

• Firstly, as depicted in Fig. 6.1, we enunciate the inherent shortcoming of the tra-

ditional cloud analytics-based health data analysis and reveal the pressing need for

85

Traditional
focus

Sensor

User-terminal

AI at the Remote
cloud server

Traditional cloud analytics of health data leads to
increased overhead (i.e., delay, bandwidth) and

growing privacy issues.

𝑈𝐸𝑁𝑘

Central
server

How to use a lightweight AI
model in an online

distributed learning
architecture to ensure
privacy and reduce

overhead?

Research objective

Deep local model Shallow local modelGlobal modelLegends

AI logic
+

Sensing
AI logic

+
Sensing

𝑈𝐸𝑁2

AI logic
+

Sensing

𝑈𝐸𝑁1

Our
focus

Figure 6.1: Our main focus is to develop an asynchronously federated learning-based ECG
analytic methodology at the distributed Ultra-Edge nodes (UENs) to classify irregular
heartbeats while preserving patient-data privacy.

deploying lightweight AI solutions in a collaborative, distributed, and online paradigm

to move the AI analytics from the cloud to the ultra-edge nodes to facilitate uninter-

rupted remote health monitoring with enhanced privacy.

• Among a diverse set of use-cases, we have chosen the use-case of cardiac arrhythmia

monitoring by analyzing ECG data. Arrhythmia is a significant contributor to cardio-

vascular diseases (CVD). Despite various technological advancements in the healthcare

system, cardiovascular disease such as arrhythmia serves a noteworthy global public

health predicament. It is still the most prominent life-threatening disease worldwide,

with 15–20% of global mortalities [83]. According to American Heart Association

(AHA), CVD costs will rise to approximately $750 billion by 2035. However, due to

the privacy-sensitive of the ECG and the complexities of collecting ECG, obtaining a

significant quantity of ECG to train a centralized machine learning (ML)-based model

of arrhythmia detection is quite complicated and even not feasible under some circum-

stances such as remote monitoring of subjects. To ensure remote and secure cardiac

monitoring in a lightweight manner with online learning ability, we employ two vari-

86

ations of the federated learning paradigm: asynchronous federated learning (referred

to as Async-FL) and synchronous federated learning (referred to as Sync-FL). We

propose the Async-FL as the most suitable distributed learning architecture for ECG

analysis. It ensures less overhead and can obtain identical classification efficiency

compared to the Sync-FL.

• As depicted in the second part of Fig. 6.1, our focus is to develop an agile data acquisi-

tion system for ECG for arrhythmia detection with mobile and deployable ultra-edge

nodes (UENs) acting as edge computing nodes. A UEN can be considered a sensing

node with a localized AI model to collect and gain knowledge from the subject’s ECG

data. As the AI model, we have used a (1-D) convolutional neural network (CNN)-

based deep learning model (DL-LAC model) previously designed in one of our earlier

papers [117]. We had presented that the proposed model can be used to classify heart-

beats employing raw single-lead. The AI model does not require any pre-processing

(i.e., noise-filtering) of the ECG signal, making the system lightweight and easy to

integrate with the ultra-edge node. To design a distributed learning setup, the model

will be initially trained and deployed to the UENs; upon deploying, the model will

be updated asynchronously using the Async-FL architecture. After updating its local

AI model, the UEN shares the model parameters with neighboring UENs and the

cloud by efficiently scheduling the shallow and deep parameters to reduce the com-

munication overhead. By employing this unique concept of asynchronously updating

AI model parameters (i.e., model weights) of the UENs, the privacy of the acquired

medical data and network efficiency are jointly preserved.

• Rigorous experimental analysis of our proposed Async-FL approach is presented using

four publicly open and clinically graded ECG datasets. The encouraging results of the

proposed method illustrate its potential to implement the envisioned concept in remote

cardiac activity monitoring as a practical solution. To the best of our knowledge, there

is no existing work in the literature that focuses on the distributed and online machine

learning architecture for remote cardiac monitoring (i.e., arrhythmia) employing the

ultra-edge IoT nodes (UENs) and Async-FL.

The remainder of the chapter is organized as follows. Section 6.2 surveys the relevant re-

search work on combating arrhythmia with AI techniques. The formal problem is described

in section 6.3. Next, our considered distributed learning focused asynchronously updating

federated learning-based system model and proposed asynchronously updating federated

learning algorithm is presented in section 6.4. The performance of our proposal is evaluated

in section 6.5. Finally, section 6.6 concludes the chapter.

87

6.2 Related Work

In cloud-based ECG monitoring systems, several techniques are utilized, including feature

extraction and classification. Discrete Wavelet Transformation (DWT) and Artificial Neu-

ral Network (ANN) were adopted for feature extraction, and for binary classification of

heartbeat (normal or abnormal) are used in [118]. The authors in [98] trained a neural

network (i.e., convolutional neural network) to classify 12 cardiac rhythm categories using

the single-lead ECGs and achieved a higher classification efficiency than the traditional

cardiologists. DWT and non-linear delay differential equations (DDE)-based optimization

techniques [103], proposed in the literature for time-series ECG monitoring task, are unable

to infer the system models in varying heart conditions adequately. An exhaustive explo-

ration needs to be conducted to choose the most proper structure for the classification task

using these approaches. For choosing an optimal DDE-based classification model, a Genetic

Algorithm (GA) was applied in [105]. In another research [119], sparse decomposition was

adopted for efficient feature extraction, and K-Nearest Neighbor (KNN), Support Vector

Machine (SVM), and Radial Basis Function Neural Network were applied for classification.

In another work, [120] the authors employed different separate manual feature extraction

techniques to determine features such as P-wave interval, QRS interval, and QT interval

from 12-lead ECGs and applied the support vector machine model to detect myocardial

infarction. However, most of the existing literature works are not focusing on designing

lightweight AI models and are utilizing a centralized ML algorithm to ignore the privacy

leaks in collecting data. This means that private ECG data need to be collected and shared

to train a data-driven ML model to detect the arrhythmia events. Hence, these approaches

are impractical in ultra-edge nodes due to their significantly high computational complexity.

The edge computing-focused ECG analytics was investigated in a few studies. Authors

in [121] developed an ECG analysis algorithm with noise-filtering and manual feature ex-

traction phases and implemented it on an IoT-based embedded platform. To press the need

for collaborative online learning, the authors in [122] introduced a federated learning-based

distributed algorithm that allows each medical hospital to participate in the AI model’s

training locally cooperatively. However, in the existing literature, the viability of the de-

centralized online federated learning technique for deployment in the ultra-edge nodes for

remote ECG monitoring is still yet to be explored elaborately, and hence we focus on this

research gap in this paper.

6.3 Problem Description

Cardiac arrests and arrhythmias are indirectly related to pandemics such as COVID-19

infection, especially among the more critical subjects [123, 124]. Along with the rapidly

88

changing variations of the COVID-19, their effect on cardiac activities needs to be monitored

in a distributed manner to obtain the varying impact of different strains and a wide range

of data distributions on the cardiac status. In rural areas where healthcare services are

challenging to access for long-time cardiac monitoring, the UENs need to provide service

coverage for subjects. The cardiac state (i.e., irregular heartbeats) of each subject can

be obtained from each UEN. Multiple UENs can summarize a particular area so that the

medical service providers can get an overall representation of the region. Thus, the initial

challenge is to expedite distributed learning among the UENs to adapt and enhance itself

with varying data distribution acquired from different UENs via the collaborative and online

learning approach. Furthermore, there is a massive privacy requirement for the private data

of the users as they are not willing to share the raw health-related data with a remote cloud

server to avoid potential security threats.

Moreover, for each UEN, the private data should be utilized securely without transmit-

ting raw data somewhere else and then removed upon local automatic decision making is

completed. Thereby, the UENs need a distributed learning architecture to extract distinc-

tive ECG features with enhanced privacy and learning efficiency. This task of decentralized

or distributed collaborative learning can be a critical challenge because the UENs will not

have the global status of all the other subjects. To resolve this challenge, we have investi-

gated the different variations of federated learning techniques such as typical synchronous

federated learning and asynchronous federated learning. The UENs who will act as the edge

users in this collaborative learning scenario could also exchange knowledge gained from pri-

vate data with the server to obtain global knowledge and ensure online learning capability.

This approach will ensure data privacy, reduced latency, and adaptation ability to varying

data distribution among diverse subjects. After receiving the local models from the UENs,

the server will update the global model to obtain an optimized and efficient arrhythmia

detection model. In other words, the purpose of loss function minimization can be observed

as follows:

min

n∑
i=1

Xi
X
fi(w), (6.1)

where fi(w), Xi, and X denote the loss function of UEN i, the private ECG sample data of

UEN i, and the ECG data used by the cloud for training, respectively. The weight vector

(w) of each UEN is denoted by w, indicating the parameters of the local AI model. With

the increasing prediction error, the value of the loss function rises. Thereby, during the

communication rounds in the learning phase, the constraint here is to ensure consistent

weight parameters of the local AI models upon receiving the updated model from the server

for learning convergence. The UENs and the server can utilize the global model for local

decision-making without sharing raw ECG samples of each subject.

89

1 Check connectivity with the server

2 Store the UENs’ information into storage block

Send initial model parameters to the UENs3 6 Server performs aggregation of all the UENs’
model parameters

Local training in the UEN with private data4 Store updated global model into storage
block

7

Local model parameters are sent to the server
based on the following logic:

if (round 𝑖 mod Δ == 0):
Send deep model parameters

else:
Send shallow model parameters

5

. . .

. . .

. . .

. . .

Ultra-Edge Node
(UEN)

Cloud server

Storage block

𝑼𝑬𝑵𝟐

𝑼𝑬𝑵𝟏

𝑼𝑬𝑵𝑲

Initialization
Training

Learning phase Global reporting

Aggregation

Round 𝟏

Training

Training

7
65

4

4

4

2

31

Initialization
Training

Learning phase Global reporting

Aggregation

Round 𝑻

Training

Training

7
65

4

4

4

2

31

Figure 6.2: Ultra-edge Node (UENs)-based Distributed System Design.

In summary, the research challenge is to devise a system so that each UEN is competent

in training a distributed global model to update its local model by adopting its own private

raw ECG data. Each UEN can also broadcast its updated local model to the neighboring

UENs and the cloud server for asynchronous updates of the global model. This collaborative

learning process will continue as long as the loss function is not minimized and the global

model accuracy reaches a pre-defined performance threshold. Hence, in this paper, the

primary research challenge is to develop such a decentralized learning architecture that will

ensure effective decision-making (i.e., arrhythmia detection) with enhanced data privacy

and minimize network overhead.

6.4 System Design and Proposed Asynchronous Federated

Learning-Based Algorithm

In this section, firstly, we present our envisioned asynchronous federated learning model for

privacy-preserving arrhythmia screening in Fig. 6.2. After that, we describe the algorithm

of the proposed method that contains Algorithms 8 and 9. The global and local AI models,

constructed at the cloud and UENs, are facilitated by a customized lightweight CNN model.

The deep learning model (referred to as Deep Learning-Based Lightweight Arrhythmia

Classification, DL-LAC) was conceptualized in our earlier work in [117] for a centralized

arrhythmia prediction at the ultra-edge sensors. The adopted lightweight AI model which

will be deployed at the UENs for ECG analysis accepts a single-lead raw ECG heartbeat

as input, represented as X = [x1, x2, x3, . . . xn], and outputs predicted class labels Y =

90

[y1, y2, y3, . . . yk]. Here, yk ∈ {0, 1}, which indicates whether that particular heartbeat

belongs to kth class or not.

In Fig. 6.2, we depict the fundamental steps of the AI-enabled asynchronous federated

learning-based system model. As the AI model, we utilize the automated deep learning-

based one-dimensional (1-D) custom lightweight CNN model discussed in the paper [117] as

it does not necessitate any noise-filtering and manual feature extraction and it detects unique

patterns automatically from the raw single-lead ECG signal. The Async-FL architecture

essentially consists of 7 stages. There are three components in the system model: Ultra-

Edge Nodes or the UENs, storage block, and cloud server. Firstly, during the initialization

phase, at time t, each UEN checks the connectivity with the cloud server. Upon getting the

connectivity with the server, the server stores the UEN’s information in the storage block

and sends the initially trained AI model to the UEN so that it can update its local AI model.

After the UEN obtains the AI model, in the learning phase, it utilizes the learning process

model using the private ECG data acquired at the UEN. In the global reporting phase, the

local model parameters (shallow or deep depending) of each UEN are delivered to the server

for aggregation. Later on, the server aggregates and updates the global model with all the

information obtained from the UENs. The newly updated global model is then stored into

the storage block for future use of the UENs. This overall process can be performed T times

at each UEN.

Algorithm 8 depicts the algorithm that takes place at the remote cloud server to update

the global model. As input, the algorithm takes the set of local model parameters or weights

of all UENs, denoted as W , and it delivers the updated global model (Mg). Steps 1 and 2

of this algorithm are the initialization phases. In steps 3 to 6, the transmitted local model

parameters (W) of all UENs are aggregated to update the global model, Mg. The learning

performance of the model is accessed in step 5, and during every iteration, it is compared

with the previously defined loss threshold (ξ). Therefore, the overall learning process at the

remote cloud server takes place as long as the current loss value is higher than ξ.

Algorithm 8: Local models’ aggregation at the remote server

Input : W (Collection of local model parameters/weights of all UENs)
Output: Mg (global model)

1 ξ ← define the minimum loss threshold
2 Mg ← load the existing global model from storage
3 while (currloss > ξ) do
4 W ← load local model parameters of all UENs update Mg by aggregating all

the local parameters (W)
5 currloss ← compute current loss of Mg

6 end
7 return Mg

91

Algorithm 9: Learning at each UEN

Input : j (the current UEN), Mj (local model of UEN j), ∆ (time-round), T
(total number of communication rounds), α (deep parameter ratio,
0 < α < 1)

1 initialize Mj with the primarily trained AI model
2 δ ← initialize ECG data size threshold
3 initialize timestepj and blockj
4 Xj ← obtain new data
5 Xj ← validate the size of Xj by comparing with δ
6 for (t=1 to T) do
7 if (t mod ∆)=0 then
8 t is assigned to timestepj
9 Wj ← extract local weights of α from Mj

10 deliver Wj , blockj , and timestepj to the server

11 else
12 Wj ← extract local weights of (1− α) from Mj

13 deliver Wj to the server

14 end
15 Mj ← obtain updated model from the server
16 blockj ← store global model state and data access information of time t

17 end
18 delete Xj from storage

The algorithm that runs on the UEN’s side is manifested in Algorithm 9. We have

considered the algorithm that runs on one UEN (referred to as UEN j) in the Algorithm

9. The algorithm initiates with the inputs; these inputs’ details are demonstrated in the

algorithm’s input fragment. First, in step 1, the local model of UEN j, Mj is initialized

with the initially trained AI model. In steps 2 and 3, the initialization of different necessary

parameters takes place. Step 4 loads the new private data, Xj , and its size by comparing

it with the ECG data size threshold δ in step 5.

The iteration starting at step 6 denotes that the overall training process at each UEN

occurs from iterations t = 1 to t = T . The parameter T can be considered as the number of

communication rounds during which the whole process at each UEN is executed. After ∆

time rounds, when this condition is satisfied in step 7, time t is stored in timestepj list. Also,

the local weight (Wj) with deep parameters and relevant access and time-step information

(blockj , timestepj) are communicated to the cloud in steps 9 and 10. Here, α denotes the

deep parameter exchange ratio, indicating the deep parameter ratio contributing to the

deep exchange. The parameter timestepj holds the iteration information when the deep

parameter exchange with the cloud takes place. In steps 11 to 14, the local weight (Wj)

shallow parameters of the (1 − α) ratio from the local model (Mj) are transferred to the

92

2 4 6 8 10 12 14 16 18 20
0.92

0.93

0.94

0.95

0.96

Communication round

A
cc

u
ra

cy
Async-FL
Sync-FL

(a) Learning accuracy

2 4 6 8 10 12 14 16 18 20

0.16

0.18

0.2

0.22

0.24

0.26

Communication round

L
os

s
(M

S
E

)

Async-FL
Sync-FL

(b) Value of loss function

Figure 6.3: The performance comparison of two federated learning architectures during the
learning/training phase over varying communication rounds (employing DS1).

server. Step 15 updates the local model of UEN j by using the aggregated model obtained

from the server. In step 16, all the global model states and information regarding time-step

t is stored in the blockj for future reference. Finally, in step 18, after training for T rounds,

the utilized data Xj are permanently removed from the cache to enhance the security of

the user’s data.

6.5 Performance Evaluation

6.5.1 Data Preparation

We evaluated the generalization potential of the adopted FL-based distributed cardiac mon-

itoring architecture employing four publicly available arrhythmia detection datasets. We

utilized the MIT-BIH Supraventricular Arrhythmia database, referred to as DS1 [106] for

the learning/training purpose. Then, the adopted techniques were extensively tested using

three other public datasets from the Physionet repositories, such as the MIT-BIH Arrhyth-

mia database, INCART 12-lead Arrhythmia database, and Sudden Cardiac Death Holter

database, referred to as DS2 [107], DS3 [43], and DS4 [108], respectively. The recommenda-

tion of the Association for the Advancement of Medical Instrumentation (AAMI) is utilized

for the arrhythmia classification task. We have considered four classes of heartbeats, namely

N , S, V , and F , in developing this multi-class classification task, which represents normal,

supraventricular ectopic, ventricular ectopic, and fusion beats, respectively [85].

93

Table 6.1: Classification performance of adopted FL architectures over varying number of
Ultra-Edge Nodes (UENs) using three different test datasets.

Method Dataset Metrices
Number of Ultra-Edge nodes

2 4 6 8 10

Sync-FL

DS2
Accuracy 0.88874 0.88979 0.88969 0.87833 0.87717
Precision 0.87830 0.87949 0.87440 0.86868 0.87193
F1-score 0.88061 0.88151 0.88122 0.87185 0.87198

DS3
Accuracy 0.89293 0.88947 0.88612 0.89517 0.86304
Precision 0.88463 0.86772 0.85985 0.88153 0.83830
F1-score 0.86715 0.86181 0.86750 0.86573 0.84906

DS4
Accuracy 0.76714 0.77717 0.75305 0.73222 0.74874
Precision 0.94192 0.95222 0.94839 0.95070 0.95052
F1-score 0.61370 0.78300 0.83498 0.82060 0.79105

Async-FL

DS2
Accuracy 0.86853 0.87911 0.89147 0.87903 0.87837
Precision 0.87277 0.87818 0.88315 0.87529 0.87749
F1-score 0.86915 0.87554 0.88723 0.87520 0.87505

DS3
Accuracy 0.87094 0.88612 0.89478 0.89524 0.89892
Precision 0.84107 0.85985 0.88966 0.88134 0.89130
F1-score 0.85204 0.86750 0.86772 0.86862 0.87387

DS4
Accuracy 0.74033 0.73773 0.73240 0.76935 0.76287
Precision 0.95062 0.94869 0.94417 0.95335 0.94796
F1-score 0.81196 0.82400 0.73588 0.84454 0.69541

6.5.2 Simulation Setup

We have evaluated the performance of the FL architectures on four different classification

performance metrics such as accuracy, weighted precision, weighted recall, and area under

the receiver operating characteristic curve (AUC score). To identify the architectures’

time and memory requirements, we have also determined the required time in seconds

and memory requirement percentage for varying numbers of UENs. In the experimental

analysis, the number of UENs contains different values such that UEN ∈ {2, 4, 6, 8, 10}.
Independent of the underlying AI model, two variations of the proposed federated learn-

ing architecture based on a custom lightweight CNN model, are simulated that are referred

to as Async-FL and Sync-FL, respectively, for brevity. Also, we define the number of com-

munication rounds/iterations and time-round to evaluate our proposal’s performance. A

communication round or iteration refers to the number of times the whole process runs (e.g.,

the local training for the UENs and exchanging parameters). In terms of the Async-FL,

a time-round consists of multiple iterations/communication rounds, after which the cloud

is updated with the deep weights. Note that the concept of time-round is exclusive to the

Async-FL only, and in terms of the Sync-FL, deep model exchange occurs in every commu-

nication rounds. In other words, an iteration is an atomic unit relative to the time-round.

For instance, in the Async-FL architecture, if the number of iterations is 20 and the num-

ber of time rounds is 5, then for the 5th, 10th, 15th, and 20th iteration, the deep model

update is triggered in our proposed approach while the shallow model parameter update

takes place during the other iterations. The number of iterations or communication rounds

94

is set to 20 for both FL variations. For the Async-FL, the value of time-round is 5. In the

CNN model, the epoch and batch-size are fixed to 10 and 5000, respectively. The Recti-

fied Linear Unit (ReLU) is employed as the activation function. At the same time, Adam

(Adaptive Moment Estimation) is used as the optimizer to select and regularly update a

preconditioned stochastic gradient descent. The adopted CNN model is adopted from the

proposed DL-LAC model presented in paper [117]. It consists of three convolution layers,

followed by three fully connected layers and the output layer.

6.5.3 Results and Discussion

2 4 6 8 10
0.92

0.93

0.94

0.95

0.96

Number of ultra-edge sensors

A
U

C
S

co
re

Async-FL
Sync-FL

(a) AUC Score (DS2)

2 4 6 8 10
0.94

0.95

0.96

0.97

Number of ultra-edge sensors

A
U

C
S

co
re

Async-FL
Sync-FL

(b) AUC Score (DS3)

2 4 6 8 10
0.84

0.86

0.88

0.9

Number of ultra-edge sensors

A
U

C
S

co
re

Async-FL
Sync-FL

(c) AUC Score (DS4)

Figure 6.4: AUC score values acquired in the inference phase of the Sync-FL and Async-FL
methods using different test datasets (i.e., DS2, DS3, and DS4).

Firstly, employing the DS1, we train the synchronous and asynchronous federated learn-

ing architectures, referred to as Sync-FL and Async-FL. Fig. 6.3 compares the learning

accuracy and loss of the Sync-FL and Async-FL architectures over a varying number of it-

95

2 4 6 8 10
0.05

0.06

0.07

0.08

0.09

0.1

0.11

0.12

Number of ultra-edge sensors

T
im

e
(s
ec
)

Async-FL Sync-FL

(a) Time required for different devices (in seconds)

2 4 6 8 10
8

9

10

11

12

13

14

Number of ultra-edge sensors

M
em

or
y
co
n
su
m
p
ti
on

(%
)

Async-FL Sync-FL

(b) Memory consumption (%) by different methods
for different devices

Figure 6.5: Required execution time and memory consumption for varying number of UENs
(inference phase).

erations/communication rounds. In Fig. 6.3 we have demonstrated the mean accuracy and

loss curve for different numbers of UENs (i.e., 2, 4, 6, 8, and 10). Note that the UENs start

the first communication rounds with a centrally trained AI model, hence even in the first

iteration/round, it obtains more than 90% accuracy. Notice from Fig. 6.3a that both mod-

els’ learning accuracy reaches almost 95% over time. Both the variations of our proposal

gain higher accuracies with the increasing number of communication rounds. During the

initial rounds, the Sync-FL showed better performance than the Async-FL; however, both

architectures obtain almost identical learning performance as the communication rounds

progress. A similar trend is also illustrated in the learning loss, manifested in terms of the

mean squared error (MSE), in Fig. 6.3b.

After the learning phase, we investigate the FL architectures generalization ability in the

inference phase on three datasets (e.g., DS2, DS3, and DS4). Table 6.1 demonstrates the

classification performance of adopted FL architectures over a varying number of UENs using

the different test datasets. The results indicate that both the adopted FL architectures

achieved encouraging classification accuracy in the test datasets, especially in DS2 and

DS3. The Sync-FL shows superior performance than Async-FL when the number of UEN

is relatively low. However, as the number of UEN increased, the classification performance

showed better results in the case of the Async-FL for each of the adopted test datasets. A

similar trend is also observed in terms of the other two performance metrics (i.e., precision

and f1-score).

Next, in Fig. 6.4 we explore the AUC score to identify the area under the ROC curve by

using DS2, DS3, and DS4 as the test dataset of the inference phase. Both FL architectures

obtained robust AUC scores for all three adopted test datasets. A similar trend to the

accuracy values demonstrated in Table 6.1 is also observed in the AUC score values as the

96

Sync-FL obtains better scores when the number of UEN is low. Whereas, for the increasing

number of UENs, the Async-FL’s AUC score values are superior to the Sync-FL. The results

prove that even though the Async-FL architecture transmits learned deep model parameters

after time-round (∆), as the number of users (i.e., UEN) grows higher, the classification

performance becomes more robust. The encouraging arrhythmia detection performance

ensures the proposed Async-FL’s viability for deploying in an online collaborative learning

paradigm.

In the next simulation setup in Fig. 6.5, we compare the required execution time and

memory consumption for the inference phase for the proposed Sync-FL and Async-FL ar-

chitectures. For a varying number of UENs, the average execution time (in seconds) needed

in the inference phase by both FL paradigms is shown in Fig. 6.5a, and the memory con-

sumption (in percentage) is displayed in Fig. 6.5b. Although both systems can generate

results in a low amount of time and memory requirements, due to regulating the deep model

exchange ratio in the Async-FL technique, the execution time and memory consumption are

lower than the counter-part Sync-FL approach. The low time and memory demand of the

Async-FL architecture ensure its suitability to get used in a collaborative online learning

approach with the resource-constrained ultra-edge IoT nodes.

6.6 Summary

In this paper, we have proposed an asynchronously updating federated learning architecture

(Async-FL) for mobile and deployable Ultra-Edge Nodes (UENs) to build decentralized

and collaborative arrhythmia detection without the need for direct ECG data exchange

with the cloud. We employ raw single-lead ECG data to design the distributed federated

learning architecture, preserve patient data privacy, and mitigate the network overhead.

Extensive experimental results demonstrated the viability of the proposed Async-FL in

terms of lightweight operation (e.g., low execution time and memory consumption) while

attaining a considerable arrhythmia detection accuracy. Our proposal also leads to lower

network overhead (i.e., bandwidth consumption, time, and memory requirements) for an

increasing number of UENs. As the demand for remote patient monitoring is escalating with

the emergence of pandemics such as the novel coronavirus, this particular ECG monitoring

use-case using the asynchronous federated learning paradigm can lead the way to implement

the envisioned future generation smart and remote health monitoring system at a mass scale.

97

Chapter 7

Conclusions and Future Works

This chapter summarizes the contributions of the dissertation work and manifests potential

future research directions.

7.1 Contributions

In this thesis, we investigate the development of different lightweight artificial intelligence-

based models, specifically deep learning-based models, so that the logic can be integrated

with the resource-constrained ultra-edge IoT nodes for localized decision-making in diverse

challenges associated with remote health monitoring. Along with the rapid advancements

of enabling technologies such as AI, IoT, and 5G, B5G networks, the demand for remote

health monitoring is also escalating on a regular basis. Especially in this time of urgency

of the pandemics such as the COVID-19, remote health monitoring has become even more

demanding. Therefore, to address this growing demand, we have first identified why the

traditional cloud analytics-based architectures are not suitable for remote health monitoring

at a mass scale. We shed light on the necessity of moving intelligence towards the ultra-edge

IoT nodes. The ultra-edge IoT nodes are resource-constrained; hence, they need lightweight

AI models for decision making and data delivery. In this goal, we propose different custom

deep learning-based models to achieve lightweight and efficient AI solutions and compare

the results with typical machine learning models. We mainly explore the implications of

supervised learning tasks from three considered layers/planes of IoT, namely, sensing, com-

munication, and computing layer. The empirical results are obtained by analyzing publicly

available real datasets that have been adopted for evaluating the proposed methodologies

on several performance indicators.

Towards conducting the research experiments, there were several challenges associated

with each of the research works that future researchers can anticipate in the future. In

chapter 3, for MCG denoising use-case, we observed a lack of MCG dataset in the literature,

98

Table 7.1: Summary of the contributions in sensing layer of IoT

Chapter no. Chapter 3

Considered use-case
Noise-removal from the MCG signal
to obtain the ECG for continuous

monitoring of cardiovascular activities

Task type
Supervised learning

(regression)

Dataset
Publicly available real datasets

from PhysioNet [42–44]

Utilized AI framework Reservoir Computing (RC)

Method used for comparison Deep learning, Moving average technique

Performance indicators RMSE, PSD, and Time-Memory requirments

Table 7.2: Summary of the contributions in the communication layer of IoT

Chapter no. Chapter 4

Considered use-case
Estimate channel conditions in the
multi-band relay of B5G networks

for efficient delivery of medical data

Task type
Supervised learning

(regression)

Dataset
Publicly available real datasets

from CRAWDAD [78–80]

Utilized AI framework Convolutional Neural Network (CNN)

Method used for comparison
Linear Regression (LR),

Auto Regression (AR), and
Artificial Neural Network (ANN)

Performance indicators
Average RMSE, Processing time,

Memory requirements, Network throughput

Table 7.3: Summary of the contributions in computing layer of IoT

Chapter no. Chapter 5 Chapter 6

Considered use-case

Develop lightweight AI model to
detect arrhythmia, which can
be deployed to the ultra-edge

IoT nodes

Design a decentralized,
collaborative, and online
learning architecture to

deploy the lightweight AI
model that can detect

arrhythmia

Task type
Supervised learning

(classification)

Dataset Publicly available real dataset from PhysioNet [43,106–108]

Utilized AI framework
Convolutional Neural Network

(CNN)

CNN model with an
Asynchronous Federated

Learning

Method used for comparison
K-Nearest Neighbor (KNN) and

Random Forest (RF)
Synchronous federated

learning

Performance indicators

Accuracy, Precision, F1-score,
ROC Curve, AUC score,

Processing time,
Memory requirements

Accuracy, Precision, F1-score,
Loss (MSE), AUC score,

Processing time,
Memory requirements

99

which is open for public use. Thereby, we adopted synthesize MCG data to analyze data

in our experiments. Thus collection and documentation of MCG data can be a future

research direction to exploit a real dataset towards the research outcomes. Although we

have used multiple public datasets in chapter 4, 5, and 6, before actually implementing

them in real-life health monitoring uses, we need to conduct more simulations on data

with various distributions. Furthermore, in the experiments conducted at the computing

layers of IoT, the arrhythmia datasets we employed comprise ECG data with heartbeat

segmentation; hence, we could not incorporate the cost needed in a typical segmentation

phase. Thereby, future researchers may encounter a lack of clinically-graded completely raw

ECG data (without heartbeat segmentation) for the arrhythmia detection task.

The main contributions and adopted methodologies of the considered use-cases in the

three IoT planes are listed in Table 7.1, 7.2, and 7.3, respectively indicating the contributions

in the sensing, communication, and computing layers. This thesis can be considered a proof-

of-concept for the next generation of smart and connected remote healthcare with the help

of distributed in the ultra-edge IoT node utilizing lightweight artificial intelligence models

for decision-making with enhanced privacy and AI-aided B5G relay networks for efficient

health data transmission.

7.2 Future Directions

In this sub-section, we conclude the thesis by shedding light on some possible future research

directions:

• Collection of real MCG data: Due to the high cost of the TMR-based MTJ

sensors, we could not collect actual MCG data for our experiments. So, we adopted

synthetic MCG data for the analysis. However, before incorporating this technique in

clinical trials, we have to ensure that the investigations are conducted on real collected

datasets. Thereby, future research can be conducted on collecting MCG data from a

diverse set of populations and then perform the analysis again to verify the consistency

of the results obtained with our work.

• Detection of Arrhythmia from MCG: In the sensing layer of IoT, we analyzed

the MCG signal to obtain the ECG by noise-filtering using the RC method, and in the

computing layer, we picked the use-case of detecting arrhythmia by analyzing ECG

data. An exciting future research direction can be to connect these two use-cases

from sensing and computing layers by analyzing the viability of using the MCG signal

obtained from the ultra-edge IoT nodes to detect arrhythmia.

• Reinforcement Learning for optimal channel selection: In the communica-

tion layer of IoT, we have proposed a deep learning-based robust channel selection

100

method for efficient massive IoT data transmission. However, the deep learning-based

systems need a lot of historical training data, which can be a challenge in some sce-

narios. Thereby, an interesting research direction can be to analyze the viability of

Reinforcement Learning techniques in selecting the optimal or most suitable channels

in multi-band channel selection tasks. The reinforcement learning algorithm is an in-

dependent, self-teaching system suitable for dynamic situations, making it a potential

solution for network condition prediction or channel selection.

• Exploration of other types of cardiac irregularities and severity level: In the

computing layer of IoT, we considered four classes of heartbeats to detect arrhythmia.

In future research, we can extend this work to consider a more broad range of heart-

beats along with the already used ones. Another exciting research direction could be

to use one lightweight AI model to detect irregular heartbeats and severity level of

cardiac abnormalities.

• Extending the concept of the ultra-edge IoT in other health monitoring

use-cases: Ultra-high sensitive TMR-based MTJ sensors can be used to measure

both heart’s MCG, and brain’s MagnetoEncephaloGraphy (MEG) signals at room

temperature. In this thesis, we investigated the viability of MCG in cardiac monitoring

using lightweight AI models with ultra-edge IoT nodes. This research can be extended

towards brain activity monitoring by analyzing the MEG signal and exploring its

relationship with the brain signals such as EEG.

101

Bibliography

[1] Z. M. Fadlullah, Y. Kawamoto, H. Nishiyama, N. Kato, N. Egashira, K. Yano, and

T. Kumagai, “Multi-hop wireless transmission in multi-band WLAN systems: Pro-

posal and future perspective,” IEEE Wireless Communications, vol. 26, no. 1, pp.

108–113, Feb. 2019.

[2] A. AAMI and A. EC57, “(R) 2008-Testing and reporting performance results of car-

diac rhythm and ST segment measurement algorithms,” 2008.

[3] L. Greco, G. Percannella, P. Ritrovato, F. Tortorella, and M. Vento,

“Trends in IoT based solutions for health care: Moving AI to the edge,”

Pattern Recognition Letters, vol. 135, pp. 346–353, 2020. [Online]. Available:

https://www.sciencedirect.com/science/article/pii/S0167865520301884

[4] S. Sakib, T. Tazrin, M. M. Fouda, Z. M. Fadlullah, and M. Guizani, “DL-CRC:

Deep Learning-Based Chest Radiograph Classification for COVID-19 Detection: A

Novel Approach,” IEEE Access, vol. 8, pp. 171 575–171 589, 2020, doi: 10.1109/AC-

CESS.2020.3025010.

[5] A. Haleem and M. Javaid, “Medical 4.0 and its role in healthcare during COVID-

19 pandemic: A review,” Journal of Industrial Integration and Management, vol. 5,

no. 4, 2020.

[6] B. A. Jnr, “Use of telemedicine and virtual care for remote treatment in response to

COVID-19 pandemic,” Journal of Medical Systems, vol. 44, no. 7, pp. 1–9, 2020.

[7] D. Laura, “20 healthcare moves from Amazon, Google, Microsoft &

Apple in 2020,” Becker’s Hospital Review, Jan. 2021. [Online]. Avail-

able: https://www.beckershospitalreview.com/healthcare-information-technology/

20-healthcare-moves-from-amazon-google-microsoft-apple-in-2020.html

[8] Y. Zhang, G. Chen, H. Du, X. Yuan, M. Kadoch, and M. Cheriet, “Real-Time

Remote Health Monitoring System Driven by 5G MEC-IoT,” Electronics, vol. 9,

no. 11, 2020. [Online]. Available: https://www.mdpi.com/2079-9292/9/11/1753

https://www.sciencedirect.com/science/article/pii/S0167865520301884
https://www.beckershospitalreview.com/healthcare-information-technology/20-healthcare-moves-from-amazon-google-microsoft-apple-in-2020.html
https://www.beckershospitalreview.com/healthcare-information-technology/20-healthcare-moves-from-amazon-google-microsoft-apple-in-2020.html
https://www.mdpi.com/2079-9292/9/11/1753

102

[9] A. Ahad, M. Tahir, M. Aman Sheikh, K. I. Ahmed, A. Mughees, and A. Numani,

“Technologies trend towards 5G network for smart health-care using IoT: A review,”

Sensors, vol. 20, no. 14, p. 4047, 2020.

[10] S. Qazi and K. Raza, “Chapter 4 - Smart biosensors for an efficient point

of care (PoC) health management,” in Smart Biosensors in Medical Care, ser.

Advances in ubiquitous sensing applications for healthcare, J. Chaki, N. Dey,

and D. De, Eds. Academic Press, 2020, pp. 65–85. [Online]. Available:

https://www.sciencedirect.com/science/article/pii/B9780128207819000048

[11] A. Mohsen, M. Al-Mahdawi, M. M. Fouda, M. Oogane, Y. Ando, and Z. M. Fadlullah,

“AI Aided Noise Processing of Spintronic Based IoT Sensor for Magnetocardiography

Application,” in ICC 2020 - 2020 IEEE International Conference on Communications

(ICC), Dublin, Ireland, 7-11 Jun. 2020, doi: 10.1109/ICC40277.2020.9148617.

[12] X. Liu, K. H. Lam, K. Zhu, C. Zheng, X. Li, Y. Du, C. Liu, and P. W. T. Pong,

“Overview of Spintronic Sensors With Internet of Things for Smart Living,” IEEE

Transactions on Magnetics, vol. 55, no. 11, pp. 1–22, Nov. 2019.

[13] K. Fujiwara, M. Oogane, A. Kanno, M. Imada, J. Jono, T. Terauchi, T. Okuno, Y. Ar-

itomi, M. Morikawa, M. Tsuchida, N. Nakasato, and Y. Ando, “Magnetocardiogra-

phy and magnetoencephalography measurements at room temperature using tunnel

magneto-resistance sensors,” Applied Physics Express, vol. 11, no. 2, Jan. 2018, doi:

10.7567/apex.11.023001.

[14] A. Rosenthal, P. Mork, M. H. Li, J. Stanford, D. Koester, and P. Reynolds, “Cloud

computing: A new business paradigm for biomedical information sharing,” Journal

of Biomedical Informatics, vol. 43, no. 2, pp. 342–353, 2010. [Online]. Available:

https://www.sciencedirect.com/science/article/pii/S1532046409001154

[15] Y. Guo, M. Kuo, and T. Sahama, “Cloud computing for healthcare research informa-

tion sharing,” in 4th IEEE International Conference on Cloud Computing Technology

and Science Proceedings, 2012, pp. 889–894.

[16] S. Sakib, T. Tazrin, M. M. Fouda, Z. M. Fadlullah, and N. Nasser, “An Efficient

and Lightweight Predictive Channel Assignment Scheme for Multiband B5G-Enabled

Massive IoT: A Deep Learning Approach,” IEEE Internet of Things Journal, vol. 8,

no. 7, pp. 5285–5297, 2021, doi: 10.1109/JIOT.2020.3032516.

[17] L. Chettri and R. Bera, “A Comprehensive Survey on Internet of Things (IoT) Toward

5G Wireless Systems,” IEEE Internet of Things Journal, vol. 7, no. 1, pp. 16–32, 2020.

https://www.sciencedirect.com/science/article/pii/B9780128207819000048
https://www.sciencedirect.com/science/article/pii/S1532046409001154

103

[18] W. Anani, A. Ouda, and A. Hamou, “A Survey Of Wireless Communications for

IoT Echo-Systems,” in 2019 IEEE Canadian Conference of Electrical and Computer

Engineering (CCECE), 2019, pp. 1–6.

[19] M. Emu and S. Sakib, “Species Identification using DNA Barcode Sequences

through Supervised Learning Methods,” in 2019 International Conference on Elec-

trical, Computer and Communication Engineering (ECCE), 2019, pp. 1–6, doi:

10.1109/ECACE.2019.8679166.

[20] M. Z. Alom, T. M. Taha, C. Yakopcic, S. Westberg, P. Sidike, M. S. Nasrin,

M. Hasan, B. C. Van Essen, A. A. S. Awwal, and V. K. Asari, “A State-of-the-Art

Survey on Deep Learning Theory and Architectures,” Electronics, vol. 8, no. 3, 2019.

[Online]. Available: https://www.mdpi.com/2079-9292/8/3/292

[21] M. A. Boyacioglu, Y. Kara, and Ömer Kaan Baykan, “Predicting bank

financial failures using neural networks, support vector machines and multivariate

statistical methods: A comparative analysis in the sample of savings deposit

insurance fund (SDIF) transferred banks in Turkey,” Expert Systems with

Applications, vol. 36, no. 2, Part 2, pp. 3355–3366, 2009. [Online]. Available:

https://www.sciencedirect.com/science/article/pii/S095741740800078X

[22] S. Albawi, T. A. Mohammed, and S. Al-Zawi, “Understanding of a convolutional

neural network,” in 2017 International Conference on Engineering and Technology

(ICET), Antalya, Turkey, Aug. 2017, pp. 1–6.

[23] J. Gu, Z. Wang, J. Kuen, L. Ma, A. Shahroudy, B. Shuai, T. Liu, X. Wang, L. Wang,

G. Wang, J. Cai, and T. Chen, “Recent Advances in Convolutional Neural Networks,”

2017.

[24] R. Z. Cabada, H. R. Rangel, M. L. B. Estrada, and H. M. C. Lopez, “Hyperparameter

optimization in CNN for learning-centered emotion recognition for intelligent tutoring

systems,” Soft Computing, vol. 24, no. 10, pp. 7593–7602, 2020.

[25] “Reservoir computing approaches to recurrent neural network training,” Computer

Science Review, vol. 3, no. 3, pp. 127–149, 2009. [Online]. Available:

https://www.sciencedirect.com/science/article/pii/S1574013709000173

[26] M. Lukoševičius, A Practical Guide to Applying Echo State Networks. Berlin,

Heidelberg: Springer Berlin Heidelberg, 2012, pp. 659–686. [Online]. Available:

https://doi.org/10.1007/978-3-642-35289-8 36

https://www.mdpi.com/2079-9292/8/3/292
https://www.sciencedirect.com/science/article/pii/S095741740800078X
https://www.sciencedirect.com/science/article/pii/S1574013709000173
https://doi.org/10.1007/978-3-642-35289-8_36

104

[27] B. J. Grzyb, E. Chinellato, G. M. Wojcik, and W. A. Kaminski, “Which model to

use for the Liquid State Machine?” in 2009 International Joint Conference on Neural

Networks, Atlanta, GA, USA, 14–19 Jun. 2009, pp. 1018–1024.

[28] G. Tanaka et al., “Recent advances in physical reservoir computing: A review,” Neural

Networks, vol. 115, pp. 100–123, Jul. 2019.

[29] D. Elsarraj, M. A. Qisi, A. Rodan, N. Obeid, A. Sharieh, and H. Faris, “Demystifying

echo state network with deterministic simple topologies,” Int. J. Comput. Sci. Eng.,

vol. 19, pp. 407–417, 2019.

[30] H. B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas,

“Communication-Efficient Learning of Deep Networks from Decentralized Data,”

2017.

[31] Y. F. Suprunenko, P. T. Clemson, and A. Stefanovska, “Chronotaxic Systems: A

New Class of Self-Sustained Nonautonomous Oscillators,” Physical Review Letters,

vol. 111, no. 2, p. 024101, Jul. 2013.

[32] Y. Bengio, P. Simard, and P. Frasconi, “Learning long-term dependencies with gra-

dient descent is difficult,” IEEE Transactions on Neural Networks, vol. 5, no. 2, pp.

157–166, 1994.

[33] H. Jaeger and H. Haas, “Harnessing Nonlinearity: Predicting Chaotic Systems and

Saving Energy in Wireless Communication,” Science, vol. 304, no. 5667, pp. 78–80,

2004.

[34] A. Hirohata, K. Yamada, Y. Nakatani, L. Prejbeanu, B. Diény, P. Pirro, and B. Hille-

brands, “Review on spintronics: Principles and device applications,” Journal of Mag-

netism and Magnetic Materials, vol. 509, p. 166711, Sep. 2020.

[35] S. Sakib, M. M. Fouda, Z. M. Fadlullah, and N. Nasser, “Migrating Intelligence from

Cloud to Ultra-Edge Smart IoT Sensor Based on Deep Learning: An Arrhythmia Mon-

itoring Use-Case,” in 2020 International Wireless Communications and Mobile Com-

puting (IWCMC), Jun. 2020, pp. 595–600, doi: 10.1109/IWCMC48107.2020.9148134.

[36] F. N. Hooge, T. G. M. Kleinpenning, and L. K. J. Vandamme, “Experimental Studies

on 1/f Noise,” Reports on Progress in Physics, vol. 44, no. 5, 1981, doi: 10.1088/0034-

4885/44/5/001.

[37] P. Wisniowski, J. M. Almeida, and P. P. Freitas, “1/f Magnetic Noise Dependence

on Free Layer Thickness in Hysteresis Free MgO Magnetic Tunnel Junctions,” IEEE

Transactions on Magnetics, vol. 44, no. 11, pp. 2551–2553, Nov. 2008.

105

[38] Z. Q. Lei, G. J. Li, W. F. Egelhoff, P. T. Lai, and P. W. T. Pong, “Review of Noise

Sources in Magnetic Tunnel Junction Sensors,” IEEE Transactions on Magnetics,

vol. 47, no. 3, pp. 602–612, Mar. 2011.

[39] N. Schaetti, M. Salomon, and R. Couturier, “Echo State Networks-Based Reservoir

Computing for MNIST Handwritten Digits Recognition,” in 2016 IEEE Intl Confer-

ence on Computational Science and Engineering (CSE) and IEEE Intl Conference on

Embedded and Ubiquitous Computing (EUC) and 15th Intl Symposium on Distributed

Computing and Applications for Business Engineering (DCABES), 2016, pp. 484–491,

doi: 10.1109/CSE-EUC-DCABES.2016.229.

[40] Z. Tong and G. Tanaka, “Reservoir Computing with Untrained Convolutional Neural

Networks for Image Recognition,” in 2018 24th International Conference on Pattern

Recognition (ICPR), Aug. 2018, pp. 1289–1294.

[41] K. Zhang, G. Chuai, W. Gao, X. Liu, S. Maimaiti, and Z. Si, “A new method

for traffic forecasting in urban wireless communication network,” EURASIP Journal

on Wireless Communications and Networking, vol. 2019, Mar. 2019, Art. no. 66.

[Online]. Available: https://doi.org/10.1186/s13638-019-1392-6

[42] R. Bousseljot, D. Kreiseler, and A. Schnabel, “Nutzung der EKG-Signaldatenbank

CARDIODAT der PTB über das Internet,” Biomedical Engineering/Biomedizinische

Technik, vol. 40, no. s1, pp. 317–318, 1995.

[43] A. L. Goldberger, L. A. Amaral, L. Glass, J. M. Hausdorff, P. C. Ivanov, R. G.

Mark, J. E. Mietus, G. B. Moody, C. K. Peng, and H. E. Stanley, “PhysioBank,

PhysioToolkit, and PhysioNet: components of a new research resource for complex

physiologic signals,” Circulation, vol. 101, no. 23, pp. E215–220, Jun. 2000.

[44] M. Kachuee, S. Fazeli, and M. Sarrafzadeh, “ECG Heartbeat Classification: A Deep

Transferable Representation,” in 2018 IEEE International Conference on Healthcare

Informatics (ICHI), Jun. 2018, doi: 10.1109/ICHI.2018.00092.

[45] S. Sakib, T. Tazrin, M. M. Fouda, Z. M. Fadlullah, and N. Nasser, “A Deep Learning

Method for Predictive Channel Assignment in Beyond 5G Networks,” IEEE Network,

vol. 35, no. 1, pp. 266–272, 2021, doi: 10.1109/MNET.011.2000301.

[46] A. Arfaoui, S. Cherkaoui, A. Kribeche, and S. M. Senouci, “Context-Aware Adaptive

Remote Access for IoT Applications,” IEEE Internet of Things Journal, vol. 7, no. 1,

pp. 786–799, Jan. 2020.

https://doi.org/10.1186/s13638-019-1392-6

106

[47] S. Oteafy and H. Hassanein, “Leveraging Tactile Internet Cognizance and Operation

via IoT and Edge Technologies,” Proceedings of the IEEE, vol. 107, no. 2, pp. 364–375,

Feb. 2019.

[48] Y. Han, B. D. Rao, and J. Lee, “Massive Uncoordinated Access With Massive MIMO:

A Dictionary Learning Approach,” IEEE Transactions on Wireless Communications,

vol. 19, no. 2, pp. 1320–1332, Feb. 2020.

[49] J. Lianghai, B. Han, M. Liu, and H. Schotten, “Applying Device-to-Device Communi-

cation to Enhance IoT Services,” IEEE Communications Standards Magazine, vol. 1,

no. 2, pp. 85–91, Jul. 2017.

[50] X. Chen, D. W. K. Ng, W. Yu, E. G. Larsson, N. Al-Dhahir, and R. Schober, “Massive

Access for 5G and Beyond,” arXiv preprint arXiv:2002.03491, Feb. 2020.

[51] A. Moubayed, A. Shami, and H. Lutfiyya, “Wireless Resource Virtualization With

Device-to-Device Communication Underlaying LTE Network,” IEEE Transactions on

Broadcasting, vol. 61, no. 4, pp. 734–740, 2015.

[52] A. Ettefagh, M. Kuhn, I. Hammerstrom, and A. Wittneben, “On the range perfor-

mance of decode-and-forward relays in IEEE 802.11 WLANs,” in IEEE 17th Interna-

tional Symposium on Personal, Indoor and Mobile Radio Communications, Helsinki,

Finland, Sep. 2006.

[53] P. Zhang, J. Yuan, J. Chen, J. Wang, and J. Yang, “Analyzing amplify-and-forward

and decode-and-forward cooperative strategies in Wyner’s channel model,” in 2009

IEEE Wireless Communications and Networking Conference, Budapest, Hungary,

Apr. 2009.

[54] A. Khina, O. Ordentlich, U. Erez, Y. Kochman, and G. W. Wornell, “Decode-and-

forward for the Gaussian relay channel via standard AWGN coding and decoding,”

in 2012 IEEE Information Theory Workshop, Lausanne, Switzerland, Sep. 2012.

[55] N. Egashira, K. Yano, S. Tsukamoto, J. Webber, M. Sutoh, Y. Amezawa, and T. Ku-

magai, “Integrated synchronization scheme for WLAN systems employing multiband

simultaneous transmission,” in 2017 IEEE Wireless Communications and Networking

Conference (WCNC), San Francisco, CA, USA, Mar. 2017.

[56] F. Gholami, H. Meghdadi, and A. Shahzadi, “Throughput Analysis for Decode-and-

Forward Relaying Protocol with Wireless Energy Harvesting and Information Pro-

cessing,” in 2018 International Conference on Internet of Things, Embedded Systems

and Communications (IINTEC), Dec. 2018, pp. 132–135.

107

[57] A. Chaaban and A. Sezgin, “Multi-hop relaying: An end-to-end delay analysis,” IEEE

Transactions on Wireless Communications, vol. 15, no. 4, pp. 2552–2561, Apr. 2016.

[58] G. Cerar, H. Yetgin, M. Mohorčič, and C. Fortuna, “Machine Learning for Link

Quality Estimation: A Survey,” arXiv preprint arXiv:1812.08856, Nov. 2019.

[59] A. R. Abdellah, O. A. K. Mahmood, A. Paramonov, and A. Koucheryavy, “IoT

traffic prediction using multi-step ahead prediction with neural network,” in 2019 11th

International Congress on Ultra Modern Telecommunications and Control Systems

and Workshops (ICUMT), Oct. 2019, pp. 1–4.

[60] Y. Kim, P. Wang, and L. Mihaylova, “Structural Recurrent Neural Network for Traf-

fic Speed Prediction,” in ICASSP 2019 - 2019 IEEE International Conference on

Acoustics, Speech and Signal Processing (ICASSP), May 2019, pp. 5207–5211.

[61] Q. Mao, F. Hu, and Q. Hao, “Deep learning for intelligent wireless networks: A

comprehensive survey,” IEEE Communications Surveys & Tutorials, vol. 20, no. 4,

pp. 2595–2621, Jun. 2018.

[62] Y. Lin, X. Dai, L. Li, and F.-Y. Wang, “An efficient deep reinforcement learning

model for urban traffic control,” arXiv preprint arXiv:1808.01876, 2018.

[63] M. Chen, U. Challita, W. Saad, C. Yin, and M. Debbah, “Machine learning for

wireless networks with artificial intelligence: A tutorial on neural networks,” arXiv

preprint arXiv:1710.02913, 2017.

[64] M. Nasri and M. Hamdi, “LTE QoS Parameters Prediction Using Multivariate Linear

Regression Algorithm,” in 2019 22nd Conference on Innovation in Clouds, Internet

and Networks and Workshops (ICIN), Feb. 2019, pp. 145–150.

[65] Y. Zhou and J. Li, “Research of Network Traffic Anomaly Detection Model Based on

Multilevel Autoregression,” in 2019 IEEE 7th International Conference on Computer

Science and Network Technology (ICCSNT), Oct. 2019, pp. 380–384.

[66] C. Parera, A. E. C. Redondi, M. Cesana, Q. Liao, and I. Malanchini, “Transfer

Learning for Channel Quality Prediction,” in 2019 IEEE International Symposium

on Measurements Networking (M&N), Jul. 2019, pp. 1–6.

[67] M. Iqbal, M. Zahid, D. Habib, and L. John, “Efficient Prediction of

Network Traffic for Real-Time Applications,” Journal of Computer Networks and

Communications, vol. 2019, pp. 1–11, Feb. 2019, Art. no. 4067135. [Online].

Available: ttps://doi.org/10.1155/2019/4067135

ttps://doi.org/10.1155/2019/4067135

108

[68] L. Nie, X. Wang, L. Wan, S. Yu, H. Song, D. Jiang, and K. Zhang, “Network

Traffic Prediction Based on Deep Belief Network and Spatiotemporal Compressive

Sensing in Wireless Mesh Backbone Networks,” Wireless Communications and

Mobile Computing, vol. 2018, Jan. 2018, Art. no. 1260860. [Online]. Available:

https://doi.org/10.1155/2018/1260860

[69] T. Liu and A. E. Cerpa, “Temporal adaptive link quality prediction with online learn-

ing,” ACM Transactions on Sensor Networks (TOSN), vol. 10, no. 3, pp. 1–41, May

2014.

[70] J. Wang, J. Tang, Z. Xu, Y. Wang, G. Xue, X. Zhang, and D. Yang, “Spatiotempo-

ral modeling and prediction in cellular networks: A big data enabled deep learning

approach,” in IEEE International Conference on Computer Communications (INFO-

COM’17), Atlanta, GA, USA, May 2017.

[71] L. Liu, B. Yin, S. Zhang, X. Cao, and Y. Cheng, “Deep learning meets wireless

network optimization: Identify critical links,” IEEE Transactions on Network Science

and Engineering, Apr. 2018.

[72] W. Rehan, S. Fischer, and M. Rehan, “Machine-learning based channel quality and

stability estimation for stream-based multichannel wireless sensor networks,” Sensors

Journal, vol. 16, no. 9, p. 1476, Sep. 2016.

[73] J. D. Herath, A. Seetharam, and A. Ramesh, “A Deep Learning Model for Wireless

Channel Quality Prediction,” in IEEE International Conference on Communications

(ICC), Shanghai, China, May 2019.

[74] A. Hanyu, Y. Kawamoto, H. Nishiyama, N. Kato, N. Egashira, K. Yano, and T. Ku-

magai, “Adaptive Frequency Band and Channel Selection for Simultaneous Receiving

and Sending in Multiband Communication,” IEEE Wireless Communications Letters,

vol. 8, no. 2, pp. 460–463, Apr. 2019.

[75] H. Singh, J. Hsu, L. Verma, S. S. Lee, and C. Ngo, “Green operation of multi-band

wireless LAN in 60 GHz and 2.4/5 GHz,” in 2011 IEEE Consumer Communications

and Networking Conference (CCNC), Las Vegas, USA, Jan. 2011.

[76] M. Li, S. Salinas, P. Li, X. Huang, Y. Fang, and S. Glisic, “Optimal Scheduling for

Multi-Radio Multi-Channel Multi-Hop Cognitive Cellular Networks,” IEEE Transac-

tions on Mobile Computing, vol. 14, no. 1, pp. 139–154, Jan. 2015.

[77] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov,

“Dropout: A Simple Way to Prevent Neural Networks from Overfitting,” The Journal

of Machine Learning Research (JMLR), vol. 15, no. 1, p. 1929–1958, Jan. 2014.

https://doi.org/10.1155/2018/1260860

109

[78] R. Parasuraman, S. Caccamo, F. Baberg, and P. Ogren, “CRAWDAD dataset

kth/rss,” Downloaded from https://crawdad.org/kth/rss/20160105, Feb. 2020.

[79] S. Fu and Y. Zhang, “CRAWDAD dataset due/packet-delivery,” Downloaded from

https://crawdad.org/due/packet-delivery/20150401, Feb. 2020.

[80] B. Meixner, J. W. Kleinrouweler, and P. Cesar, “4G/LTE Channel Quality Reference

Signal Trace Data Set,” in Proceedings of the 9th ACM Multimedia Systems Confer-

ence, ser. MMSys ’18. New York, NY, USA: Association for Computing Machinery,

Jun. 2018, p. 387–392.

[81] C. Nwankpa, W. Ijomah, A. Gachagan, and S. Marshall, “Activation Functions:

Comparison of trends in Practice and Research for Deep Learning,” arXiv preprint

arXiv:1811.03378, Nov. 2018.

[82] S. Mendis, P. Puska, and B. Norrving, “Global atlas on cardiovascular disease pre-

vention and control. WHO,” World Heart Federation and World Stroke Organization,

01 2011.

[83] S. Berrouiguet, M. L. Barrigón, J. L. Castroman, P. Courtet, A. Artés-Rodŕıguez, and

E. Baca-Garćıa, “Combining mobile-health (mHealth) and artificial intelligence (AI)

methods to avoid suicide attempts: the Smartcrises study protocol,” BMC psychiatry,

vol. 19, no. 1, pp. 1–9, 2019.

[84] Q. Yao, R. Wang, X. Fan, J. Liu, and Y. Li, “Multi-class Arrhythmia detection from

12-lead varied-length ECG using Attention-based Time-Incremental Convolutional

Neural Network,” Information Fusion, vol. 53, pp. 174–182, 2020. [Online]. Available:

http://www.sciencedirect.com/science/article/pii/S1566253518307632

[85] S. Sahoo, M. Dash, S. Behera, and S. Sabut, “Machine Learning Approach to Detect

Cardiac Arrhythmias in ECG Signals: A Survey,” IRBM, 2020. [Online]. Available:

http://www.sciencedirect.com/science/article/pii/S1959031819301654

[86] P. Kamble and A. Birajdar, “IoT Based Portable ECG Monitoring Device for Smart

Healthcare,” in 2019 Fifth International Conference on Science Technology Engineer-

ing and Mathematics (ICONSTEM), vol. 1, 2019, pp. 471–474.

[87] H. Kim, S. Kim, N. V. Helleputte, A. Artes, M. Konijnenburg, J. Huisken, C. V.

Hoof, and R. F. Yazicioglu, “A Configurable and Low-Power Mixed Signal SoC for

Portable ECG Monitoring Applications,” IEEE Transactions on Biomedical Circuits

and Systems, vol. 8, no. 2, pp. 257–267, Apr. 2014.

https://crawdad.org/kth/rss/20160105
https://crawdad.org/due/packet-delivery/20150401
http://www.sciencedirect.com/science/article/pii/S1566253518307632
http://www.sciencedirect.com/science/article/pii/S1959031819301654

110

[88] C. H. Tseng, “Coordinator Traffic Diffusion for Data-Intensive Zigbee Transmission in

Real-time Electrocardiography Monitoring,” IEEE Transactions on Biomedical Engi-

neering, vol. 60, no. 12, pp. 3340–3346, Dec. 2013.

[89] M. Bansal and B. Gandhi, “IoT & Big Data in Smart Healthcare (ECG Monitoring),”

in 2019 International Conference on Machine Learning, Big Data, Cloud and Parallel

Computing (COMITCon). IEEE, 2019, pp. 390–396.

[90] Z. Yang, Q. Zhou, L. Lei, K. Zheng, and W. Xiang, “An IoT-cloud based wearable

ECG monitoring system for smart healthcare,” Journal of medical systems, vol. 40,

no. 12, p. 286, 2016.

[91] A. Rahman, T. Rahman, N. H. Ghani, S. Hossain, and J. Uddin, “IoT Based Pa-

tient Monitoring System Using ECG Sensor,” in 2019 International Conference on

Robotics,Electrical and Signal Processing Techniques (ICREST), 2019, pp. 378–382.

[92] J. Bogatinovski, D. Kocev, and A. Rashkovska, “Feature Extraction for Heartbeat

Classification in Single-Lead ECG,” in Proc. MIPRO, May 2019.

[93] M. Alfaras, M. C. Soriano, and S. Ort́ın, “A Fast Machine Learning

Model for ECG-Based Heartbeat Classification and Arrhythmia Detection,”

Frontiers in Physics, vol. 7, p. 103, 2019. [Online]. Available: https:

//www.frontiersin.org/article/10.3389/fphy.2019.00103

[94] H. Shi, H. Wang, Y. Huang, L. Zhao, C. Qin, and C. Liu, “A hierarchical method

based on weighted extreme gradient boosting in ECG heartbeat classification,”

Computer Methods and Programs in Biomedicine, vol. 171, pp. 1–10, 2019. [Online].

Available: http://www.sciencedirect.com/science/article/pii/S016926071831900X

[95] M. Baza, A. Salazar, M. Mahmoud, M. Abdallah, and K. Akkaya, “On Sharing Models

Instead of Data using Mimic learning for Smart Health Applications,” in 2020 IEEE

International Conference on Informatics, IoT, and Enabling Technologies (ICIoT),

2020, pp. 231–236.

[96] H. Yang and Z. Wei, “Arrhythmia Recognition and Classification Using Combined

Parametric and Visual Pattern Features of ECG Morphology,” IEEE Access, vol. 8,

pp. 47 103–47 117, 2020.

[97] C. Lainscsek and T. Sejnowski, “Electrocardiogram classification using delay differ-

ential equations,” Chaos (Woodbury, N.Y.), vol. 23, p. 023132, 06 2013.

[98] A. Hannun, P. Rajpurkar, M. Haghpanahi, T. Geoffrey, C. Bourn, M. Turakhia,

and A. Ng, “Cardiologist-level arrhythmia detection and classification in ambulatory

electrocardiograms using a deep neural network,” Nature Medicine, vol. 25, Jan. 2019.

https://www.frontiersin.org/article/10.3389/fphy.2019.00103
https://www.frontiersin.org/article/10.3389/fphy.2019.00103
http://www.sciencedirect.com/science/article/pii/S016926071831900X

111

[99] M. Wess, P. D. S. Manoj, and A. Jantsch, “Neural network based ECG anomaly

detection on FPGA and trade-off analysis,” in 2017 IEEE International Symposium

on Circuits and Systems (ISCAS), May 2017, pp. 1–4.

[100] S. Saadatnejad, M. Oveisi, and M. Hashemi, “LSTM-Based ECG Classification for

Continuous Monitoring on Personal Wearable Devices,” IEEE Journal of Biomedical

and Health Informatics, vol. 24, no. 2, pp. 515–523, 2020.

[101] S. Singh, S. K. Pandey, U. Pawar, and R. R. Janghel, “Classification of ECG

Arrhythmia using Recurrent Neural Networks,” Procedia Computer Science, vol. 132,

pp. 1290–1297, 2018, international Conference on Computational Intelligence and

Data Science. [Online]. Available: http://www.sciencedirect.com/science/article/pii/

S1877050918307774

[102] P. P lawiak and U. R. Acharya, “Novel deep genetic ensemble of classifiers for arrhyth-

mia detection using ECG signals,” Neural Computing and Applications, pp. 1–25,

2019.

[103] A. Daamouche, L. Hamami, N. Alajlan, and F. Melgani, “A wavelet

optimization approach for ECG signal classification,” Biomedical Signal Processing

and Control, vol. 7, no. 4, pp. 342–349, 2012. [Online]. Available: http:

//www.sciencedirect.com/science/article/pii/S1746809411000772

[104] S. Sakib, M. M. Fouda, and Z. M. Fadlullah, “A Rigorous Analysis of Biomedical Edge

Computing: An Arrhythmia Classification Use-Case Leveraging Deep,” in 2020 In-

ternational Conference on Internet of Things and Intelligence System (IoTaIS 2020),

BALI, Indonesia, Jan. 2021, doi: 10.1109/IoTaIS50849.2021.9359721.

[105] C. Lainscsek, P. Rowat, L. Schettino, D. Lee, D. Song, C. Letellier, and H. Poizner,

“Finger tapping movements of Parkinson’s disease patients automatically rated us-

ing nonlinear delay differential equations,” Chaos: An Interdisciplinary Journal of

Nonlinear Science, vol. 22, no. 1, p. 013119, 2012.

[106] S. D. Greenwald, R. S. Patil, and R. G. Mark, “Improved detection and classification

of arrhythmias in noise-corrupted electrocardiograms using contextual information,”

in [1990] Proceedings Computers in Cardiology, Sep. 1990, pp. 461–464.

[107] G. B. Moody and R. G. Mark, “The impact of the MIT-BIH Arrhythmia Database,”

IEEE Engineering in Medicine and Biology Magazine, vol. 20, no. 3, pp. 45–50, May

2001.

[108] S. D. Greenwald, “The development and analysis of a ventricular fibrillation detector,”

Ph.D. dissertation, Massachusetts Institute of Technology, 1986.

http://www.sciencedirect.com/science/article/pii/S1877050918307774
http://www.sciencedirect.com/science/article/pii/S1877050918307774
http://www.sciencedirect.com/science/article/pii/S1746809411000772
http://www.sciencedirect.com/science/article/pii/S1746809411000772

112

[109] F. Bouaziz, D. Boutana, and H. Oulhadj, “Diagnostic of ECG Arrhythmia using

Wavelet Analysis and K-Nearest Neighbor Algorithm,” in Intl. Conf. on Applied

Smart Systems, Nov. 2018, pp. 1–6.

[110] G. Chen, Z. Hong, Y. Guo, and C. Pang, “A cascaded classifier for multi-lead ECG

based on feature fusion,” Computer Methods and Programs in Biomedicine, vol. 178,

pp. 135–143, 2019. [Online]. Available: https://doi.org/10.1016/j.cmpb.2019.06.021

[111] A. F. Agarap, “Deep Learning using Rectified Linear Units (ReLU),” arXiv preprint

arXiv:1803.08375, 2018.

[112] Z. J. Wang, R. Turko, O. Shaikh, H. Park, N. Das, F. Hohman, M. Kahng, and D. H.

Chau, “CNN Explainer: Learning Convolutional Neural Networks with Interactive

Visualization,” arXiv preprint arXiv:2004.15004, 2020.

[113] M. Wu, Y. Lu, W. Yang, and S. Y. Wong, “A Study on Arrhythmia via

ECG Signal Classification Using the Convolutional Neural Network,” Frontiers

in Computational Neuroscience, vol. 14, p. 106, 2021. [Online]. Available:

https://www.frontiersin.org/article/10.3389/fncom.2020.564015

[114] E. J. da S. Luz, W. R. Schwartz, G. Cámara-Chávez, and D. Menotti, “ECG-based

heartbeat classification for arrhythmia detection: A survey,” Computer Methods

and Programs in Biomedicine, vol. 127, pp. 144–164, 2016. [Online]. Available:

https://www.sciencedirect.com/science/article/pii/S0169260715003314

[115] R. Kohavi et al., “A study of cross-validation and bootstrap for accuracy estimation

and model selection,” in Ijcai, vol. 14, no. 2. Montreal, Canada, 1995, pp. 1137–1145.

[116] R. K. Pathinarupothi, P. Durga, and E. S. Rangan, “IoT-Based Smart Edge for Global

Health: Remote Monitoring With Severity Detection and Alerts Transmission,” IEEE

Internet of Things Journal, vol. 6, no. 2, pp. 2449–2462, 2019.

[117] S. Sakib, M. M. Fouda, Z. M. Fadlullah, N. Nasser, and W. Alasmary, “A Proof-

of-Concept of Ultra-Edge Smart IoT Sensor: A Continuous and Lightweight Ar-

rhythmia Monitoring Approach,” IEEE Access, vol. 9, pp. 26 093–26 106, 2021, doi:

10.1109/ACCESS.2021.3056509.

[118] K. Balaskas and K. Siozios, “ECG Analysis and Heartbeat Classification Based on

Shallow Neural Networks,” in Proc. MOCAST), May 2019.

[119] R. Sandeep and K. C. Ray, “Sparse representation of ECG signals for automated

recognition of cardiac arrhythmias,” Expert Systems with Applications, vol. 105, pp.

49–64, 2018. [Online]. Available: http://www.sciencedirect.com/science/article/pii/

S0957417418301842

https://doi.org/10.1016/j.cmpb.2019.06.021
https://www.frontiersin.org/article/10.3389/fncom.2020.564015
https://www.sciencedirect.com/science/article/pii/S0169260715003314
http://www.sciencedirect.com/science/article/pii/S0957417418301842
http://www.sciencedirect.com/science/article/pii/S0957417418301842

113

[120] A. K. Dohare, V. Kumar, and R. Kumar, “Detection of myocardial infarction in

12 lead ECG using support vector machine,” Applied Soft Computing, vol. 64, pp.

138–147, 2018. [Online]. Available: https://www.sciencedirect.com/science/article/

pii/S1568494617307159

[121] D. Azariadi, V. Tsoutsouras, S. Xydis, and D. Soudris, “ECG signal analysis and

arrhythmia detection on IoT wearable medical devices,” in 2016 5th International

Conference on Modern Circuits and Systems Technologies (MOCAST), 2016, pp. 1–

4.

[122] M. Zhang, Y. Wang, and T. Luo, “Federated Learning for Arrhythmia Detection

of Non-IID ECG,” in 2020 IEEE 6th International Conference on Computer and

Communications (ICCC), 2020, pp. 1176–1180.

[123] A. Bhatla, M. M. Mayer, S. Adusumalli, M. C. Hyman, E. Oh, A. Tierney, J. Moss,

A. A. Chahal, G. Anesi, S. Denduluri et al., “COVID-19 and cardiac arrhythmias,”

Heart Rhythm, vol. 17, no. 9, pp. 1439–1444, 2020.

[124] A. N. Kochi, A. P. Tagliari, G. B. Forleo, G. M. Fassini, and C. Tondo,

“Cardiac and arrhythmic complications in patients with COVID-19,” Journal of

Cardiovascular Electrophysiology, vol. 31, no. 5, pp. 1003–1008, 2020. [Online].

Available: https://onlinelibrary.wiley.com/doi/abs/10.1111/jce.14479

https://www.sciencedirect.com/science/article/pii/S1568494617307159
https://www.sciencedirect.com/science/article/pii/S1568494617307159
https://onlinelibrary.wiley.com/doi/abs/10.1111/jce.14479

