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Abstract

Instead of simply using two-dimensional User × Item features, advanced recommender systems
rely on more additional dimensions (e.g. time, location, social network) in order to provide better
recommendation services. In the first part of this paper, we will survey a variety of dimension features
and show how they are integrated into the recommendation process. When the service providers collect
more and more personal information, it brings great privacy concerns to the public. On another side,
the service providers could also suffer from attacks launched by malicious users who want to bias the
recommendations. In the second part of this paper, we will survey attacks from and against recommender
service providers, and existing solutions.

1. Introduction

Recommender systems have attracted re-
searchers’ attention since the early of 1990s, e.g.
[112, 160, 173]. They have been applied to a va-
riety of fields (e.g. news, online multimedia, e-
commerce, tourism and social network) to han-
dle information overload and provide person-
alized services. In the early days, researchers
focused on two-dimensional User × Item fea-
tures. At that time, it’s not as easy as nowadays
to collect additional features, due to the limited
computation resources and lack of knowledge.
Later, researchers found that additional infor-
mation can significantly enhance recommender
systems [1]. For example, demographic in-
formation can be used to mitigate cold start
problem, temporal information can be applied
to capture users’ shifting interests, and loca-
tion and social network information can be
used not only to improve recommender sys-
tems but also to create new recommender sys-
tems [8, 74, 204]. Many researchers have inves-
tigated how to integrate multiple features into
the recommendation algorithms to provide bet-
ter service, e.g. [1, 108, 127, 120].

On the flip side, recommender systems
bring great privacy concerns to the public, as

surveyed in [14]. Some researchers have tried
to seek solutions which approximate the out-
puts without losing accuracy and effectiveness
(or, utility) but protecting individual’s privacy.
In reality, this is dilemma, there is always a
tradeoff between privacy and utility. The dif-
ferential privacy paradigm [48] provides a rig-
orous framework to quantify the privacy loss.
If someone expects to leak less personal infor-
mation, he has to add more noise to the output
or dataset. As a result, the accuracy will be
degraded. Some other researchers proposed
cryptographic solutions which do not affect
utility. But, they are often computationally ex-
pensive. As it mentioned in [199], it has a six
orders of magnitude difference between the
cryptographic operations and plaintext arith-
metic operations. Another different concern for
recommendation services is robustness. The
service providers are facing attacks from ma-
licious users who try to bias the recommen-
dations [111]. An example is that, someone
wants his book to be recommended in a top
rank, so he forges a group of users and inserts
them to the recommender system’s database.
These forged users will give his books high
ratings and assign his competitors’ books low
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scores. This will finally degrade recommender
systems’ reputation and users will distrust the
recommender system.

A number of studies on all aspects of rec-
ommender systems have been published. [124]
surveys the content based algorithms. [176] in-
troduces a variety of collaborative filtering tech-
niques. [17] gives an overview of hybrid rec-
ommender systems. [91] investigate the robust-
ness of recommender systems. [14, 185] focus
on the privacy concerns. [1] presents the pos-
sible extensions of recommender system, and
shows the importance of multi-dimensionality
of recommendations and multi-criteria ratings.

In this paper, we try to fill in the gap be-
tween the literature work and most recent
advances in recommender systems. Firstly,
we survey the recent recommender systems
which utilize multi-dimensional features to im-
prove their performances. Secondly, we pro-
vide a general survey on the robustness and
privacy issues facing recommender systems,
and present some representative solutions. As
a result, we wish to give the researchers a clear
idea on the state of the art of this field.

In the rest of the paper, we give an review of
the state-of-the-art for recommender systems
in Section 2. We present the main features (di-
mensionalities) involved in recommender sys-
tems in Section 3. We describe the robustness
concerns in Section 4 and privacy concerns in
Section 5. We conclude the paper in Section 6.

2. Review of Recommender Systems

We reserve the following characters in our
paper to denote specific objects. U denotes
a set containing n users, and u is a user in
U, namely u ∈ U. I denotes a set containing
m items, and i is an item in I, namely i ∈ I.
R = U × I is the User× Item matrix that con-
tains all the ratings that the users have assigned
to the items. Rx indicates the rating vector of
user (item) x. R(u, v) denotes all the items are
rated by both user u and v. R(i, j) means all
the users rated both item i and j. r̂ui denotes
the predicted value that user u will assign to
item i. r̄u is the mean rating value of user u. r̄i
is the mean rating value of item i. κ denotes a
set containing all the available (u, i) pairs in a

dataset, it means rui ∈ κ has been provided by
user u.

2.1. Definition of Recommender Systems

Simply, recommender system is a tool that
can help users to extract high valued and per-
sonalized information among massive data
sources. In mid-1990s, recommender system
became an independent field, and researchers
started focusing on recommendation with ex-
plicit feedback [1]. In a common case, the rec-
ommendation task is to predict users’ prefer-
ence based on history information. Intuitively,
given a bunch of users and their historical be-
havior, the recommender system estimates a
user’s preferences on items which have not
appeared in her record. A typical way of us-
ing the historical information is to transfer it
to a User× Item matrix, as shown in Table 1,
where ratings are specified on a range from 1
to 5. The symbol ? says that the item has not
been rated by the user (alternatively, people
often use 0 to indicate items are not rated).

Item1 Item2 Item3 Item4
User1 5 3 ? 2
User2 ? 4 ? 4
User3 3 ? 5 4
User4 ? 4 ? 5
User5 1 ? 3 ?

Table 1: A typical user-item matrix
Formally, an abstraction of recommender sys-
tems, showing in Figure 1, can be described as
following: Let U be a set contains n users, I
be a set has m items which are collected from
U’s history, and R = U × I. Define the recom-
mender system as:

f : Rn×m×d −→ R̂n×m

d is number of dimension features. The ratings
are the infrastructure of the system. d = 1 in-
dicates this is a two-dimensional User× Item
space. If additional features, like time, social
interaction and so on, are involved, d− 1 the
number of additional features. f is the rec-
ommendation algorithm, and it decides which
dimentionalities will be involved in the com-
putation and how to use them. R̂, output of
function f, is the prediction matrix.
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Figure 1: Recommender System

Regarding the outputs of a recommender sys-
tem, there are usually two possibilities.

• Single prediction, it outputs a precise pre-
diction score that a user will give to an
unrated item.

• Top-N prediction, it outputs N unrated
items that a user would prefer the most.

A general classification of existing recommen-
dation methods is as follows [7], also shown in
Figure 2.

• Content based: it calculates the items’
similarity based on their contents, such
as texts in books, acoustical signal of mu-
sic. It then recommends the items which
are most similar to those the users con-
sumed before.

• Collaborative filtering: it relies on the
correlations between users or items. For
example, it suggests those items to a user
that the people similar to this user also
prefer.

• Hybrid approach: it combines different
kinds of recommender systems, like com-
posing content based and collaborative
filtering methods, or different kinds of
collaborative filtering methods together.

Figure 2: Recommender systems taxonomy

2.2. Content Based Recommender

Content based methods employ the attributes
of unrated items to match a user’s profile
which is constructed based on the user’s his-
tory behavior. For example, if a user has
bought a book A, the recommender will find
some books which are similar to book A, and
recommend these books to him. Formally, con-
tend based methods can be described as:

f : (User-Pro f ile, Content-Pro f ile) −→ τ

where τ is a metric to measure how much a
user like an item.
Existing content based methods can be classi-
fied into two categories: traditional heuristics
methods which are mostly based on informa-
tion retrieval approach [6, 165], and model
based methods such as Bayesian classifiers,
clustering, topic model and so on.
Text information of items is easy to find in the
real word, therefore many content based meth-
ods are focusing on text-based application, like
the content of books, web sites, lyrics of musics
and so on. The units (components) are often
called keywords.
Term Frequency/Inverse Document Frequency
(TF-IDF) [166, 165] is one the most popular
measures for weighting keywords in informa-
tion retrieval. Intuitively, Term Frequency (TF)
is the frequency of the keyword exists in a doc-
ument. Let fij denote the number keyword ki
appears in document dj. Formally, the normal-
ized frequency is defined as:

TFij =
fij

maxz fzj

maxz fzj is the max frequency over any key-
words kz in document dj. It’s not enough to
only use TF as the measurement of keywords,
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because if some keywords exist in most of the
documents then they may not be useful to
distinguish a relevant document and a non-
relevant document. Combined with Inverse
Document Frequency (IDF), the importance of
keywords can be measured much more prop-
erly. IDF is defined as:

IDFi = log
N
ni

N is the total number of the documents. ni
is the number of documents where the term i
appears. The TF-IDF weight for keyword ki in
document dj is defined as:

wij = TFij × IDFi

Besides the statistical information gained by
basic TF-IDF for each term, many researchers
also employ semantic analysis to enrich these
terms, like providing culture and linguistic
background knowledge to enhance their rec-
ommender systems’ performance [51, 39, 57].
Overall, the profile of document (item) i is de-
noted by a vector as:

Content-Pro f ile(i) = [w1i, w2i, . . . , wni]

In order to recommend similar items to
users, recommender system has to construct
users profile by the items that users have
rated, ordered or read. Formally, define
User-Pro f ile(u) be the profile of user u:

User-Pro f ile(u) = [w1u, w2u, . . . , wnu]

There are many metrics that can be employed
to measure the similarity between two vectors.
Cosine Similarity is one of the most widely
used metrics:

cosine(Wu, Wi) =
Wu ·Wi

‖Wu ‖2 × ‖Wi ‖2

where Wu denotes User-Pro f ile(u), and Wi in-
dicates Content-Pro f ile(i). After all, the items
with relative higher similarity will be recom-
mended to a user.
Instead of employing information retrieval
methods, many researchers studied using ma-
chine learning methods for prediction. Naive
Bayesian classifier [47] is a widely used

classier to estimate the probability that a doc-
ument (item), which contains a set of terms{

k1, k2, · · · , kn
}

, belongs to a specific class c:

p(c|k1, k2, · · · , kn)

With the assumption that the terms are inde-
pendent, the probability can be estimate by:

p(c)
n

∏
i

p(ki|c)

p(c) and p(ki|c) can be calculated by the train-
ing data [152].
To sum up, content based methods require
analysis of the features of the underlying items.
For some items, such as books and news, it is
easy to get the content features. But for oth-
ers, like videos and music, more efforts are
required. The process is often complicated
and expensive in computation. To alleviate
this problem, other methods can be used, like
Singular Value Decomposition (SVD) [66] and
Principal Component Analysis (PCA) [98].

2.3. Collaborative Filtering
Collaborative filtering is one of the most suc-
cessful methods [176] to build recommender
systems. It mines the correlations among users
or items to predict a user’s preferences on new
items. Classically, this method can be further
categorized into memory based approach and
model based approach.

Memory based. Memory based approach recom-
mends items based on the entire collection of
items which have been rated by users previ-
ously. Intuitively, given a user u, the prediction
of his unrated items is computed based on the
users who are similar to him or the items sim-
ilar to what he has rated before. There are a
number of metrics introduced to measure sim-
ilarity between users or items [76, 172]. Next,
we take Pearson correlation coefficient and Co-
sine similarity as examples to review user sim-
ilarity. The definitions can be easily modified
to calculate the similarities between items.

• Pearson correlation coefficient is the co-
variance of the two vectors divided by the
product of their standard deviations. It
gives a value in the range [−1, 1], where
1 is total positive correlation, 0 denotes
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no correlation, and -1 indicates total neg-
ative correlation.

sim(u, v) =
∑i∈Iuv

(rui − r̄u)(rvi − r̄v)√
∑i∈Iuv

(rui − r̄u)2 ∑i∈Iuv
(rvi − r̄v)2

Iuv denotes the set of items are rated
both user u and v, and rui and rvi denote
the scores that user u and v gave to item
i respectively.

• Cosine similarity is a measure of simi-
larity between two vectors of an inner
product space that measures the cosine
of the angle between them. The output is
in the range [0, 1].

sim(u, v) =
∑i∈Iuv ruirvi√

∑i∈Iuv r2
ui

√
∑i∈Iuv r2

vi

Among all memory based methods, neighbor-
hood based method is a representative [41].
This method can be either user based [105, 77]
or item based [168, 118]. Mathematically, they
are very similar so that we will introduce them
in a uniform manner. In the following, we refer
to the definitions from [115, 105, 168]:

r̂xy =
∑x′∈X ωx′x · rx′y

∑x′∈X ωx′x

r̂xy = rx +
∑x′∈X ωx′x · (rx′y − rx′)

∑x′∈X ωx′x

Let rx be the mean value of
{

rx,y, x ∈ X
}

. ωx′ ,x
is the similarity between x and x′. If it is user
based, rx,y represents the score that user x gave
item y, and X is the neighbor set of users who
have rated item y. If it is item based, rx,y rep-
resents the score that user y gave to item x, X
is the neighbor set of items which have been
rated by user y.

Model based. In contrast to memory based ap-
proach, model based approach learns the his-
tory data and models it [81, 151, 109, 139]. In
recent years, model based approach has been
intensively studied and become very popular.
Matrix Factorization [113, 109] is demonstrated

to be very efficient and stable, and it is one of
the most popular methods in the category of
model based approach. In practice, it helps
Koren [109] to win the Netflix Prize 1 in 2009.
The intuition behind using matrix factorization
is that users rate a movie will depend on some
latent features, such as, whether they like the
actors/actresses or the genre of the movie. It is
reasonable to imagine that if the recommender
systems can discover more such factors then it
will generate more accuracy recommendation.
Naturally, the number of factors should be less
than items number and users number. For-
mally, suppose that there are two latent factor
matrices P (|U| × K) and Q (|I| × K) that their
production can approximate R with a tolerable
error:

R ≈ P ·QT = R̂

Each row of P represents the strength of asso-
ciation between a user and the latent factors.
And each row of Q represents the correlation
between an item and the latent factors. The
prediction of the rating user u assigns to item i
can be estimated by:

r̂ui = PuQT
i =

K

∑
k=1

pukqki

A cost function, which is used to measure the
error between real rating and estimated rating,
is define as:

e2
ui = (rui − PuQT

i )
2 + β ·

K

∑
k=1

(||Pu||2 + ||Qi||2)

Parameter β is used to control the magnitudes
of the user latent factors and item latent factors.
Now, the task of obtaining P and Q becomes
to minimize the cost function of the all (u, i)
pairs i κ:

min ∑
(u,i)∈κ

e2
ui

Stochastic gradient descent2 (SGD) is a very
popular method to solve the above cost func-
tion. It’s a iterative algorithm, the update rules

1http : //www.net f lixprize.com/
2http : //si f ter.org/ simon/journal/20061211.html
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for Pu and Qi are:

Pu = Pu + α
∂

∂Pu
e2

ui = Pu + α(2euiQi − βPu)

Qi = Qi + α
∂

∂Qi
e2

ui = Qi + α(2euiPu − βQi)

α determines the rate of approaching the mini-
mum. α and β are empirical value.
In the rest of this survey, when mentioning
matrix factorization, we will use predication
function or cost function directly, which can
be easily obtained from each other under the
methodology we described above.

Improvement. Based on the basic matrix fac-
torization model, researchers have also intro-
duced a variety of other factors, like neighbor-
hood, global average, item bias, user bias, time
and so on, to construct rating prediction func-
tion to achieve a better performance [109, 106].
[139] extends a probabilistic matrix factoriza-
tion model which assumes that rui is subject to
normalized distribution.

Challenges. Collaborative filtering, as one of
the most successful approaches to build rec-
ommender systems, also has many challenges.
This approach may suffer from cold start prob-
lem [170], which means it can not provide ac-
curate recommendation service to new users
or items. This problem can be mitigated by
hybrid approach based systems and additional
information, like demography and social net-
work. Scalability is another issue. In reality, the
number of users and items can be very large,
such as millions of users and items. What
makes the situation more serious is that some
applications require real-time recommendation
services, like news recommendation [36]. Data
Sparsity [85] is yet another issue. In most cases,
although the number of users and items are
large, each user only rates a small portion of
the available items. It’s difficult to find similar-
ities among different users or items.

2.4. Hybrid Approach
Hybrid recommender system [17] combines
two or more recommendation methods to miti-
gate certain limitations of individual method
and improve accuracy. Two main approaches
exist to implement hybrid recommender sys-
tems:

• Using model based composition meth-
ods, like linear regression [11, 12], neural
network [107] and so on to composite
the predictions generated by a variety of
recommendation methods.

• Constructing a comprehensive model
that integrates different features and
methods together [106, 120, 170, 34, 68].

Model based composition. In the model based
composition, suppose that the recommender
system employs K models. [11] suggests that
using a simple linear model to composite mul-
tiple predictions X:

f(X) = Xβ

β ∈ RK is the regression coefficient. It can be
obtained by minimizing the prediction error:

||Xβ− b||2x + λ||β||22

The final rating is:

r̂ui

K

∑
k=1

βk · r̂k
ui

[12] introduces a more sophisticated linear re-
gression based method to better model cer-
tain users or items. [17] describes a cascade
model that one recommender’s output is an-
other recommender’s input. Other methods
have also been developed to composite predic-
tions, like neural network, polynomial regres-
sion, gradient boosted decision tree and so on
[107, 107, 154].

Single comprehensive model. In contrast to model
based composition, a comprehensive model
tries to integrate different kinds of factors to-
gether to construct the recommender system.
It may merge content based method and collab-
orative filtering, or different kinds of collabo-
rative filtering methods to generate recommen-
dation.
[106] described a way to merge neighbor-
hood based method with latent factor model
smoothly. Simply, they employ a neighborhood
method as following:

r̂ui = bui + ∑
j∈Ru\i

(rui − buj)wij
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Express latent factor model as:

r̂ui = bui + PuQT
i

Then construct the integrated model, as:

r̂ui = bui + PuQT
i + ∑

j∈Ru\i
(rui − buj)wij

bui is a baseline estimate for an unknown rat-
ing: bui = µ + bu + bi, where µ is the overall
average rating, bu and bi indicate the observed
deviations of user u and item i, respectively.
The parameters of the integrated model can be
estimated by minimizing the associated regu-
larized squared error function (cost function)
through gradient descent method as we de-
scribed before.
Researchers also incorporated content based
method with collaborative filtering method
[120, 186]. Take [120] as instance, it first clas-
sifies the items (news) category, then employs
Bayesian classifier to determine a user’s inter-
est to the specific news. Finally, it is incor-
porated with the collaborative filtering out-
put [36]: Rec(user, item) = CR(user, item) ×
CF(user, item). CR denotes content based rec-
ommender and CF is collaborative filtering.

Summary. Hybrid recommender systems can
give more accurate prediction than systems
with single model, like a pure content based
method or a pure collaborative filtering ap-
proach. It’s helpful to alleviate cold start prob-
lem, to mitigate attack from malicious users. It
can improve the effectiveness of scalability [36].
However, on the other hand, it requires more
resources including data sources and computa-
tions. Some papers, e.g. [153, 138], empirically
compare the performance of hybrid with pure
content based or collaborative methods.

2.5. Metrics
The quality of recommender sytems are veri-
fied by the pre-defined metrics. They are well
studied in [172, 76]. In this paper, we only in-
troduce the widely used prediction accuracy
metrics.

Mean Absolute Error (MAE)

MAE =
∑(i,j)∈κ |r̂i,j − ri,j|

N

where N is the total number of ratings over
all the users in test set. r̂i,j is the estimation
for user i over item j. ri,j is the real rating.
MAE measures the absolute error between the
estimated and the real ratings.

Root Mean Squared Error (RMSE)

RMSE =

√
∑(i,j)∈κ(r̂i,j − ri,j)2

N

RMSE amplifies the absolute error between the
predicted and the true ratings. So it’s a good
choice when the errors can have great impact
on users’ decision.

Precision and Recall

Precision is the ratio of retrieved instances that
are relevant. It is defined as:

Precision =
Tp

Tp + Fp

where Tp is the number of true positives, and
Fp is the number of false positives.
Recall is the portion of relevant instances that
are retrieved, the definition is:

Recall =
Tp

Tp + Fn

Fn is the number of false negatives. F1-score
is defined as the harmonic mean of precision
and recall, which is employed to consider the
influence of both Precision and Recall:

F1 =
2Precision · Recall
Precision + Recall

Receiver operating Characteristic (ROC) curves

ROC curve illustrates the performance of a
binary classifier system in a two-dimensional
space. The curve presents the true positive rate
(TPR) against the false positive rate (FPR) in
various threshold settings. It is widely used in
signal processing. [76] employed it to distin-
guish good predictions from bad predications.
The Area under the ROC Curve (AUC) is used
to measure a system’s capability of distinguish-
ing good predictions from bad predications.
Bigger value of AUC indicates better perfor-
mance of the system.
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3. Dimensions of Recommender System

Most of the first generation recommender sys-
tems focused on two-dimensional User× Item
matrix. However, researchers soon realized
that considering more additional information
may bring significant benefit, like mitigating
cold-start problem, increasing accuracy, en-
hancing stability. We survey these main di-
mensions for some popular application areas
of recommender systems and summarize them
in Table 2. In the following, we consider cost of
money, tags, emotion, demography as Context.

3.1. Explicit Feedback and Implicit Feedback

Users’ explicit feedback on items is the most
direct approach to construct User × Item ma-
trix. For example, users rate a movie on Netflix
3 with a score in the range [1,5], and use 0 to
denote the fact that a movie is not rated. But
in reality, only a small portion of the items can
receive explicit feedback. So collecting implicit
feedback, such as news click history, music
play count, visiting history of a place, video
watch history and so on, is crucial to construct
User× Item matrix to build recommender sys-
tems [84, 36, 183, 59, 37]. Generally, researchers
always try to quantify implicit feedback into
a numeric matrix. Thus, almost all the collab-
orative filtering methods can be employed to
build recommender systems based on it. For
instance, [36] treats a click event as a vote to
news. It creates binary matrix to present users’
preference on news. [183] assumes that users
listen to songs more often if they like them, so
it employs play count as rating which a user
assigns to a song.
Next, we will introduce some representative
algorithms. A very basic neighborhood based
method is described as follows [168, 118]:

r̂ui =
∑j∈Ru\j wijruj

∑j∈Ru\j wij

[115] presents a model called Slope one. It em-
phasizes the influence of differences between
items and users’ rating habits. For instance,
some users prefer to give higher score to items,

but others would like to assign lower score. A
mathematical definition is:

r̂ui =
∑j∈R(u)\i(δi,j + ui)wi,j

∑j∈R(u)\i wi,j

where δi,j is defined as:

δi,j =
∑u∈R(i,j)(ui − uj)

|R(i, j)|

R(i, j) denotes a set of users who rated item i
and j.
Other usage of ratings, such as average rating
of a user/item, rating number of a user/item
and so on, are further discussed in [10, 107].
These features are uniformly called global ef-
fects. Quite often, a recommender system
combines multiple global effects in sequence.
When it learns a global effect, it takes as input
the prediction residual generated by all the pre-
vious global effects (only the first global effect
uses original ratings).
As we presented in Section 2.3 , matrix factor-
ization is one of the most successful methods of
recommendation. It has many variants, all of
them can be solved following the same method-
ology we introduced in Section 2.3. Here, we
describe a very well-known variant proposed
in [150]. It incorporates user bias and item bias
to matrix factorization model. A well-known
mathematical definition is from [109]:

r̂ui = µ + bu + bi + PuQT
i

where µ denotes overall average, bu and bi in-
dicate the observed deviations of user u and
item i from the average, respectively. The prob-
abilistic matrix factorization [139] assumes that
the ratings follow Gaussian distribution, and it
further assumes that different users (items) are
independent to each other. A formal descrip-
tion is as follows:

p(R|P, Q, δ2) =
N

∏
u=1

M

∏
i=1

[N(Rui|PuQT
i , δ2)]Iui

where N(Rui|PT
u Qi, δ2), generally denoted as

N(x|µ, δ2), is the probability density function
of the Gaussian distribution with mean µ and
variance δ2. Pu and Qi represent user and
item latent features respectively. Iui indicates

3https : //www.net f lix.com/
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News Tourism Movies & Video Music Books Social network
Explicit feedback ? ? ? ? ?
Implicit feedback ? ? ? ? ? ?
Time ? ? ?
Content ? ? ? ? ? ?
Cost ?
Location ? ? ? ? ?
Social interaction ? ? ? ? ?
Demography ? ? ? ? ? ?
Tags ? ? ? ?
emotion ? ?

Table 2: Features used in different areas

whether item i has been rated by user u. To
obtain the predication, this model’s cost func-
tion is estimated by maximizing the posterior
distribution over the user and item features
[139, 163].
Aassociation rule mining [4] is an important
technique in recommendation to discover in-
teresting relations between items. [37] uses
this (called co-view) to measure how often
a pair of items are visited in a session (the
same user visits those items in a certain period).
[164] describes a class of two-layer undirected
graphical models that generalize Restricted
Boltzmann Machines (RBM) [175, 80] to model
User× Item matrix. It uses Contrastive Diver-
gence [79] to learn a model for predication. For
large scale recommender systems, clustering
approach is often adopted to avoid unneces-
sary computation, so that only highly related
items or users are involved. [36] employs Lo-
cal Sensitive Hashing (LSH) [92] and proba-
bilistic latent semantic model [82] to cluster
users into different groups (topics). Note that
a user can belong to multiple groups. Parallel
based and distributed based methods are also
sharp tools to improve the effectiveness of large
scale datasets, and are extensively studied in
[206, 60, 159, 207].

3.2. Content

Content, as an independent feature, can be
used to construct pure content based recom-
mender systems or combine with collabora-
tive filtering methods to build hybrid recom-
mender systems. As the two folds are already
discussed in Section 2.3 and Section 2.4, in this

section we present the representative applica-
tion areas indicated in Table 2.
[138] presents a way to combine content with
User× Item rating matrix to build collaborative
filtering recommender systems. It first creates
a pseudo user-ratings vector for each user in
the dataset, and then form the new User× Item
matrix as:

r
′
ui =

{
rui : i f uesr u has rated item i
cui : otherwise

where cui denotes the rating predicated by pure
content based recommender system. Then any
collaborative filtering methods can be applied
to the resulted User× Item matrix.
[142] constructs user profile based on the books
that the user has ever rated. It employs
Bayesian method to measure the strength of
words (from content, title, authors) which are
projected to a specific user. Then, the system
uses the strength of words to influence the final
recommendation. [120] uses news content to
classify a user’s click history. Latent Dirichlet
Allocation (LDA) [16] is a very efficient and
important method to detect content topics. In
[117], researchers first cluster news, then em-
ploy LDA to detect latent topics, and use a vec-
tor to present the topic distribution of a news
in the some group. [119] uses LDA to cluster
Places of Interest by their textual description.
For multimedia recommendation, like mu-
sic, video and movie, the content features
are very important. Many methods have
been explored to extract this kind of features
[69, 114, 89, 42, 78]. [183] uses some con-
ventional approaches of music information re-
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trieval [130, 190, 55] and deep convolutional
network [78, 110] to extract local features from
audio signals and aggregate them into bag-of-
words (BoW) representation, employs Metric
Learning to Rank [131] to learn the music’s
similarity, and uses the result to provide rec-
ommendation service.
Researches have also tried to use users’ text in-
formation form websites (Twitter, Blogs) to con-
struct their profiles, and then to recommend
friends [97, 26].

3.3. Time

Item’s popularity and user’s preference change
over time [108], so time is very important fea-
ture for personalized recommendation. Com-
monly, there are three approaches to use time
information.

• Time decay approach: it assigns more
weight to more recent items.

• Time slots approach: it divides the time
serial into several slots, applies related
algorithms to each slot, then combines
the results together.

• Time cost approach: it treats time as a
kind of cost, and integrate it into the rec-
ommendation algorithms.

Based on the observation that movie ratings
change over time, [108] divides the time se-
rial into several time slots and uses a distinct
item bias in each slot. This idea is applied to
baseline predictor, SVD++ factor model [106],
and neighborhood based model. Then these
time-based models are integrated and result in
a combined solution named timeSVD++. [103]
applies a similar approach to their music rec-
ommender system, and they consider a 2-week
time resolution to be good enough to catch
time shifting.
For news recommendation, recency is one of
the most important features. Temporal infor-
mation can be extracted from many things, like
click history, news item publish time. Gen-
uine interests and news tendency influence,
which correspond to "long term" and "short
term" interests [15], are investigated to improve
news recommendation. [36] divides the time
serial into several bins, and predicts personal

click distribution (the probability of a news be-
longs to a specific category c) for each bin t,
pt(click|category = c). Then, it combines the
results of all the bins to obtain genuine inter-
ests. To obtain news trend, [36] uses the click
distribution of the history data in a very short
time slot, like 1 hour or 10 minutes.
In tourism, some places of interest may be
more attractive in a certain season, and peo-
ple may lean to hang out for tour in some
specific periods. Temporal information can be
extracted from visit history [122]. Weight Av-
erage Entropy (WAE) [93] can be applied to
find the best splitting of the tour time serial, as
[122]:

WAE(SP, i) =
|SP

1 |(i)
|SP| Ent(SP

1 (i))

+
|SP

2 (i)|
|SP| Ent(SP

2 (i))

It treats the entire year as a big season at the ini-
tialization phase and then partitions it into sev-
eral seasons in a recursive binary way. Ent(SP)
is the entropy information of season SP, the def-

inition is: Ent(SP) = −∑
|SP |
i=1 pilog(pi). |SP| is

the number of travel packages (items) in season
SP. pi is the proportion of travel package Pi
in season SP. SP

1 and SP
2 are two sub-seasons

of season SP when being split at i-th month.
By seeking a maximum information of ∆Ent(i)
which is defined as: Ent(SP)−WAE(SP, i), the
system can find the best month splitting. Be-
sides finding the best time splitting described
as above, the duration of time is also consid-
ered into recommender system [184] and it is
treated as a kind of cost.

3.4. Location
With the development of position localization
techniques, people can share their location
with others easily. Researchers have leveraged
on location information to enhance a recom-
mender system’s performance and to provide
new location recommend services. Two main
hypothesis are important to location based rec-
ommender systems.

• Tobler’s proximity law: everything is re-
lated to everything else, but near things
are more related than distant things [180].
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• Power law distribution: it indicates the
probability of a user to check-in a place
decays as the power law of the distance
between them.

Typically, location features can be classified
into three categories.

• Location history, such as users’ location
check-in history and online rating history
of locations [32, 83, 197].

• User Trajectories, such as the visiting se-
quence, travel path, GPS trajectory and
so on [116, 25, 203, 205].

• Location tag, such as location informa-
tion in social media [73, 71, 198].

In tourism recommendation, geographical in-
formation plays a very important role. [197]
uses check-in (visit) history to construct a user
item matrix. 1 stands for a user visited a place,
and 0 indicates a place is not visited by the
user. Then, any collaborative filtering method
can be applied to the matrix. It analyzes the
check-in probability to the distance between
two places visited by the same user, and em-
ploys Bayesian method to predict the probabil-
ity of visiting a new place based on the user’s
visit history. [119] uses check-in count data to
form a user item matrix, it integrates spatial
influence and user mobility to predict users’
check-in decision. Compare to location history,
user trajectories, such as travel path and GPS
trajectory, contain more information. In the
meanwhile, the number of locations in contin-
uous trajectory can be numerous. Therefore,
how to identify highly relevant location infor-
mation is an important topic [116]. [205] learns
the location correlations from a large number
of user-generated GPS trajectories to provide
location recommendation. The correlation be-
tween two locations is calculated by integrating
the travel experiences of the users who have
visited them in a trip in a weighted manner.
Instead of using distance to decay the weight
of the location, [205] decreases the location’s
weight as the interval between the two loca-
tions’ index. It describes a Tree-Based Hierar-
chical Graph (TBHG) structure to model users’
GPS trajectory data, and a HIT-based influence

model [102] to measure the representation of
locations and the travel experience of users.
In practice, location features can be hidden or
attached in media content. [125, 177] extract
location information from geo-tagged photos
to recommend travel route.
In music recommendation, researchers have
leveraged on the location information to en-
hance the system’s performance. [21] extracts
the geographical information, like city or coun-
try name, from lyrics. [200] uses geospatial
positions to recommend music that matches
a specific environment. [169] computes a cen-
troid of each user’s geospatial listening distri-
bution, then recommends artists who are close
to the user.
As indicated in [8], location correlation is a very
strong social property. Intuitively, users have
similar location history are more likely to have
similar preferences and become friends. [40]
reveals that users’ social connections are highly
related to their location. [97] extracts geograph-
ical information from tweets, and uses the dis-
tance of between two tweets to measure their
relevance. [33] uses weighted Voronoi diagram
to value the users’ location similarity, where
a user’s Voronoi diagram is weighted by the
user’s dwell time. According the diagram, they
construct affinity matrix to recommend friends
to user. [90] adopts a probabilistic suffix tree
as a trajectory profile to reflects a user’s mov-
ing behavior. They discover user communities
based on the similarity measurement derived
from trajectory profiles of users. [192, 193]
hierarchically cluster users into communities
based on the similarity constructed from users’
location history.

3.5. Social Interaction
Social networks have gained remarkable atten-
tion since mid-1990s [101, 100, 189] . A funda-
mental observation is homophyly [132] which
indicates people with similar interest tend to
connect to each other and people with similar
interests are likely to be friends. On one hand,
researchers have tried to incorporate social in-
formation into collaborative filtering methods
to improve their performances. On the other
hand, social recommendation services have
been proposed to recommend friends and dis-
cover communities.
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Figure 3: Trust network graph

People often quantify a social network by trans-
ferring it into trust network as Figure 3. Some
works assume that users in a social network
explicitly state their trust on their friends. Con-
sider the reality that users only state the trust
values on a small portion of their friends.
Just as predicting the rating value a user will
give to an item, neighborhood based methods
[129, 64, 63] and matrix factorization [127] are
two widely used approaches to estimate users’
trust values on their friends. Some researchers
also use implicit correlations, such as follow-
ship in Twitter and Like action in Facebook,
to construct trust matrix [188]. In the extreme
situation, users in a dataset will be isolated.
For each user, only the associated events with
timestamps are recorded. Some people believe
that a latent social network is hidden in these
isolated data. [67] employs probabilistic model
to infer the network on the diffusion data un-
der an assumption that the weight of the edges
in the network are homogeneous. [143] re-
moves this assumption, and presents a max-
imum likelihood approach based on convex
programming to infer the latent weighted so-
cial networks from diffusion data. Next, we
discuss some representative works in making
use of social information for recommender sys-
tems.
[127] integrates trust between users in so-
cial network into recommender based on ma-
trix factorization method. Suppose that the
model has User × Item rating matrix R and
User×User trust matrix S, where Suv ∈ (0, 1]
and 0 indicates user u does not trust v at all,

1 means user u completely trust v. Both of to
matrices are sparse. Their prediction equation
is:

R̂ui = PuQT
i , Ŝuv = PuZT

v

where P, Q, Z are user, item and trust latent
factors, respectively. The cost function is de-
fined as:

∑
(u,i)∈κ

(rui − r̂ui)
2 + ∑

u,v
(suv − ŝuv)

2

+ β(||P||2 + ||Q||2 + ||Z||2)

[126] proposes a linear combination of basic
matrix factorization approach. It uses the ob-
served trust matrix S directly:

r̂ui = αPuQT
i + (1− α) ∑

v∈Fu

SuvPvQT
i

where Fu is the set of user u’s direct friends.
SuvPvQT

i in the equation captures social influ-
ence. And α ∈ [0, 1] is used to balance strength
of rating information and the social influence.
[95] further incorporates trust propagation into
the matrix factorization, and the cost function
is defined as:

∑
(u,i)∈κ

(rui − r̂ui)
2 + γ ∑

u∈U
||Qu − ∑

v∈Fu

SuvPv||2

+ β(||P||2 + ||Q||2)

One approach to integrate social influence into
neighborhood based method is using trust val-
ues between users to substitute similarity val-
ues between users [129, 64]. Random walk
can also be employed to predict user u’s rat-
ing on item i. For example, [94] chooses u as
the source node, and performs several random
walks on u’s trust network, and the aggregation
of all ratings returned by those random walks
are considered as the predicted value. In each
walk, if user v has rated a target item i, then
stop walking and return rvi. If v has not rated
item i, it has a probability, which is related to
the maximum similarity between target item i
and the items v has rated, to continue the walk.
If the walk stops, randomly select item j simi-
lar to target item i and return rvi. [194] finds K
nearest neighbors, called CF-Neighbors, from
latent user factors obtained by matrix factor-
ization and gets K closet neighbors who are
not in CF-Neighbors from the trust network.
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Then users in the combined neighborhood vote
for their relevant items to recommend Top-N
items to target users.
New recommendation services, such as find-
ing friends and discovering communities, is
another important branch. The methods used
to estimate users’ trust social network can be di-
rectly employed to recommend friends. For ex-
ample, users who trust each other with a high
probability are likely to be friends. An obser-
vation of social network is that a user’s social
life is multifaceted. For instance, a user may
trust some of her friends when she wants to
buy a computer, and she may trust some other
friends when deciding to buy some clothes. It’s
important to infer the communities that a user
belongs to. [195] introduces a set of methods
to infer category-specific circles (communities)
of friends based on the following definition:
if a user v is in the inferred circle c of user u,
then two minimum request should be satisfied:
(1) Suv > 0 in the social network; (2) Nc

u > 0
and Nc

v > 0, where Nc
u denotes the number

of items in category c that user u rated. [43]
models social network as a Markov random
fields, which incorporates users’ social influ-
ence to predict potential customers of markets.
[26] designs a system to help users find known,
offline contacts and discover new friends on
social networking sites.

3.6. Context
Recently, context-aware recommender systems
have been studied extensively [2]. The main
purpose is to leverage additional information
to enhance recommender systems. The multi-
faceted nature of context information makes it
hard to have a unified definition. A number
of different definitions of context exist in the
literature [9, 44]. In this paper, we refer context
to the properties belongs to an item, but not
the item itself. For example, the content of a
book is not context, but the information like
its authors, publisher, publishing time and so
on are context. And the acoustic signal and
the lyrics of a song is not context, the artists or
tags attached to the song are context. Based on
this, we present the representative application
areas of context, indicated in Table 2.
Cost. In tourism recommendation, [59] discov-
ers that, besides time, financial cost is also a

crucial feature to affect users’ decision. It pro-
poses two cost aware latent factor models to
recommend travel packages by incorporating
financial cost. This first one is probabilistic
matrix factorization model, see Section 3.1, it
defines the mean µ of the probability density
function, N(x|µ, δ2), of the Gaussian distribu-
tion as:

µ = f(Pu, Qi, CPu , CQi ) = S(CPu , CQi ) · PuQiT

where S(CPu , CQi ) is a similarity function to
measure the similarity between user-cost vec-
tor CPu and item-cost vector CQi . Many exist-
ing similarity or distance functions can be used
to perform S(CPu , CQi ), such as Pearson corre-
lation coefficient and Euclidean distance. Pu
and Qi are user latent factors and item latent
factors, respectively. The second one is based
on the first model, with the difference that it
uses a distribution to model user cost instead
of representing it as a fixed 2-dimension vector
as the first one.
Emotion. In music recommendation, a number
of works have tried to capture and model users’
emotion in music [179, 54, 53]. [70] proposes
emotion aware music recommender system. It
gives mathematical representation of emotion
state transition. A set of emotion states are
defined as E =

{
e1, e2, · · · , en

}
, where ei

denotes an emotion status, like "happiness"
and "sadness". Then it describes a music fea-
ture at a specific moment t with an emotion
state vector ES:

ES(t) = [es1(t), es2(t), · · · , esn(t)]

where esn(t) is a non-negative value at any spe-
cific moment t denoting the emotion strength.
Then emotion state transition matrix (ESTM)
is built by combining emotion state vectors of
initial and final moments.

ESTM = ES(tinit)
T(ES(t f inal)− ES(tinit))

=



em1,1 em1,2 · · · em1,j · · · em1,n
em2,1

...
. . .

emi,1 emi,j
...

. . .
emn,1 emn,n


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where tinit denotes the initial moment, and
t f inal is the final moment. emi,j indicates the
value of emotion influence from music. Ul-
timately, the system makes recommendation
based on a user’s current emotion, desired
emotion, and the music-to-ESTM mapping.
Tags. Usually, tags consist of short descriptions
about a certain aspect typical to an item. Some
papers describe models to predict a item’s
tags which help users to make a choice. For
example, [50] uses AdaBoost [56] to predict
music’s tags. Some works focus on leverag-
ing tags to enhance recommender systems.
For instance, [144] models social tags with 3-
order tensors, which capture cubic correlations
between users-tags-music items. It employs
Higher Order Singular Value Decomposition
(HOSVD) [104] [38], which generalizes SVD
to multi-dimensional matrices, to learn latent
factors of 3-dimensional space to make rec-
ommendation. With movie-mood information,
[174] develops a recommender system. Tak-
ing movie mood as input, it first calculates
mood-specific movie-movie similarity matrix,
and then integrates it to matrix factorization
models.
Demographic information. Demographic infor-
mation is also helpful to alleviate data sparsity
and cold start problems. Simply, we say fea-
tures of users or items which do not change
over time or relatively stable are demographic
information. Such as birth of date, address,
gender of a person, publisher of a book and
producer of a movie. This information can
be used to identify the types of users who
like certain objects [153]. For example, ages,
gender and education background are useful
for tourism recommender system and adver-
tisement agent. Publisher, category, layout of
books can be used to calculate similarity be-
tween books [86].
We observe that context features are rarely em-
ployed to construct recommender system alone.
Instead, researchers like to employ them to im-
prove accuracy and alleviate data sparsity and
cold start problems in existing systems.

4. Robustness of Recommender Systems

In recommender systems, people often assume
that the rating information and other feedback

provided by users are fair and honest. But in
reality, this hypothesis may be wrong because
malicious users can try to bias the recommen-
dations for their own benefits. [149] is the
first to show this sort of vulnerability of rec-
ommender systems. Now robustness, i.e. to
deliver stable and accuracy personalized rec-
ommendations, is one of the most important
security concerns for recommender systems.
Informally, robustness property measures the
ability of preventing attackers from manipulat-
ing the output of recommender systems. Math-
ematically, we can define the robustness of rec-
ommendation algorithms as:

D : (f(R), f(R′))→ τ, A : R→ R′

where D is the distance function which can
measure the influence of malicious attack, f
is recommendation algorithm, the output τ
denotes the influence of the attacks. Strate-
gic attacker A inserts well-designed malicious
profiles to recommender systems to result in
output R′. Average shift prediction is often
used to measure the influence of the attack to
prediction recommendation. In this case, D is
defined by the difference between the output
from R and which from R′:

τ = pshi f t =
∑ |f(R)− f(R′)|

N

where N denotes the number of the user-item
pairs in the test set. Average hit ratio is em-
ployed to measure the effectiveness of the at-
tack for Top-N recommendation. It defines D
as an Edit distance:

τ = phit =
∑ Edit-Distance(f(R), f(R′))

N

where N is the number of the users in test set.

4.1. Attack Models

Among all attacks against robustness, profile
injection attacks against collaborative filtering
methods have been studied extensively. In re-
ality, the malicious users always try to achieve
some particular recommendation bias. Com-
monly, there are two attack objectives.

• Push attack, which tries to secure positive
recommendation for some items.
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• Nuke attack, which is designed to se-
cure negative recommendation for some
items.

Due to the specificity of profile injection attack,
most of the attacks correspond to certain col-
laborative filtering methods. [3] compares the
accuracy and attack influence among a variety
of algorithms by inserting a set of hypothetical
ratings to original dataset. Its distance function,
called RMSS, is defined as:

RMSS =

√
∑(u,i)∈T ∆2

u,i

|T|

where |T| is the number of rating pairs in test
set T and ∆ui denotes the difference of the
prediction value on two datasets (the original
dataset and the dataset with hypothetical rat-
ings). Figure 4. illustrates the accuracy (RMSE)
and stability performance (RMSS). The meth-
ods located in the bottom left corner are the
least accurate and least stable, while methods
in the top right corner are the most accurate
and most stable.

Figure 4: Accuracy-Stability of popular algorithms on
Netflix Prize dataset [3]

With well-designed ratings inserted into the
malicious profiles, an attacker can perform
Push attack or Nuke attack as expected. We
present the attack procedures based on how the
attackers manipulate the faked users profiles.
Random attack [149] is designed to degrade the
overall performance of recommender systems.
Have a number of faked users, the attacker ran-
domly selects some items rated by the users,
and assigns them well-designed value, like

maximum, minimum or any random value.
Random attack is easy to execute and does not
require much background knowledge. How-
ever, it is not particular effective against exist
algorithms.
Average attack [149, 111] is more powerful
against user based neighborhood methods. In
this model, an attacker assigns a rating r f ,i
to item i, under the faked user f , with the
item’s mean value: r f ,i = r̄i. It requires more
background information than Random attack
model. However, it falls short when applied to
item based neighborhood methods.
Bandwagon attack, [18, 20] is based on the ob-
servation that the items with high visibility, like
items in the bestseller list, have a high possibil-
ity to be rated by many users. So malicious pro-
files containing such items would have more
influence on the prediction or Top-N recom-
mendation. These selected items are assigned
maximum value and the targeted items are as-
signed with specific value to reach the attack
purpose. Bandwagon attack is as effective as
average attack (against user based neighbor-
hood methods) without requiring much back-
ground knowledge. It is not effective when
attacking item based neighborhood methods.
Instead of trying to influence as many users as
possible, the attacks can be targeted to some
specific users, such as students in university or
the people older than 50. For this purpose,
the attackers first discover the items which
their target users prefer [140]. Then, they as-
sign these items to the faked profiles with
well-designed values to bias the recommenda-
tion. Overall, this kind of attacks requires little
background knowledge and works well against
both user based and item based neighborhood
methods.
[191, 171] note that some users or items may
have more influence than others, called power
users (items). They introduce several methods
to discover power users or power items. [191]
indicates that an attacker can launch attacks
by corrupting the power users (the cost for
corrupting power users may be considerable
high). Power user attack is effective to attack
user based neighborhood and matrix factoriza-
tion methods. Power item attack is effective
against item based neighborhood methods.
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4.2. Attack Detection

In profile injection attacks, the fake user pro-
files are often highly correlated and also have
the ability to influence more users and items.
Based on this observation, researchers have
proposed a number of metrics to identify such
users. The metrics are used to evaluate the
attributes of users themselves and the corre-
lation among users. For example, Number
of Prediction Differences (NPD) indicates the
number of prediction changes in the system
after removing some specific users, and Degree
of Similarity with Top Neighbors (DSTN) de-
scribes the a user’s average similarity weight
with the Top-N neighbors [158]. Rating de-
viation from Mean Agreement (RDMA) and
weighted degree of agreement (WDA) can re-
veal profiles which have low deviation from
mean ratings value, but have high deviation
from the mean of the attacked items [135]. By
giving a threshold to the each of metrics, users
whose values are larger than the thresholds can
be considered as malicious [31]. [135] finds that
malicious users can highly correlate with each
other as well as with genuine users. Hence, one
problem with this method is the potential high
false positive problem, namely some genuine
users may be mistaken to be malicious. As a
representative work of malicious users detec-
tion, [135] investigates the Movielens dataset 4

and shows that the covariance between spam
users is much lower than normal users. [135]
employs Principal Component Analysis (PCA)
[98] to detect spam users who have the mini-
mum principal components. It shows that the
PCA approach is effective to random attack, av-
erage attack, bandwagon attack, hybrid attack
based on average attack and bandwagon attack,
and also their variants based on obfuscation
strategies. In the same direction, [137] uses
SVD based approach to detect malicious pro-
files. Another popular yet different approach
is employing classifier to class users into differ-
ent classes and selecting the most suspicious
class as malicious users. For example, [19] uses
kNN classifier to find malicious users.
It is clear that the attack effectiveness depends
on the size of faked profiles. If a recommender

system only accepts authentic profiles and al-
low them to post rating information then it will
be very difficult for an attacker to mount an
attack. Realizing this, many e-commerce web-
sites only allow users to rate items which they
bought. We observe that, due to the lacking
of real dataset, researchers rarely use the time
factor to enhance their detection methods. But
in practice it’s reasonable to employ time as an
important features because the attackers may
only want to achieve their attack goals within
a given time slot.

4.3. Algorithm Enhancement
When facing robustness attacks, [141] argues
that model based algorithms are more robust
than memory based algorithms. In contrast,
some other researchers argue that model-based
algorithms seem to be more robust is down to
the fact that the proposed attacks have not hit
the specific vulnerabilities of these algorithms,
by illustrating diverse and obfuscated attacks
on model-based recommender systems [29]. In
the following, we introduce some representa-
tive works on improving robustness of existing
recommender algorithms.
Reducing outliers’ influence is a popular ap-
proach to improve recommender algorithms’
robustness. [136] shows the vulnerability of
matrix factorization is due to the cost func-
tion(least square), ∑(u,i)(rui − r̂ui)

2, which is
sensitive to outliers. It then introduces M-
estimator [88], which can alleviate outliers in-
fluence, with the cost function defined as:

∑
(u,i)∈κ

ρ(eui)
K−1(eui)

where K is a empirical constant, eui denotes
rui− r̂ui. If |eui| ≤ K the value ρ(eui) is set to be
1, otherwise it is set to be K

|eui |
. [30] argues that

M-estimator does not improve recommender
systems’ robustness significantly. Instead, it
employs Least Trimmed Squares [162] to solve
matrix factorization, with the cost function be
defined as follows:

h

∑
i=1

e2
i

4http : //grouplens.org/datasets/movielens/
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where e1 ≤ e2 ≤ · · · ≤ en, n is the total
number of residuals and h < n. The largest
squared residuals are not used in the computa-
tion. Hence, it can mitigate the influence from
outliers efficiently.
Trust network is another approach to enhance
robustness. For instance, [161] uses reputation
to limit users’ influence to the recommender
system, where the reputation is accumulated
by the ratings that a user supplies. If the rating
information positively contributes to accuracy,
the user gains reputation otherwise loses repu-
tation.

5. Privacy of Recommender systems

Privacy is another serious security concerns of
recommender systems, and it has gained enor-
mous attention. Usually, privacy means that
the recommender system should not leak any
information beyond what can be inferred from
the output and the service provider should not
learn anything. Furthermore, some researchers
demand that the output should not help an
attacker to re-identify individuals and their at-
tributes. In the following, we refer utility to the
full performance (e.g. accuracy, effectiveness
and so on) that normal recommender systems
can provide without considering privacy. An
ideal privacy-preserving solution should guar-
antee privacy without losing any utility. Un-
fortunately, there is always a tradeoff between
privacy and utility. Generally, we simply clas-
sify the proposed methods into two categories.

• Data perturbation approach: the data
owners perturb their own data and re-
lease them to each other. In this approach,
the main purpose is to protect the the
privacy of individuals recorded in the
datasets.

• Secure multiparty computation approach:
recommendations are generated through
a secure multiparty computation proto-
col.

5.1. Building blocks

Before going deep into the privacy-protection
solutions, we briefly introduce some building
blocks.

• Garble circuits [196, 128] allow two par-
ties, who have their owner inputs x
and y respectively, to evaluate any func-
tion f(x, y) without leaking any informa-
tion about their inputs beyond what can
learned from the outputs. It has two
stages: Garble and Evaluate. Assume a
circuit C has n input wires. Garble pro-
duces the garbled circuit C̃ and two labels
`i,b, like encryption keys, for each input
wire.

(C̃,
{
`i,b
}

i∈[n],b∈
{

0, 1
})← Garble(1k, C)

Every input corresponds to a value for
each of the n input wires. Giving n of 2n
input keys, then the circuit result can be
evaluated with those keys.

C(x)← Evaluate(C̃,
{
`i,xi

}
i∈[n])

• Homomorphic encryption [61] allows op-
erations to be done on ciphertexts and
generate encrypted results. Formally, a
homomorphic encryption scheme ε is
correct (a minimum request) for circuits
in Cε if for any key-pair (sk, pk) out-
put by KeyGenε(γ), any circuit C ∈ Cε,
any plaintext π1, π2, · · · , πn and any ci-
phertexts Ψ =< ψ1, ψ2, · · · , ψn > with
ψi ← Encryptε(pk, πi), say if,

ψ← Evaluateε(pk, C, Ψ)

then,

Decryptε(sk, ψ)→ C(π1, π2, · · · , πn)

• Secure vector addition, mathematically,
is described as:

= : (X1, X2, · · · , Xn)→
n

∑
i=1

Xi

where = denotes the function to achieve
secure computation. Each of n users
has a vector of data Xi ∈ ZK, each
vector Xi has K coordinates, Xi =
[Xi1, Xi2, · · · , XiK] and Xik is integer. Se-
cure vector addition can be implemented
by cryptographic approach, like homo-
morphic encryption [22], and perturba-
tion based approach such as [182, 65].
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• Secure scalar product is a widely used
component to achieve secure computa-
tion. Formally, it is described as:

= : (X, Y)→∑
i
(Xi ·Yi)

where X ∈ ZK and Y ∈ ZK are vectors.
Xi and Yi are integers. Algebraic solution
[181, 201] and cryptographic solution [62]
are two popular approaches to achieve
secure scalar product.

• Secure comparison is a very important
tool in computation, like generating Top-
N recommendation. Given a pair of in-
puts x and y, a secure function is design
to output a Boolean expression. For ex-
ample, the output is 1, then we define
x >= y, otherwise x < y. We formulate
the description as:

= : (x, y)→ {0, 1}

Algebraic approaches, like [148], and
cryptographic approaches, such as [58],
are two main solutions to achieve secure
comparison.

• Differential privacy [48] quantifies the
privacy loss in a rigorous manner. In-
tuitively, it captures a single user’s influ-
ence on the output. Formally, [48] defines
it as: A randomized function K gives
ε-di f f erential privacy if for all data sets
D1 and D2 differing on at most one ele-
ment, and all S ⊆ Range(K),

Pr
[
K(D1) ∈ S

]
≤ exp(ε)×Pr

[
K(D2) ∈ S

]
ε is defined as privacy budget. It rep-
resents the extent of privacy that this
model can guarantee. Two fundamen-
tal mechanisms to implement differential
privacy are Laplace mechanism [49] and
Exponential mechanism [134]. Laplace
mechanism deals with numeric output
and Exponential mechanism deals with
non-numeric output.

5.2. Data Perturbation Approach
In this subsection, we review three different
ways to perturb data in order to protect data
privacy.

5.2.1. Additive data perturbation
Additive data perturbation has a long history
in disclose control of statistical databases. [5]
first introduces it to data mining area. Math-
ematically, additive data perturbation is de-
scribed as:

Y = X + C

where C is a noise matrix added to the original
matrix X. In a common practice, each row of C
is generated independently from a certain dis-
tribution with mean µ (normally, it is shifted
to zero) and variance δ2, such as Gaussian dis-
tribution and Uniform distribution.
In the case of recommender systems, a neigh-
borhood based method is proposed in [75]. The
prediction is computed as follows:

r̂ui = r̄u + δu ·
∑v∈R(i) wuv · zvi

∑v∈R(i) wuv

and

wuv = ∑
k∈R(uv)

zuk · zvk

where z-score zui is defined as: zui = rui−r̄u
δu

.
[156] employs noise from uniform distribu-
tion to disguise the z-score matrix. Formally,
z′ui = zui + cui where cui ∈ [−α, α] is the noise
value corresponding to user u and item i. Then
the data owner can publish z′ui without losing
much privacy. By obtaining z′ui, the following
components, ∑u∈R(i) zuk · zui ≈ ∑u∈R(i) z′uk · z

′
ui

and ∑u∈R(i) zuk ≈ ∑u∈R(i) z′uk, can be com-
puted and send them back to the data owner.
Thus, the data owner can get the final recom-
mendation. Another example is on SVD based
method [157]. Recall that SVD factors a two-
dimensional matrix into three sub sub-matrices
as R = USVT , where U denotes user latent fac-
tors, V indicates item latent factors and S is
a diagonal matrix having all singular values
of R. After filling the empty elements of R
with mean rating of users, matrix R is normal-
ized by converting rating to z-scores. Thus, the
predication can be presented as:

r̂ui = r̄u + δu[Uk
√

Sk(u) ·
√

SkVT
k (i)]

where k is the number of largest singular val-
ues used in the algorithm. [167] uses a noise
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matrix (following Uniform or Gaussian distri-
butions) to disguise matrix R to R′, and then
computes R′ = U′S′V′T . It shows that the
noise’s influence on R′T R′ can be converged to
a negligible value. S′ and V′ can be estimated
by calculating eigenvalues and eigenvectors of
R′T R′, respectively. U′ can be estimated by
computing S−1RV′. With U′, S′ and V′, users
can obtain the final prediction.

Figure 5: Wigner Semi-circle law

Challenges. Most attacks against data perturba-
tion solutions are based on two assumptions:
The attackers can and only can access the per-
turbed dataset and the PDF of noise C is public.
Eigen-analysis is a popular approach to esti-
mate original dataset. It is based on the obser-
vation that the eigenvalues of a random matrix
are in a predicable distribution. Given a ran-
dom matrix Cn×n whose rows are generated
independently from a distribution with mean
zero and variance δ2, and let n be a number
large enough. Then, the PDF of the distribution
of eigenvalues of A+A′

2
√

2n
can be well estimated,

shown in Figure 5. [99] describes a method
to estimate original matrix X based on Eigen-
analysis. First, it normalizes matrix Y to mean
zero if it’s not. Then, it computes the stan-
dard covariance matrix ∑Y of Y, its eigenvalues
γ1

Y ≥ γ2
Y ≥ · · · ≥ γn

Y, and their corresponding
normalized eigenvectors v1

Y, v2
Y, · · · , vn

Y. Then,
it chooses the K eigenvectors associated with
largest K eigenvalues to form an eigen-matrix
VY, denoted as: [v1

Y, v2
Y, · · · , vK

Y ]. Finally, it esti-
mates X to be

X̂ = VYVT
Y Y

Bayesian based approach, like [87], considers
both prior and posterior knowledge to estimate
the original dataset. Let pX and pC denote the
PDF of X and C, respectively. Then, the esti-
mation of x can be obtained by maximizing

pC(y− x)pX(x), x ∈ Rn

5.2.2. Multiplicative data perturbation
Multiplicative data perturbation leverages on
data transformation methods to preserve pri-
vacy and keep data utility. Formally, it is de-
scribed as:

Y = MX

while M is the matrix chosen to transform the
original data X. A number of methods have
been introduced to construct matrix M in [28].
For example, let M be an orthogonal matrix
(MT M = I). Then, it preserves Euclidean dis-
tance. Preserving distance or inner product
is important to classification and collaborative
filtering methods [27]. Take inner product as
example, let < X, Y >= XTY denotes inner
product of X and Y, and MT M = I. So:

< MX, MY >= XT MT MY =< X, Y >

For algorithms which can be implemented by
inner product, multiplicative data perturbation
can preserve similar accuracy to that based on
original data.
Unfortunately, how well multiplicative data
perturbation guarantees privacy is not clear,
and it deserves further study. Some researchers
find it vulnerable to background knowledge
attack. If the attacker knows a portion of the
original data set X, say Xp and their corre-
sponding part in perturbed data set Y, say Yp.
Suppose that M is orthogonal, [121] shows how
to use Xp and Yp to obtain an estimation of M,
denoted as M̂. With M̂, an estimation of xi,
denote as x̂i, can be computed as follows.

x̂i = M̂Tyi

5.2.3. Differential Privacy
[13] summarizes three approaches to achieve
differentially-private collaborative filtering
methods.

• Input Perturbation. It is the same as [133]
which adds noise to the data source di-
rectly.

• In-process Mechanism. The noise is ap-
plied in the middle of the execution of
recommendation algorithms.

• Output perturbation. The perturbation is
applied to the output. Take matrix fac-
torization as an example, it adds noise
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to the user latent factors and item latent
factors [13].

[133] relies on Laplace mechanism to achieve
differentially-private collaborative filtering rec-
ommender systems. It first analyzes the
components of recommendation algorithms,
like global effects: item’s rating summa-
tion: MSumi = ∑u rui, item’s rating number:
MCnti = ∑u qui where qui indicates if an item
i is rating by its corresponding user u; Covari-
ance matrix: Covij = ∑u ruiruj and so on. Then,
it analyzes the sensitivity of each components
which is used to generate noise to satisfy dif-
ferential privacy. Formally, define

K(X) = f(X) + Laplace(0, δ)d

say the mechanism K guarantee
(ε, δ)-differential if

δ ≥ max
D1,D2

||f(D1)− f(D2)||1/ε

For example, to disguise item’s count number,
it is: GCnt = ∑u,i qui + Laplace(0, 1

ε )
d. Since

for count, max
D1,D2

||f(D1)− f(D2)|| = 1.

[13] gives an example of differentially-private
matrix factorization. When factoring matrix
with SGD, the gradient is perturbed with noise
which follows Laplace distribution in each it-
eration. [187], which uses Exponential mecha-
nism, shows that sampling from the posterior
distribution naturally achieves differential pri-
vacy. It proves that releasing one sample from
posterior distribution p(θ|Xn) with any prior
can guarantee 4B-differential privacy, where
supx∈X,θ∈Θ|logp(x|θ)| ≤ B, and X is the data
sample, θ is the hyperparameter, sup is supre-
mum. Based on this theorem, [123] successfully
applies differential privacy to matrix factoriza-
tion by sampling the estimated latent user fac-
tors and latent item factors. It’s an example of
output perturbation.
Challenges. A major challenge of data pertur-
bation approach is to achieve a desired pri-
vacy guarantee without losing much accuracy.
Researchers have tried to seek a better bal-
ance between privacy and accuracy. On the
other hand, researchers find that it is very dif-
ficult to achieve so called privacy guarantee
under data perturbation methods. For exam-
ple, Netflix provides a piece of highly sampled

and perturbed data set for their competition.
With a little background information, like sev-
eral movies a user rated or a cross-correlated
database, [145] successfully launches an attack
to identify the records of know users and un-
covering their political preferences. It’s impor-
tant to be aware of which level of privacy is
expected to achieve when applying differential
privacy. User level and rating (attribute) level
require different privacy budget which will
affect accuracy directly. With data perturba-
tion approach, single record can reach a cetrain
level of privacy. But when these records are ag-
gregated, many approaches can be employed
to further mine the data and re-identify indi-
vidual or attribute with nontrivial probability.
For example, [35] demonstrates that classifiers,
such as Naive Bayes classifier, can accurately in-
fer "private" attributes in differentially-private
dataset.

5.3. Secure Multiparty Computation Approach
In this subsection, we review some represen-
tative privacy-preserving solutions with the
flavor of security multi-party computation.

5.3.1. Secure Vector Addition based Solutions
[22] and [23] are two representative solutions
which use secure vector addition to guarantee
privacy for collaborative filtering recommender
systems. Since they use the same methodology,
we take the solution from [22] as an example.
The scheme securely computes a certain ag-
gregated value based on all users’ data in a
distributed manner, and then publishes the
aggregated information. With the public in-
formation, each user can locally compute his
own personalized recommendations. In more
detail, they construct a random k-dimensional
linear space A to best approximate the users
rating matrix R in a least squares manner, and
let AAT = I. They then project R to A as
RAT A, and the cost function is defined as:
e = tr[(R − RAT A)(R − RAT A)T ], where tr
denotes trace. Since tr(RRT) is fixed, the opti-
mization is to search for

A = MAX
AAT=I

tr(RAT ART)

As an option, A can be estimated by an
iterative conjugate gradient algorithm with
Polak-Ribiere recurrence [155] to maximize
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tr(RAT ART). The gradient of A in each it-
eration is derived as:

G = ∑
i∈U

Gi = ∑
i∈U

ART
i Ri(I − AT A)

where A is the aggregate from previous itera-
tion. Gi is calculated locally by each user, then
a secure vector addition scheme can be used to
gain a total gradient G = ∑i∈U Gi. Next, they
calculate the extremum along the gradient di-
rection by moving along a quadratic curve that
tracks the curvature of the manifold. Quadratic
approximation is used as the cost function, t
denotes the distance:

E(t) ≈ E0 + E1t + E2t2

where

E1 = ∑
i∈U

Ei1 = −2 ∑
i∈U

tr(RiGT ART
i )

and

E2 = ∑
i∈U

Ei2

= −tr(RiGTGRT
i ) + tr(Ri ATGGT ART

i )

Each user calculates Ei1 and Ei2 locally, a secure
vector addition scheme can be used to compute
∑i∈U(Ei1, Ei2) After obtaining an optimal A, S
and V can be calculated where R = USVT .
But it is impossible to compute U (which con-
tains user information, it is sensitive). Given
S and V, a user can use his own rating vec-
tor to compute personalized recommendations.
The same methodology has been followed by
[46, 45, 24, 199].

5.3.2. Secure scalar product based approach
The security of neighborhood based methods
and the calculation of similarity between users
or items, such as Pearson correlation coeffi-
cient, can be implemented via a secure scalar
product scheme. For example, [202] employs
the commodity-based scalar product method
from [201] to calculate Pearson correlation.

= : (Xa, Xb)→ (Ya, Yb), and Xa ·Xb = Ya +Yb

A basic operation of SVD is matrix product.
Given two matrices Xm×N and YN×n, [72]

shows that the multiplication of XY can be
implemented by mn scalar products. Based
on this, it describes a method of securely com-
pute SVD by two parties based on partitioned
datasets. Given horizontally (or vertically) par-
titioned data matrix A = [X Y]T .

AAT = [X Y]T [X Y]

=

[
XXT XYT

YXT YYT

]
The computation of XYT and YXT can be
achieved via secure matrix multiplication, and
the summation during the calculation of A’s
eigenvalues and eigenvectors of AAT and AT A
can be achieved via secure vector (matrix) ad-
dition.

5.3.3. Garbled circuit based approach
Garbled circuit has not only been used to
construct other secure computation compo-
nents, but also been used to implement privacy-
preserving algorithms directly [146, 147]. [147]
describes a framework based on garbled cir-
cuit to implement ridge regression, as shown
in Figure 6.

Figure 6: A secure computation framework based on gar-
bled circuits

CSP is the crypto service provider which con-
structs garbled circuits for algorithms, and
Evaluator performs the garbled circuits with
CSP. The users fully control their own data and
submit the encrypted data to Evaluator. [146]
implements a secure matrix factorization pro-
tocol in this framework. In more detail, the
secure matrix factorization solution is shown
in Figure 7.

1. Each user submits encrypted ratings to
RecSys.

2. The RecSys masks ratings and sends
them to CSP.
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3. CSP encodes the decrypted ratings in the
garbled circuits which implement the rec-
ommendation algorithm, and sends them
to RecSys.

4. After evaluating the garbled circuits, Rec-
Sys can output the prediction to users.

Figure 7: Secure matrix factorization

5.3.4. Homomorphic encryption based approach
Similar to garbled circuits, homomorphic en-
cryption schemes can be used to implement
secure computation components. It has been
employed to secure recommendation frame-
work, such as [52, 178, 96]. For example, [178]
proposes a distributed framework for comput-
ing recommendations without losing the par-
ticipants’ privacy. In their framework, the rat-
ing information is encrypted and recommenda-
tion algorithms (they use neighborhood based
method) is computed by employing homomor-
phic operations. In addition, a secure compari-
son protocol is employed to generate the final
output.
Challenges. Secure multiparty computation
based solutions suffer from several challenges.
One challenge is computational complexity.
Even though many researchers have tried to im-
prove the performances of the building blocks.
Some examples are HElib 5 and fastGC 6.
Nowadays, commercial recommender systems
are often required to process massive data
in real time. It will be a great challenge to

guarantee privacy with cryptographic solu-
tions. [178] has improved the situation a step
further by mainly relying on a user’s friends
to compute the recommendations. However,
this will require the service provider to estab-
lish/maintain a social network for all its users
and this task may not be too trivial. The other
issue is the underlying imperfect security mod-
els, which often assume semi-honest attack-
ers. For instance, [178] showed that the offline
recommendation protocol proposed by [96] is
vulnerable to key recover attacks.

6. Conclusion

In this paper we have surveyed the state of the
art of recommender systems, and also the ro-
bustness and privacy issues and solutions. It is
clear that there is a big gap between the system
design and the privacy-preserving solution de-
sign. In the system design, researchers tend
to include as many features as possible in an
attempt to improve the recommendation per-
formances. However, including more features
incurs more privacy concerns because the ser-
vice providers need to track users’ behavior to
obtain these features in reality. The majority of
existing solutions only aim to protecting the rat-
ing vectors for the users, and do nothing more.
People may say that existing privacy-protection
solutions such as anti-tracking schemes can be
integrated to provide more privacy protection
for the users. Unfortunately, it may not be so
easy. We foresee a lot of efforts are required
to fully understand the issue and find feasible
solutions.
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