1,291 research outputs found

    Approximate Entropy of Spiking Series Reveals Different Dynamical States in Cortical Assemblies

    Get PDF
    Self-organized criticality theory proved that information transmission and computational performances of neural networks are optimal in critical state. By using recordings of the spontaneous activity originated by dissociated neuronal assemblies coupled to Micro-Electrode Arrays (MEAs), we tested this hypothesis using Approximate Entropy (ApEn) as a measure of complexity and information transfer. We analysed 60 min of electrophysiological activity of three neuronal cultures exhibiting either sub-critical, critical or super-critical behaviour. The firing patterns on each electrode was studied in terms of the inter-spike interval (ISI), whose complexity was quantified using ApEn. We assessed that in critical state the local complexity (measured in terms of ApEn) is larger than in sub-and super-critical conditions (mean \ub1 std, ApEn about 0.93 \ub1 0.09, 0.66 \ub1 0.18, 0.49 \ub1 0.27, for the cultures in critical, sub-critical and super-critical state, respectively\u2014differences statistically significant). Our estimations were stable when considering epochs as short as 5 min (pairwise cross-correlation of spatial distribution of mean ApEn of 94 \ub1 5%). These preliminary results indicate that ApEn has the potential of being a reliable and stable index to monitor local information transmission in a neuronal network during maturation. Thus, ApEn applied on ISI time series appears to be potentially useful to reflect the overall complex behaviour of the neural network, even monitoring a single specific location

    Approximate Entropy of Spiking Series Reveals Different Dynamical States in Cortical Assemblies

    Get PDF
    Self-organized criticality theory proved that information transmission and computational performances of neural networks are optimal in critical state. By using recordings of the spontaneous activity originated by dissociated neuronal assemblies coupled to Micro-Electrode Arrays (MEAs), we tested this hypothesis using Approximate Entropy (ApEn) as a measure of complexity and information transfer. We analysed 60 min of electrophysiological activity of three neuronal cultures exhibiting either sub-critical, critical or super-critical behaviour. The firing patterns on each electrode was studied in terms of the inter-spike interval (ISI), whose complexity was quantified using ApEn. We assessed that in critical state the local complexity (measured in terms of ApEn) is larger than in sub- and super-critical conditions (mean ± std, ApEn about 0.93 ± 0.09, 0.66 ± 0.18, 0.49 ± 0.27, for the cultures in critical, sub-critical and super-critical state, respectively—differences statistically significant). Our estimations were stable when considering epochs as short as 5 min (pairwise cross- correlation of spatial distribution of mean ApEn of 94 ± 5%). These preliminary results indicate that ApEn has the potential of being a reliable and stable index to monitor local information transmission in a neuronal network during maturation. Thus, ApEn applied on ISI time series appears to be potentially useful to reflect the overall complex behaviour of the neural network, even monitoring a single specific location

    The Role of Spontaneous Intracellular Calcium Transients in Neurotransmitter Phenotype Specification in Xenopus laevis

    Get PDF
    Spontaneous intracellular calcium activity has been implicated in a host of processes related to nervous system development, including neural induction, neural tube closure, and synaptogenesis. One of these calcium-influenced processes, neurotransmitter phenotype specification, involves the acquisition of the correct balance and patterning of excitatory and inhibitory neurons, and its regulation is vital to proper nervous system functionality. While a high frequency of intracellular calcium transients in presumptive neurons during development has been correlated with an inhibitory fate, the persistence of this phenomenon in in vitro models has not been conclusively demonstrated. Additionally, we believe that current methods of calcium activity analysis, which are limited to counting fluorescent indicator spikes above a particular threshold, is limiting. To this end, we employed Xenopus laevis presumptive neural tissue as an in vitro model system, imaging calcium activity in developing neural cells. This data was analyzed via a novel pipeline that uses fluorescence trace entropy as a comparative metric rather than relying on predetermined parameters to define particular features (i.e., spikes or waves). Use of this analysis method revealed differences in calcium activity across development, with cells dissected from younger embryos displaying more entropic calcium activity that gradually decreased across development. Relatively small differences were found between cells positive for the expression of particular neural marker genes and cells that did not express these genes, and these differences varied across developmental time points. Most notably, cells positive for different specific neural marker genes displayed significantly different levels of calcium activity entropy from one another. As a whole, these results provide support for the hypothesis that particular patterns of calcium dynamics are associated with the expression of particular genes involved in the neuronal differentiation process

    PRINCIPLES OF INFORMATION PROCESSING IN NEURONAL AVALANCHES

    Get PDF
    How the brain processes information is poorly understood. It has been suggested that the imbalance of excitation and inhibition (E/I) can significantly affect information processing in the brain. Neuronal avalanches, a type of spontaneous activity recently discovered, have been ubiquitously observed in vitro and in vivo when the cortical network is in the E/I balanced state. In this dissertation, I experimentally demonstrate that several properties regarding information processing in the cortex, i.e. the entropy of spontaneous activity, the information transmission between stimulus and response, the diversity of synchronized states and the discrimination of external stimuli, are optimized when the cortical network is in the E/I balanced state, exhibiting neuronal avalanche dynamics. These experimental studies not only support the hypothesis that the cortex operates in the critical state, but also suggest that criticality is a potential principle of information processing in the cortex. Further, we study the interaction structure in population neuronal dynamics, and discovered a special structure of higher order interactions that are inherent in the neuronal dynamics

    Dynamics and spike trains statistics in conductance-based Integrate-and-Fire neural networks with chemical and electric synapses

    Get PDF
    We investigate the effect of electric synapses (gap junctions) on collective neuronal dynamics and spike statistics in a conductance-based Integrate-and-Fire neural network, driven by a Brownian noise, where conductances depend upon spike history. We compute explicitly the time evolution operator and show that, given the spike-history of the network and the membrane potentials at a given time, the further dynamical evolution can be written in a closed form. We show that spike train statistics is described by a Gibbs distribution whose potential can be approximated with an explicit formula, when the noise is weak. This potential form encompasses existing models for spike trains statistics analysis such as maximum entropy models or Generalized Linear Models (GLM). We also discuss the different types of correlations: those induced by a shared stimulus and those induced by neurons interactions.Comment: 42 pages, 1 figure, submitte

    Methods to Enhance Information Extraction from Microelectrode Array Measurements of Neuronal Networks

    Get PDF
    For the last couple of decades, hand-in-hand progresses in stem-cell technologies and culturing neuronal cells together with advances in microelectrode array (MEA) technology have enabled more efficient biological models. Thus, understanding the neuronal behavior in general or realizing some particular disease model by studying neuronal responses to pharmacological or neurotoxical assays has become more achievable.Moreover, with the widespread practical usage of MEA technology, a vast amount of new types of data has been collected to be analyzed. Conventionally, MEA data from neuronal networks have been analyzed, e.g., with the methods using predefined parameters and suitable for analyzing only specific neuronal behaviors or by considering only a portion of the data such as extracted extracellular action potentials (EAPs). Therefore, in addition to the current analysis methods, novel methods and newly acquired measures are needed to understand the new models. In fact, we hypothesized that existing measurement data carry a lot more information than is considered at present. In this thesis, we proposed novel methods and measures to increase the information which we can extract from MEA recordings; thus, we hope these to contribute to better understanding of neuronal behaviors and interactions.Firstly, to analyze firing properties of neuronal ensembles, we developed a method which identifies bursts based on spiking behavior of recordings; thus, the method is feasible for the cultures with variable firing dynamics. The developed method was also designed to process a large amount of data automatically for statistical justification. Therefore, we increased the analysis power in the subsequent analyses in comparison to the existing burst detection methods which are using pre-defined and strict definitions.Subsequently, we proposed novel metrics to evaluate and quantify the information content of the bursts. Entropy-based measures were employed for quantifying bursts according to their self-similarity and spectral uniformity. We showed that different types of bursts can be distinguished using entropy-based measures. Also, the joint analysis of bursts and action potential waveforms were proposed to obtain a novel type of information, i.e., spike type compositions of bursts. We presented that the spike type compositions of bursts would change under different pharmacological applications.In addition, we developed a novel method to calculate synchronization between neuronal ensembles by evaluating their time variant spectral distributions: For that, we assessed correlations of the spectral entropy (CorSE). We showed that CorSE was able to estimate synchronicity by studying both local field potentials (LFPs) and extracellular action potentials (EAPs); thus, we could contribute to understanding synchronicity between neuronal ensembles which also don’t exhibit detectable EAPs.In conclusion, motivated by the recent popularity of MEA usage in the neuroscience field, we developed novel and enhanced methods to derive new types of information. We showed that by using our developed methods one could extract additional information from MEA recordings. As a result, the proposed methods and metrics would enhance the analysis efficiency of the microelectrode array measurement based studies and provide different viewpoints for the analyses. The derived novel information would contribute to interpreting neuronal signals recorded from a single or multiple recording locations. Consequently, methods presented in this thesis are important complements to the existing methods to understand neuronal behavior and population-wise neuronal interactions

    What Electrophysiology Tells Us About Alzheimer’s Disease::A Window into the Synchronization and Connectivity of Brain Neurons

    Get PDF
    Electrophysiology provides a real-time readout of neural functions and network capability in different brain states, on temporal (fractions of milliseconds) and spatial (micro, meso, and macro) scales unmet by other methodologies. However, current international guidelines do not endorse the use of electroencephalographic (EEG)/magnetoencephalographic (MEG) biomarkers in clinical trials performed in patients with Alzheimer’s disease (AD), despite a surge in recent validated evidence. This Position Paper of the ISTAART Electrophysiology Professional Interest Area endorses consolidated and translational electrophysiological techniques applied to both experimental animal models of AD and patients, to probe the effects of AD neuropathology (i.e., brain amyloidosis, tauopathy, and neurodegeneration) on neurophysiological mechanisms underpinning neural excitation/inhibition and neurotransmission as well as brain network dynamics, synchronization, and functional connectivity reflecting thalamocortical and cortico-cortical residual capacity. Converging evidence shows relationships between abnormalities in EEG/MEG markers and cognitive deficits in groups of AD patients at different disease stages. The supporting evidence for the application of electrophysiology in AD clinical research as well as drug discovery pathways warrants an international initiative to include the use of EEG/MEG biomarkers in the main multicentric projects planned in AD patients, to produce conclusive findings challenging the present regulatory requirements and guidelines for AD studies

    Linear and nonlinear approaches to unravel dynamics and connectivity in neuronal cultures

    Get PDF
    [eng] In the present thesis, we propose to explore neuronal circuits at the mesoscale, an approach in which one monitors small populations of few thousand neurons and concentrates in the emergence of collective behavior. In our case, we carried out such an exploration both experimentally and numerically, and by adopting an analysis perspective centered on time series analysis and dynamical systems. Experimentally, we used neuronal cultures and prepared more than 200 of them, which were monitored using fluorescence calcium imaging. By adjusting the experimental conditions, we could set two basic arrangements of neurons, namely homogeneous and aggregated. In the experiments, we carried out two major explorations, namely development and disintegration. In the former we investigated changes in network behavior as it matured; in the latter we applied a drug that reduced neuronal interconnectivity. All the subsequent analyses and modeling along the thesis are based on these experimental data. Numerically, the thesis comprised two aspects. The first one was oriented towards a simulation of neuronal connectivity and dynamics. The second one was oriented towards the development of linear and nonlinear analysis tools to unravel dynamic and connectivity aspects of the measured experimental networks. For the first aspect, we developed a sophisticated software package to simulate single neuronal dynamics using a quadratic integrate–and–fire model with adaptation and depression. This model was plug into a synthetic graph in which the nodes of the network are neurons, and the edges connections. The graph was created using spatial embedding and realistic biology. We carried out hundreds of simulations in which we tuned the density of neurons, their spatial arrangement and the characteristics of the fluorescence signal. As a key result, we observed that homogeneous networks required a substantial number of neurons to fire and exhibit collective dynamics, and that the presence of aggregation significantly reduced the number of required neurons. For the second aspect, data analysis, we analyzed experiments and simulations to tackle three major aspects: network dynamics reconstruction using linear descriptions, dynamics reconstruction using nonlinear descriptors, and the assessment of neuronal connectivity from solely activity data. For the linear study, we analyzed all experiments using the power spectrum density (PSD), and observed that it was sufficiently good to describe the development of the network or its disintegration. PSD also allowed us to distinguish between healthy and unhealthy networks, and revealed dynamical heterogeneities across the network. For the nonlinear study, we used techniques in the context of recurrence plots. We first characterized the embedding dimension m and the time delay δ for each experiment, built the respective recurrence plots, and extracted key information of the dynamics of the system through different descriptors. Experimental results were contrasted with numerical simulations. After analyzing about 400 time series, we concluded that the degree of dynamical complexity in neuronal cultures changes both during development and disintegration. We also observed that the healthier the culture, the higher its dynamic complexity. Finally, for the reconstruction study, we first used numerical simulations to determine the best measure of ‘statistical interdependence’ among any two neurons, and took Generalized Transfer Entropy. We then analyzed the experimental data. We concluded that young cultures have a weak connectivity that increases along maturation. Aggregation increases average connectivity, and more interesting, also the assortativity, i.e. the tendency of highly connected nodes to connect with other highly connected node. In turn, this assortativity may delineates important aspects of the dynamics of the network. Overall, the results show that spatial arrangement and neuronal dynamics are able to shape a very rich repertoire of dynamical states of varying complexity.[cat] L’habilitat dels teixits neuronals de processar i transmetre informació de forma eficient depèn de les propietats dinàmiques intrínseques de les neurones i de la connectivitat entre elles. La present tesi proposa explorar diferents tècniques experimentals i de simulació per analitzar la dinàmica i connectivitat de xarxes neuronals corticals de rata embrionària. Experimentalment, la gravació de l’activitat espontània d’una població de neurones en cultiu, mitjançant una càmera ràpida i tècniques de fluorescència, possibilita el seguiment de forma controlada de l’activitat individual de cada neurona, així com la modificació de la seva connectivitat. En conjunt, aquestes eines permeten estudiar el comportament col.lectiu emergent de la població neuronal. Amb l’objectiu de simular els patrons observats en el laboratori, hem implementat un model mètric aleatori de creixement neuronal per simular la xarxa física de connexions entre neurones, i un model quadràtic d’integració i dispar amb adaptació i depressió per modelar l’ampli espectre de dinàmiques neuronals amb un cost computacional reduït. Hem caracteritzat la dinàmica global i individual de les neurones i l’hem correlacionat amb la seva estructura subjacent mitjançant tècniques lineals i no–lineals de series temporals. L’anàlisi espectral ens ha possibilitat la descripció del desenvolupament i els canvis en connectivitat en els cultius, així com la diferenciació entre cultius sans dels patològics. La reconstrucció de la dinàmica subjacent mitjançant mètodes d’incrustació i l’ús de gràfics de recurrència ens ha permès detectar diferents transicions dinàmiques amb el corresponent guany o pèrdua de la complexitat i riquesa dinàmica del cultiu durant els diferents estudis experimentals. Finalment, a fi de reconstruir la connectivitat interna hem testejat, mitjançant simulacions, diferents quantificadors per mesurar la dependència estadística entre neurona i neurona, seleccionant finalment el mètode de transferència d’entropia gereralitzada. Seguidament, hem procedit a caracteritzar les xarxes amb diferents paràmetres. Malgrat presentar certs tres de xarxes tipus ‘petit món’, els nostres cultius mostren una distribució de grau ‘exponencial’ o ‘esbiaixada’ per, respectivament, cultius joves i madurs. Addicionalment, hem observat que les xarxes homogènies presenten la propietat de disassortativitat, mentre que xarxes amb un creixent nivell d’agregació espaial presenten assortativitat. Aquesta propietat impacta fortament en la transmissió, resistència i sincronització de la xarxa

    Development of a Plasmonic On-Chip System to Characterize Changes from External Perturbations in Cardiomyocytes

    Get PDF
    Today’s heart-on-a-chip devices are hoped to be the state-of-the-art cell and tissue characterizing tool, in clinically applicable regenerative medicine and cardiac tissue engineering. Due to the coupled electromechanical activity of cardiomyocytes (CM), a comprehensive heart-on-a-chip device as a cell characterizing tool must encompass the capability to quantify cellular contractility, conductivity, excitability, and rhythmicity. This dissertation focuses on developing a successful and statistically relevant surface plasmon resonance (SPR) biosensor for simultaneous recording of neonatal rat cardiomyocytes’ electrophysiological profile and mechanical motion under normal and perturbed conditions. The surface plasmon resonance technique can quantify (1) molecular binding onto a metal film, (2) bulk refractive index changes of the medium near (nm) the metal film, and (3) dielectric property changes of the metal film. We used thin gold metal films (also called chips) as our plasmonic sensor and obtained a periodic signal from spontaneously contracting CMs on the chip. Furthermore, we took advantage of a microfluidic module for controlled drug delivery to CMs on-chip, inhibiting and promoting their signaling pathways under dynamic flow. We identified that ionic channel activity of each contraction period of a live CM syncytium on a gold metal sensor would account for the non-specific ion adsorption onto the metal surface in a periodic manner. Moreover, the contraction of cardiomyocytes following their ion channel activity displaces the medium, changing its bulk refractive index near the metal surface. Hence, the real-time electromechanical activity of CMs using SPR sensors may be extracted as a time series we call the Plasmonic Cardio-Eukaryography Signal (P-CeG). The P-CeG signal render opportunities, where state-of-the-art heart-on-a-chip device complexities may subside to a simpler, faster and cheaper platform for label-free, non-invasive, and high throughput cellular characterization
    corecore