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Abstract: Self-organized criticality theory proved that information transmission and computational
performances of neural networks are optimal in critical state. By using recordings of the spontaneous
activity originated by dissociated neuronal assemblies coupled to Micro-Electrode Arrays (MEAs),
we tested this hypothesis using Approximate Entropy (ApEn) as a measure of complexity and
information transfer. We analysed 60 min of electrophysiological activity of three neuronal cultures
exhibiting either sub-critical, critical or super-critical behaviour. The firing patterns on each electrode
was studied in terms of the inter-spike interval (ISI), whose complexity was quantified using ApEn.
We assessed that in critical state the local complexity (measured in terms of ApEn) is larger than in
sub- and super-critical conditions (mean ± std, ApEn about 0.93 ± 0.09, 0.66 ± 0.18, 0.49 ± 0.27,
for the cultures in critical, sub-critical and super-critical state, respectively—differences statistically
significant). Our estimations were stable when considering epochs as short as 5 min (pairwise cross-
correlation of spatial distribution of mean ApEn of 94 ± 5%). These preliminary results indicate that
ApEn has the potential of being a reliable and stable index to monitor local information transmission
in a neuronal network during maturation. Thus, ApEn applied on ISI time series appears to be
potentially useful to reflect the overall complex behaviour of the neural network, even monitoring a
single specific location.

Keywords: neuronal network dynamics; in vitro; micro-electrode arrays; complexity; approximate
entropy; self-organized criticality

1. Introduction

The electrophysiological activity of neuronal networks reflects the interactions of sev-
eral neurons and their flux of information, showing complex behaviour at different spatial
scales [1]. Such emerging neuronal dynamics can be investigated through Micro-Electrodes
Arrays (MEA) that, having electrode dimension comparable to the cell body, record the
local electrical activity from few neurons [2]. Using MEAs, the electrophysiological activity
can be decoded in terms of spike trains recorded by the electrodes of the array. The first
approach to study MEA data consisted in the identification of patterns in the single neuron
temporal series [3]. Then, the attention was moved to the synchronization of the spike trains
among pairs of neurons [4] and finally towards higher order interactions [5]. However, it is
still controversial which is the key to decode the neuronal communication and what is the
feature optimized in a fully developed neuronal network [6].

A relatively novel (and controversial [7]) method to analyse neuronal networks ex-
ploits the theory of Self-Organized Criticality (SOC), based on the concept of “neuronal
avalanches” [8]. The innovation of this approach is the integration of both temporal and
spatial information obtained by the MEA system. Neuronal avalanches were defined by
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binning each electrode time-series with a window of few milliseconds, obtaining a binary
map (called frame) marking an electrode as active if showing at least one spike and as
inactive otherwise [8]. The lifetime of an avalanche (i.e., the number of consecutive active
frames) and its size (i.e., the overall number of active electrodes during it) follow a power-
law distribution with a specific exponent. Such a distribution is typical of systems poised
at or near criticality, showing the fascinating property of being “scale free”. Criticality is
a dynamical equilibrium, which reflects the optimization of the ratio between ancestor
and descendant neurons (i.e., neurons that trigger a response and are triggered in the
next frame, respectively [9]). The system is said to be either in a critical, sub-critical or
super-critical state when this ratio (called branching parameter) is equal, lower, or larger
than 1, respectively. Criticality maximizes the information transmission [9]. This property
has been investigated by a spatial analysis of the network, which requires a binning of each
time-series to identify a single state of the system, with the time window chosen for the
analysis being assumed to be the temporal unit of neuronal communication [10].

In this work, we investigate the relationship between complexity (as a measure of
information transmission) and criticality, using the maximum temporal resolution of the
available time-series and considering each electrode separately. In this way, the local
complexity of the neuronal system can be assessed, focusing on a single electrode or, from
a biological point of view, on small groups of few neurons.

As an indicator of complexity, we considered the Approximate Entropy (ApEn; [11]),
which detects recurrences of temporal patterns in a single electrode recording. ApEn found
important applications in the study of biomedical time series [12,13]. Complexity of MEA
recordings from cultured neural networks was estimated in terms of either ApEn or sample
entropy (SampEn, which is a modification of the definition of ApEn proposed in [14]) in
a few works [15–17]. ApEn allowed to discriminate among different typical patterns of
spontaneous activity (sporadic spikes, tonic spikes, pseudo-bursts and bursts) [17]. More-
over, the complexity of a neural network was found to decrease during maturation [15,16].
However, the approach of the latter two studies leading to this conclusion, being applied to
small portions of the raw data (i.e., less than a second), is questionable (as better detailed
in the Discussion). In this work, we applied ApEn to the inter-spike interval (ISI) series
instead of the raw data. This approach was considered also in other multielectrode studies
in vivo [18–20], where complexity was found to be sensitive to the effect of different treat-
ments (electrical stimulation [18], administration of apomorphine [19], lesion [20].) This
allows us to reduce the computational burden (and thus to extend the observation period),
while maintaining the most important information included in the spikes (i.e., their times
of occurrence). Following this approach, in a preliminary work, we proved the possibility
of distinguishing the different dynamical states of cultured cortical networks (from a sub-
critical, to a critical state), indicating an increase in complexity and information transfer
during maturation [21]. Differently from the main findings of the literature on ApEn, we
found that the optimal choice for the tolerance (under which two patterns are considered
recurrent) was a fixed value [21], which is related to the refractory period of neurons [20].
Here, we used the same method to compare three populations, which display either sub-
critical, critical, or super-critical dynamics. Finally, the same analysis of complexity was
repeated using SampEn instead of ApEn (results shown in the Appendix A).

2. Methods
2.1. Experimental Preparations

Electrophysiological activity was recorded during the mature stage of development
of cortical neurons by means of 60 planar TiN/SiN microelectrodes (30 µm diameter,
200 µm spaced) arranged in an 8 × 8 grid (except the four electrodes at the corners).
The experimental set-up is based on the MEA60 System (Multi-Channel Systems, MCS,
Reutlingen, Germany). It consists of a mounting support with integrated 60-channel
pre-amplifier and filter amplifier (gain 1200×) and a personal computer equipped with
a PCI data acquisition board for real-time signal monitoring and recording. Dissociated
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neurons were plated over MEAs (previously coated with adhesion molecules poly-D-lysine
and laminin) at the final density of about 1500 cells/mm2, and placed in a humidified
incubator with an atmosphere of 5% CO2 at 37 ºC. All procedures were carried out to reduce
the number of animals and to minimize their suffering. The experimental protocol was
approved by the European Animal Care Legislation (2010/63/EU), by the Italian Ministry
of Health in accordance with the D.L. 116/1992 and by the guidelines of the University of
Genova (Prot. 75F11.N.6JI, 08/08/18). Further details can be found in [22]. Recordings
lasted 1 h and the sampling frequency was set to 10 kHz.

2.2. Extraction of Spiking Activity

Raw data recorded from each electrode are huge time-series. Thus, it was nearly
impossible to apply directly the ApEn algorithm (introduced in the following section),
being its computational cost quadratic. For this reason, a pre-processing of the raw data
was performed to reduce the computational burden. Specifically, raw data were pre-
processed to extract only the information related to the spikes timing by means of the
Precise Timing Spike Detection algorithm [23]. The spike identification was performed by
setting a differential threshold value (independently for each channel) calculated as 8 times
the standard deviation of the biological and thermal noise of the signal, a peak lifetime
(set at 2 ms), and a refractory period associated with the minimum interval between two
consecutive events (set at 1 ms). Spikes were not sorted since during a burst a global increase
in the activity produces a fast sequence of spikes with different and overlapping shapes
which makes the sorting difficult [24] and unreliable [25]. After identifying the firings, the
time delay between subsequent spikes was computed, obtaining the ISI time-series.

2.3. Approximate Entropy

Approximate Entropy (ApEn) was introduced to measure complexity of short and
noisy epochs (i.e., in conditions in which rigorous definitions of entropy could not provide
stable estimations [11]). It is defined as

ApEn(m, r, N) =
1

N − m + 1

N−m+1

∑
i=1

ln Cm
i (r)− 1

N − m

N−m

∑
i=1

ln Cm+1
i (r) (1)

where Cm
i (r) is the Correlation Integral, indicating the number of recurrences of the ith

sample of the trajectory ~x(i) obtained by time delay embedding of the time series on a
space of dimension m under a tolerance r

Cm
i (r) =

no. of j ≤ N − m + 1 such that d[~x(i),~x(j)] ≤ r
N − m + 1

(2)

N being the number of samples of the time series and d[~x(i),~x(j)] defined as the L∞ norm.
ApEn quantifies the unpredictability of the data studying recurrences in the time-series,
when embedded in a space of dimension either m or m + 1. In this way, non-linear behaviour
is investigated under the assumption that deterministic laws rule the system generating
the data: this hypothesis can be tested by comparison with random surrogates [20]. ApEn
depends on the choice of parameters [26], in particular the embedding dimension m
and the tolerance r, indicating the distance under which two points in the phase space
are considered neighbours. Stable estimations are obtained only if many recurrences
can be identified to get statistically reliable information on the possible convergence or
divergence of trajectories starting from neighbouring points (reflecting predictable and
complex behaviours, respectively). For this reason, the number of samples was suggested
to be quite large, i.e., at least among 10m and 20m [27]. Points with no recurrences would
have yielded an infinite value of ApEn (due to a logarithmic function in its definition),
so that self-recurrences were included (so that each point is recurrent with itself) [11].
However, a bias toward low values of complexity is introduced [14], which is more and
more significant as few true recurrences are available [26]. Sample Entropy (SampEn) was
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introduced to avoid this problem [14]. SampEn is much more stable than ApEn, as it is
only sensitive to global regularity of the time series and not to local events, which could be
rare and thus poorly represented. However, in this way, events are not weighted in terms
of their information content (which is higher for rare events) [26], so that the index could
poorly represent the local information processed by the investigated neural networks, in
which we are interested (see Discussion section for further comments).

It is worth noticing that the number of samples N cannot be chosen arbitrarily large,
as the cost of the algorithm is quadratic. We considered m = 3 and the ISI time-series
were divided into epochs of 2500 samples. Notice that a fixed number of samples, in our
case, does not reflect a fixed duration of the epochs: this duration depends on the firing
frequency of the neurons recorded by the electrode. The number of epochs per electrode
(mean ± std) was 5.3 ± 5.0, 3.6 ± 3.5 and 6.7 ± 9.7 for the three representative sub-critical,
critical and super-critical cultures, respectively. This reflects the mean rate of the firings
identified under the electrodes: 2.14 ± 1.61 Hz, 1.60 ± 1.03 Hz, 2.57 ± 3.36 Hz (mean ± std
across electrodes) for sub-critical, critical and super-critical cultures, respectively. Epochs
with very limited activity were excluded, as they would not allow to get a stable estimation
of ApEn: the mean firing frequency was imposed to be larger than 1 spike/s; epochs with
lower activity (called silent) were excluded. After the removal of silent epochs, the mean
firing rates became 2.64 ± 1.63 Hz, 2.12 ± 1.02 Hz, 4.04 ± 3.80 Hz for sub-critical, critical
and super-critical cultures, respectively.

After computation of ApEn on each epoch, the values obtained from each channel
were averaged. For the investigation of the complexity of the ISI time-series, we set as
optimal tolerance the value of 1 ms [20,21], differently from what generally found in the
literature: usually, the tolerance is a percentage of the standard deviation of the signal
(among 10% and 30% [17–19]). In this way, ApEn is unaffected by amplitude scaling, that
usually is not relevant. However, in our case, the amplitude of the ISI is related to the
mean firing frequency of the spiking neurons, which is the most relevant physiological
information. On this basis, fixing the tolerance to a value related to the characteristic time
of the dynamics of the investigated system may be important. Indeed, this choice allowed
to get better discrimination of different dynamical states of a single population [21]. Finally,
such a value of tolerance is the same used in [20], where the choice was justified indicating
that 1 ms is comparable with the refractory period of neurons (notice however that [20]
shows a different application, as the data were recorded in vivo and the spikes were sorted).

The hypothesis that ISI time series were generated by a non-linear deterministic system
was tested by using surrogate data of each epoch. Thirty surrogates were generated by the
Iterative Amplitude-adjusted Fourier Transform method [28] and the mean of their ApEn
values was checked to be bigger than the ApEn estimated from the original ISI epoch by a
right-tailed t-test.

2.4. Statistical Analysis

Entropy analysis applied on each culture returned at most a vector of 60 values (one
for each electrode). Anyway, the effective number of ApEn values for each culture was
less than 60, as some channels were silent. As the number of silent electrodes was variable
among the cultures, unbalanced ANOVA was considered to infer statistical significance.

Shapiro–Wilk and Brown–Forsythe tests excluded normality of distributions and
homogeneity of variances, respectively, (confidence level of 0.05 for both tests). Then,
multiple comparisons analysis was performed by three single Mann–Whitney U-test,
followed by Bonferroni correction of the resulted p-values: this method is very conservative,
but it is useful when dealing with few comparisons, like in our case. Finally, statistical
differences among sub-recordings belonging to the same culture were assessed by paired
Wilcoxon signed rank tests.
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3. Results

Figure 1A shows the 60-electrodes MEA used for the presented experiments and
a detail of the developed network coupled to the active area of the MEA (Figure 1B).
The three panels of Figure 1C display a snapshot of 60 s of electrophysiological activity
relative to sub-critical, critical and super-critical cortical networks, whose correspondent
distributions of avalanches size are reported in Figure 1D.

Figure 1. (A) Micro-Electrode Array (MEA) made up of 60 electrodes. (B) Example of a cortical
network coupled to a MEA. (C) Three examples of electrophysiological activity exhibited by three
different cortical networks and (D) corresponding distributions of avalanches size.

Figure 2 shows the distributions of ApEn for the three different cultures which resulted
in a statistical significant difference as assessed by an unbalanced ANOVA (p < 0.01). The
upper panel (Figure 2A) shows that the culture in the critical state exhibits the largest
overall value of ApEn resulting statistically different from the sub-critical and super-critical
culture (both p < 0.01, Mann–Whitney U-tests with Bonferroni correction). The spatial
distributions of ApEn values over the MEA layout are shown in Figure 2B.

The number of electrodes that overcame the tests of significance against surrogates
were 7, 27 and 11 for sub-critical, critical and super-critical state, respectively. It is worth
noticing that for electrodes with a low firing activity, ApEn of surrogates is largely biased
by self-recurrences. In such cases, ApEn was comparable or even statistically lower than the
ApEn of the original data, so that they did not pass the test. This does not exclude that the
data were generated by deterministic non-linear rules, as the result of the test was largely
biased by self-recurrences. However, the three distributions of ApEn values considering
only electrodes passing the test with surrogates still show the same trend as considering all
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electrodes: mean ± std, 0.91 ± 0.03, 0.98 ± 0.04, 0.78 ± 0.11, for the cultures in sub-critical,
critical and super-critical state, respectively, (differences are statistically significant).

Figure 2. (A) Single electrode ApEn distributions estimated from the three cultures used in our
experiment correspondent to sub-critical, critical, and super-critical dynamics. The asterisks indicate
the statistical difference assessed by a Mann–Whitney U-test followed by a Bonferroni correction (∗
and ∗∗ mean p < 0.05 and p < 0.01, respectively). (B) Colour maps of the Micro-Electrode Arrays,
providing the spatial distribution of the ApEn values.

The reproducibility and robustness of ApEn estimation were investigated on short
recordings. The entire 1 h-recording was repeatedly shortened by one minute and processed
by the ApEn algorithm. All the 60 resulted sets of ApEn values were tested for correlation
with those obtained processing the entire record of 60 min. Figure 3A shows the Pearson
coefficient ρ over the recording length: a stream of at least 20 min is required to achieve an
estimation of ApEn close to that obtained considering the entire dataset (ρ > 0.8). Notice
that, with epochs of shorter duration, many electrodes showed less than 2500 spikes, so
that ApEn processed time series of various lengths when considering epochs of different
durations (and the length of the time series affects the estimation of the index [26]). This
result is further explored in Figure 4: in the panel A, the distribution of the Pearson
coefficients among each contiguous records of 20 min and the full-length record (60 min)
is reported; in B, the maps of the spatial distribution of ApEn are shown for 3 contiguous
records of 20 min.
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Figure 3. (A) Pearson correlation coefficient trend w.r.t. the recording time. The correlation is
computed among the vector of ApEn values estimated from the record length reported in abscissa
and the vector of ApEn values estimated from the full-length record (60 min). Each curve is relative
to the different dynamical states depicted in Figure 1. (B) Trend of p-value, as estimated by a pairwise
Wilcoxon signed rank test followed by a Bonferroni correction, w.r.t. the sub-record length. The
dashed horizontal line represents the confidence level of 0.05.
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Figure 4. (A) Distributions of the Pearson correlation coefficients computed among each one of the
20 min sub-recordings constituting the full-length record (60 min) and the full length record itself.
(B) Colour maps triplets (one for each culture) showing ApEn estimations on the three contiguous
20 min’ sub-records.

The above-mentioned set of sub-recordings was also used to test the statistical dif-
ference among the three cultures when limiting them to short durations (Figure 3B). The
difference became statistically significant for all the pairwise comparisons (confidence level
of 0.05) for a recording length of at least 5 min. The stability of ApEn estimation was then
tested on records lasting 5 min. The entire record of 1 h was split into non-overlapping
sub-recordings of 5 min, each of which underwent independently to the ApEn algorithm.
The corresponding set of ApEn values was tested to be time invariant by a correlation
analysis among each possible combination of the sub-records belonging to the same culture
type. Figure 5 shows the distributions of the Pearson coefficients for the three cell cultures:
high correlations were obtained, with a small dispersion, probably due to the different
silent periods.
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Figure 5. (A) Distributions of the Pearson correlation coefficients computed for all the possible
combinations between the ApEn distribution of the twelve sub-recordings lasting five minutes that
composed each record of one hour; in the inset, an example of the ApEn distributions for a 5 min
record is depicted. The asterisks indicate the statistical difference assessed by a Mann–Whitney U-test
followed by a Bonferroni correction (** means p < 0.01). (B) Three triplets of maps showing ApEn
estimations on different randomly chosen sub-records of 5 min, for each culture.

4. Discussion

It was claimed that the self-organized critical state of a neuronal network is sustained
by “scale free” topology [29], which allows the optimization of information transmission
and the maximization of the computational power [9,30]. In this work, we studied the
firing dynamics of cortical assemblies (Figure 1), showing that they display a larger entropy
(in terms of ApEn) when in a critical state, than either sub-critical or super-critical regimes
(Figure 2). This result is in line with the hypothesis that optimal information transfer occurs
in the critical state, as entropy is related to the Shannon information included in the time
series. However, this interesting result should be interpreted on the basis of the significance
of ApEn and in comparison with other approaches discussed in the literature.
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4.1. Comparison with Literature

Differently from the literature, where the estimation of the level of complexity of MEA
data by using either ApEn or SampEn has been accomplished using raw data [15–17], in this
work we calculated such metrics on the ISI values. However, since the high computational
burden, the above mentioned works in the literature processed short epochs (less than a
second) and a sliding window approach was proposed [17], based on the estimation of
ApEn on subsequent epochs that were as short as 20 ms. This approach is questionable, as
the considered time windows can include either only noise (associated with high values of
ApEn, which are not reliable) or noise with embedded a few spikes (in the range of 1 to 3;
in this case, the epoch is highly non-stationary, with very few recurrences, so that ApEn
estimation is not reliable [26]). Indeed, ApEn should be used to decode chaos in stationary
non-linear deterministic data [26]. It should not be applied to stochastic processes. A test
on surrogates (which is lacking in [17]) could indicate that noise is a random process to
which ApEn should not be applied.

The same method of [17] was also applied to the electromyogram of controls and
amyotrophic lateral sclerosis (ALS) patients in rest, considering sliding windows of 50 ms
of duration [31]. Again, these windows included either noise only or together with a few
waveforms (i.e., motor unit action potentials—MUAP—reflecting some sporadic activity,
only in the case of patients). As expected, the complexity was higher for controls (i.e.,
for noisy data) than for patients. ApEn of epochs including spikes was also found to be
related to the amplitude of MUAPs, with higher values for smaller waveforms, usually
found during tonic or repetitive bursts, and lower for those that were large enough to better
emerge from noise, such as those recorded during sporadic activity (reflecting the firings of
large reinnervated motor units). Notice that waveform amplitude strongly depends on the
relative distance between the source (a motor unit, in this case) and the recording system.
This largely affects the repeatability of information extraction of the index discussed in [31].
ApEn was also estimated from epochs of 500 ms obtaining opposite results, as ApEn
was simply inversely correlated with the mean firing rate: considering bursts of many
MUAPs, ApEn was lower than in the case of sporadic activity, where the complexity index
is expected to be more biased towards high values, due to noise. Notice also that the
information extracted by the Authors is already included in the firing pattern and MUAP
amplitude, so that the need of using complexity analysis does not emerge. In conclusion,
some concerns arise about the interpretation of complexity of data presented in [31].

The complexity estimated in terms of SampEn was found to decrease with the matura-
tion of a neural population in [16]. Notice that again raw data were investigated in very
short windows (i.e., of half a second), thus reflecting the estimated complexity of noise and
(possibly) few waveforms (but the estimation of complexity is questionable in both cases,
as mentioned above).

In summary, we expect severe limitations of the above-mentioned studies, due to their
short observation epochs, which did not include enough information on the dynamics
of the system. Indeed, key information of spiking sources is included in the times of
firings, which cannot be reliably investigated with the short epochs of raw data that can be
processed in reasonable time by the ApEn algorithm.

4.2. Interpretation of Our Results

ISI series were considered here, as completed in other studies investigating in vivo
neural populations [18–20]. This is important to enlarge the duration of the epochs and is
also beneficial to remove the effect of low-amplitude noise (both problems largely affecting
the studies mentioned above [16,17,31]). Each electrode of the MEA system can record
the electrophysiological activity of a small assembly of neurons, up to 3 cells (considering
the electrode dimension and cultures density). Thus, the ISI time-series were obtained
processing the superimposition of spike trains of different neurons and the information
they convey is related to the communication both within the pool and with other neurons
outside the electrode sensing area.
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We observed an increase in local entropy of the network in critical state (Figure 2). As
reported in computational studies [29,32], this could be related to the larger diversification
of the neuronal communication pathways with respect to the other (sub- or super-critical)
states. This complex topological organization [29] reflects into the diversified dimensions
of avalanches produced by the network in a critical state (note that the dimension of
an avalanche is defined as the number of synchronous activations of neurons, where
activations are considered synchronous if firings are within the time window used to bin
the spike trains). In a sub-critical state, instead, each neuron fires more randomly and does
not efficiently trigger any response from other neurons, so that only few recurrent patterns
can be recovered (and ApEn is biased toward low values by self-recurrences). The activity
appears to be randomly distributed, but not chaotic. Indeed, only few recurrences are
found and there were few electrodes in which the behaviour was different from that of
random surrogates, so that deterministic chaos did not emerge clearly. On the other hand,
in a super-critical state each spike ideally triggers a response of the whole network, with
each firing train highly dependent on the others. Synchronous, recurrent and predictable
dynamics are obtained, with low complexity.

Our results are quite stable when computed on short epochs: Figure 3 shows high
correlation between pairs of patterns of ApEn found in short epochs. Compared to the
values extracted from the whole data (Figure 2), ApEn is a bit smaller when considering
short epochs (Figure 5), due to the lower number of recurrences found on short epochs
(and larger bias of self-recurrences) and the reduced possibility of finding rare and highly
informative patterns.

The additional results provided in the Appendix A show the same analysis, but
achieved with SampEn. The main result is that SampEn provides more stable indications
than ApEn and it allows us to use shorter epochs (Figure A2). Moreover, more electrodes
pass the test with surrogates. These results reflect the main advantage of SampEn (well
documented in the literature [14]), which is an index not biased by self-recurrences. Indeed,
the ratio of overall (not local in time) recurrences found at different embedding dimensions
is considered, so that there is no risk that the index could diverge for lack of local recurrences
and hence no need of compensating for that by accounting for self-recurrences. The ratio
mentioned above can be interpreted as the probability that the trajectory, when recurring
close to a point visited before, will not diverge in the subsequent point [26]. In this way, it
is not affected by the local behaviour of the time series, which could be poorly represented
in the case of rare events, leading to unstable estimations. However, for the same reason,
SampEn is not related to the Shannon information contained in the time series, as it does
not emphasize the most informative events, which are indeed the rarest ones [26]. In fact,
SampEn is computed by applying a logarithm (i.e., a monotonic function) to the probability
that the trajectory does not diverge at recurrences: it only depends on such a probability, as
the logarithm does not have any role. For this reason, we choose ApEn, since it provides
more precise indications on the information transferred within the neural network.

In particular, SampEn indicates that the sub-critical population shows the most com-
plex behaviour among the three considered neural networks (Figure A1). Indeed, as
mentioned above, the activity of a sub-critical population is sporadic and difficult to predict.
For this reason, only few recurrences are found and only by chance, due to the lack of
determinism ruling a coordinated activity of the neurons of the sub-critical population.
ApEn reflects that few recurrences were found in the dynamics of sub-critical population:
in fact, due to the bias of self-recurrences, it shows a lower value than for the network in
critical state. On the other hand, SampEn and ApEn agree on the complexity order when
comparing the critical and super-critical populations, as they find lower values for the
super-critical population, which has regular and recurrent dynamics.
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5. Conclusions and Further Work

ApEn is an index sensitive to the local information transfer in a network of spiking
neurons. This index is able to identify the emergence of a critical state in the network,
as in such a condition the measured complexity is larger than those found both in the
cases of sporadic and regular firings shown by sub-critical and super-critical populations,
respectively. Interestingly, a local analysis of ApEn (i.e., on a specific electrode) can provide
some information on coordinated activity of the entire network.

This finding asks for further validations on an extended dataset. Additional complexity
measures could also be tested [33,34]. Moreover, bivariate statistics could characterize the
connections among the activities under different electrodes [35], opening the possibility of
deepening the study of information transfer in the network.
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Appendix A

Our data were processed using SampEn instead of ApEn (using the same parameters).
Figures A1–A3 show the same as Figures 2–4, respectively, but considering SampEn instead
of ApEn.

https://doi.org/10.5281/zenodo.6363250
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Figure A1. Same as Figure 2, but showing SampEn instead of ApEn. (A) Single electrode SampEn
distributions estimated from the three cultures used in our experiment correspondent to sub-critical,
critical, and super-critical dynamics. The asterisks indicate the statistical difference assessed by a
Mann–Whitney U-test followed by a Bonferroni correction (** means p < 0.01). (B) Colour maps of
the Micro-Electrode Arrays, providing the spatial distribution of the ApEn values.
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Figure A2. Same as Figure 3, but considering SampEn instead of ApEn. (A) Pearson correlation
coefficient trend w.r.t. the recording time. The correlation is computed among the vector of SampEn
values estimated from the record length reported in abscissa and the vector of SampEn values
estimated from the full-length record (60 min). (B) Trend of p-value, as estimated by a pairwise
Wilcoxon signed rank test followed by a Bonferroni correction, w.r.t. the sub-record length. The
dashed horizontal line represents the confidence level of 0.05.
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Figure A3. Same as Figure 4, but showing SampEn instead of ApEn and using a shorter duration of
epochs (as SampEn is more stable that ApEn when considering short epochs). (A) Distributions of the
Pearson correlation coefficients computed among each one of the 10 min sub-recordings constituting
the full-length record (60 min) and the full length record itself. (B) Colour maps triplets (one for each
culture) showing SampEn estimations on the three contiguous 20 min’ sub-records.
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