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continuous and discrete dynamical variables. The sub-threshold
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{ext) i . (i) G is diagonal; Electric synapses have an effect in the memory of the system.

i~ {t) the external current, and ‘Sh“:e noise term £, () whose (i) =0 TheGibbs potential is largely more complex than the Ising Model used in retina
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U magnitude is controlled by 715 = (ill) G(f.w) = G{t) = k(#) Ty where #(f) is a real function. spike train analysis
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