1,310 research outputs found

    The evolution of auditory contrast

    Get PDF
    This paper reconciles the standpoint that language users do not aim at improving their sound systems with the observation that languages seem to improve their sound systems. Computer simulations of inventories of sibilants show that Optimality-Theoretic learners who optimize their perception grammars automatically introduce a so-called prototype effect, i.e. the phenomenon that the learner’s preferred auditory realization of a certain phonological category is more peripheral than the average auditory realization of this category in her language environment. In production, however, this prototype effect is counteracted by an articulatory effect that limits the auditory form to something that is not too difficult to pronounce. If the prototype effect and the articulatory effect are of a different size, the learner must end up with an auditorily different sound system from that of her language environment. The computer simulations show that, independently of the initial auditory sound system, a stable equilibrium is reached within a small number of generations. In this stable state, the dispersion of the sibilants of the language strikes an optimal balance between articulatory ease and auditory contrast. The important point is that this is derived within a model without any goal-oriented elements such as dispersion constraints

    The listening talker: A review of human and algorithmic context-induced modifications of speech

    Get PDF
    International audienceSpeech output technology is finding widespread application, including in scenarios where intelligibility might be compromised - at least for some listeners - by adverse conditions. Unlike most current algorithms, talkers continually adapt their speech patterns as a response to the immediate context of spoken communication, where the type of interlocutor and the environment are the dominant situational factors influencing speech production. Observations of talker behaviour can motivate the design of more robust speech output algorithms. Starting with a listener-oriented categorisation of possible goals for speech modification, this review article summarises the extensive set of behavioural findings related to human speech modification, identifies which factors appear to be beneficial, and goes on to examine previous computational attempts to improve intelligibility in noise. The review concludes by tabulating 46 speech modifications, many of which have yet to be perceptually or algorithmically evaluated. Consequently, the review provides a roadmap for future work in improving the robustness of speech output

    The interaction of syllabification and voicing perception in american english

    Get PDF
    The current paper explores these two sorts of phonetic explanations of the relationship between syllabic position and the voicing contrast in American English. It has long been observed that the contrast between, for example, /p/ and /b/ is expressed differently, depending on the position of the stop with respect to the vowel. Preceding a vowel within a syllable, the contrast is largely one of aspiration. /p/ is aspirated, while /b/ is voiceless, or in some dialects voiced or even an implosive. Following a vowel within a syllable, both /p/ and /b/ both tend to lack voicing in the closure and the contrast is expressed largely by dynamic differences in the transition between the previous vowel and the stop. Here, vowel and closure duration are negatively correlated such that the /p/ has a shorter vowel and longer closure duration. This difference is often enhanced by the addition of glottalization to /p/. In addition to these differences, there are additional differences connected to higher-level organization involving stress and feet edges. To make the current discussion more tractable, we will restrict ourselves to the two conditions (CV and VC) laid out above

    Phonetic drift

    Get PDF
    This chapter provides an overview of research on the phonetic changes that occur in one’s native language (L1) due to recent experience in another language (L2), a phenomenon known as phonetic drift. Through a survey of empirical findings on segmental and suprasegmental acoustic properties, the chapter examines the features of the L1 that are subject to phonetic drift, the cognitive mechanism(s) behind phonetic drift, and the various factors that influence the likelihood of phonetic drift. In short, virtually all aspects of L1 speech are subject to drift, but different aspects do not drift in the same manner, possibly due to multiple routes of L2 influence coexisting at different levels of L1 phonological structure. In addition to the timescale of these changes, the chapter discusses the relationship between phonetic drift and attrition as well as some of the enduring questions in this area.https://drive.google.com/open?id=1eQbh17Z4YsH8vY_XjCHGqi5QChfBKcAZhttps://drive.google.com/open?id=1eQbh17Z4YsH8vY_XjCHGqi5QChfBKcAZhttps://drive.google.com/open?id=1eQbh17Z4YsH8vY_XjCHGqi5QChfBKcAZAccepted manuscriptAccepted manuscrip

    The self-organization of combinatoriality and phonotactics in vocalization systems

    Get PDF
    This paper shows how a society of agents can self-organize a shared vocalization system that is discrete, combinatorial and has a form of primitive phonotactics, starting from holistic inarticulate vocalizations. The originality of the system is that: (1) it does not include any explicit pressure for communication; (2) agents do not possess capabilities of coordinated interactions, in particular they do not play language games; (3) agents possess no specific linguistic capacities; and (4) initially there exists no convention that agents can use. As a consequence, the system shows how a primitive speech code may bootstrap in the absence of a communication system between agents, i.e. before the appearance of language

    Emergence of articulatory-acoustic systems from deictic interaction games in a "vocalize to localize" framework

    Get PDF
    International audienceSince the 70's and Lindblom's proposal to "derive language from non-language", phoneticians have developed a number of "substance-based" theories. The starting point is Lindblom's Dispersion Theory and Stevens's Quantal Theory, which open the way to a rich tradition of works attempting to determine and possibly model how phonological systems could be shaped by the perceptuo-motor substance of speech communication. These works search to derive the shapes of human languages from constraints arising from perceptual (auditory and perhaps visual) and motor (articulatory and cognitive) properties of the speech communication system: we call them "Morphogenesis Theories". More recently, a number of proposals were introduced in order to connect pre-linguistic primate abilities (such as vocalization, gestures, mastication or deixis) to human language. For instance, in the "Vocalize-to-Localize" framework that we adopt in the present work (Abry & al., 2004), human language is supposed to derive from a precursor deictic function, considering that language could have provided at the beginning an evolutionary development of the ability to "show with the voice". We call this type of theories "Origins Theories". We propose that the principles of Morphogenesis Theories (such as dispersion principles or the quantal nature of speech) can be incorporated and to a certain extent derived from Origins Theories. While Morphogenesis Theories raise questions such as "why are vowel systems shaped the way they are?" and answer that it is to increase auditory dispersion in order to prevent confusion between them, we ask questions such as "why do humans attempt to prevent confusion between percepts?" and answer that it could be to "show with the voice", that is, to improve the pre-linguistic deictic function. In this paper, we present a computational Bayesian model incorporating the Dispersion and Quantal Theories of speech sounds inside the Vocalize-to-Localize framework, and show how realistic simulations of vowel systems can emerge from this model

    Speech rhythm: a metaphor?

    Get PDF
    Is speech rhythmic? In the absence of evidence for a traditional view that languages strive to coordinate either syllables or stress-feet with regular time intervals, we consider the alternative that languages exhibit contrastive rhythm subsisting merely in the alternation of stronger and weaker elements. This is initially plausible, particularly for languages with a steep ‘prominence gradient’, i.e. a large disparity between stronger and weaker elements; but we point out that alternation is poorly achieved even by a ‘stress-timed’ language such as English, and, historically, languages have conspicuously failed to adopt simple phonological remedies that would ensure alternation. Languages seem more concerned to allow ‘syntagmatic contrast’ between successive units and to use durational effects to support linguistic functions than to facilitate rhythm. Furthermore, some languages (e.g. Tamil, Korean) lack the lexical prominence which would most straightforwardly underpin prominence alternation. We conclude that speech is not incontestibly rhythmic, and may even be antirhythmic. However, its linguistic structure and patterning allow the metaphorical extension of rhythm in varying degrees and in different ways depending on the language, and that it is this analogical process which allows speech to be matched to external rhythms

    Stress, dispersion, and variability of Catalan, French, and Spanish vowels

    Full text link
    Honors (Bachelor's)Romance Languages and LiteraturesUniversity of Michiganhttp://deepblue.lib.umich.edu/bitstream/2027.42/107699/1/rcao.pd

    COSMO (“Communicating about Objects using Sensory–Motor Operations”): A Bayesian modeling framework for studying speech communication and the emergence of phonological systems

    Get PDF
    International audienceWhile the origin of language remains a somewhat mysterious process, understanding how human language takes specific forms appears to be accessible by the experimental method. Languages, despite their wide variety, display obvious regularities. In this paper, we attempt to derive some properties of phonological systems (the sound systems for human languages) from speech communication principles. We introduce a model of the cognitive architecture of a communicating agent, called COSMO (for “Communicating about Objects using Sensory–Motor Operations') that allows a probabilistic expression of the main theoretical trends found in the speech production and perception literature. This enables a computational comparison of these theoretical trends, which helps us to identify the conditions that favor the emergence of linguistic codes. We present realistic simulations of phonological system emergence showing that COSMO is able to predict the main regularities in vowel, stop consonant and syllable systems in human languages
    corecore