7,653 research outputs found

    Metaheuristic design of feedforward neural networks: a review of two decades of research

    Get PDF
    Over the past two decades, the feedforward neural network (FNN) optimization has been a key interest among the researchers and practitioners of multiple disciplines. The FNN optimization is often viewed from the various perspectives: the optimization of weights, network architecture, activation nodes, learning parameters, learning environment, etc. Researchers adopted such different viewpoints mainly to improve the FNN's generalization ability. The gradient-descent algorithm such as backpropagation has been widely applied to optimize the FNNs. Its success is evident from the FNN's application to numerous real-world problems. However, due to the limitations of the gradient-based optimization methods, the metaheuristic algorithms including the evolutionary algorithms, swarm intelligence, etc., are still being widely explored by the researchers aiming to obtain generalized FNN for a given problem. This article attempts to summarize a broad spectrum of FNN optimization methodologies including conventional and metaheuristic approaches. This article also tries to connect various research directions emerged out of the FNN optimization practices, such as evolving neural network (NN), cooperative coevolution NN, complex-valued NN, deep learning, extreme learning machine, quantum NN, etc. Additionally, it provides interesting research challenges for future research to cope-up with the present information processing era

    A Multi Hidden Recurrent Neural Network with a Modified Grey Wolf Optimizer

    Full text link
    Identifying university students' weaknesses results in better learning and can function as an early warning system to enable students to improve. However, the satisfaction level of existing systems is not promising. New and dynamic hybrid systems are needed to imitate this mechanism. A hybrid system (a modified Recurrent Neural Network with an adapted Grey Wolf Optimizer) is used to forecast students' outcomes. This proposed system would improve instruction by the faculty and enhance the students' learning experiences. The results show that a modified recurrent neural network with an adapted Grey Wolf Optimizer has the best accuracy when compared with other models.Comment: 34 pages, published in PLoS ON

    Binary Multi-Verse Optimization (BMVO) Approaches for Feature Selection

    Get PDF
    Multi-Verse Optimization (MVO) is one of the newest meta-heuristic optimization algorithms which imitates the theory of Multi-Verse in Physics and resembles the interaction among the various universes. In problem domains like feature selection, the solutions are often constrained to the binary values viz. 0 and 1. With regard to this, in this paper, binary versions of MVO algorithm have been proposed with two prime aims: firstly, to remove redundant and irrelevant features from the dataset and secondly, to achieve better classification accuracy. The proposed binary versions use the concept of transformation functions for the mapping of a continuous version of the MVO algorithm to its binary versions. For carrying out the experiments, 21 diverse datasets have been used to compare the Binary MVO (BMVO) with some binary versions of existing metaheuristic algorithms. It has been observed that the proposed BMVO approaches have outperformed in terms of a number of features selected and the accuracy of the classification process

    A hybrid swarm intelligence feature selection approach based on time-varying transition parameter

    Get PDF
    Feature selection aims to reduce the dimensionality of a dataset by removing superfluous attributes. This paper proposes a hybrid approach for feature selection problem by combining particle swarm optimization (PSO), grey wolf optimization (GWO), and tournament selection (TS) mechanism. Particle swarm enhances the diversification at the beginning of the search mechanism, grey wolf enhances the intensification at the end of the search mechanism, while tournament selection maintains diversification not only at the beginning but also at the end of the search process to achieve local optima avoidance. A time-varying transition parameter and a random variable are used to select either particle swarm, grey wolf, or tournament selection techniques during search process. This paper proposes different variants of this approach based on S-shaped and V-shaped transfer functions (TFs) to convert continuous solutions to binaries. These variants are named hybrid tournament grey wolf particle swarm (HTGWPS), followed by S or V letter to indicate the TF type, and followed by the TF’s number. These variants were evaluated using nine high-dimensional datasets. The results revealed that HTGWPS-V1 outperformed other V’s variants, PSO, and GWO on 78% of the datasets based on maximum classification accuracy obtained by a minimal feature subset. Also, HTGWPS-V1 outperformed six well-known-metaheuristics on 67% of the datasets
    • …
    corecore