276 research outputs found

    Image Coding based Orthogonal Polynomials Multiresolution Analysis with Joint Probability Context Modeling and Modified Golomb-Rice Entropy Coding

    Get PDF
    The work proposes, a JPEG2000 like compression technique which is  based on multiresolution analysis of orthogonal polynomials transformation (OPT)  coefficients has been presented with bit modeling for Golomb-Rice entropy coding. Initially, the image under analysis is divided into blocks and OPT is applied to each divided blocks. Then, transformed coefficients are represented as sub bands like structure (multiresolution) and scalar quantization is carried out to the transformed coefficients to reduce the precision. The quantized coefficients are then bit modelled in the bit plane using a joint probability statistical model, and significant bits in the bit plane are chosen. On the selected relevant bits, a geometrically distributed set of context is modelled for further encoding with modified Golomb-Rice encoding to provide compressed data. The decompression procedure is just the reverse of compression procedure. Experiments and analysis are carried out to demonstrate the efficiency of the proposed compression scheme in terms of compression ratio and Peak-Signal-to Noise Ratio (PSNR), and the results are encouragin

    Directional multiresolution image representations

    Get PDF
    Efficient representation of visual information lies at the foundation of many image processing tasks, including compression, filtering, and feature extraction. Efficiency of a representation refers to the ability to capture significant information of an object of interest in a small description. For practical applications, this representation has to be realized by structured transforms and fast algorithms. Recently, it has become evident that commonly used separable transforms (such as wavelets) are not necessarily best suited for images. Thus, there is a strong motivation to search for more powerful schemes that can capture the intrinsic geometrical structure of pictorial information. This thesis focuses on the development of new "true" two-dimensional representations for images. The emphasis is on the discrete framework that can lead to algorithmic implementations. The first method constructs multiresolution, local and directional image expansions by using non-separable filter banks. This discrete transform is developed in connection with the continuous-space curvelet construction in harmonic analysis. As a result, the proposed transform provides an efficient representation for two-dimensional piecewise smooth signals that resemble images. The link between the developed filter banks and the continuous-space constructions is set up in a newly defined directional multiresolution analysis. The second method constructs a new family of block directional and orthonormal transforms based on the ridgelet idea, and thus offers an efficient representation for images that are smooth away from straight edges. Finally, directional multiresolution image representations are employed together with statistical modeling, leading to powerful texture models and successful image retrieval systems

    MULTIRIDGELETS FOR TEXTURE ANALYSIS

    Get PDF
    Directional wavelets have orientation selectivity and thus are able to efficiently represent highly anisotropic elements such as line segments and edges. Ridgelet transform is a kind of directional multi-resolution transform and has been successful in many image processing and texture analysis applications. The objective of this research is to develop multi-ridgelet transform by applying multiwavelet transform to the Radon transform so as to attain attractive improvements. By adapting the cardinal orthogonal multiwavelets to the ridgelet transform, it is shown that the proposed cardinal multiridgelet transform (CMRT) possesses cardinality, approximate translation invariance, and approximate rotation invariance simultaneously, whereas no single ridgelet transform can hold all these properties at the same time. These properties are beneficial to image texture analysis. This is demonstrated in three studies of texture analysis applications. Firstly a texture database retrieval study taking a portion of the Brodatz texture album as an example has demonstrated that the CMRT-based texture representation for database retrieval performed better than other directional wavelet methods. Secondly the study of the LCD mura defect detection was based upon the classification of simulated abnormalities with a linear support vector machine classifier, the CMRT-based analysis of defects were shown to provide efficient features for superior detection performance than other competitive methods. Lastly and the most importantly, a study on the prostate cancer tissue image classification was conducted. With the CMRT-based texture extraction, Gaussian kernel support vector machines have been developed to discriminate prostate cancer Gleason grade 3 versus grade 4. Based on a limited database of prostate specimens, one classifier was trained to have remarkable test performance. This approach is unquestionably promising and is worthy to be fully developed

    A Panorama on Multiscale Geometric Representations, Intertwining Spatial, Directional and Frequency Selectivity

    Full text link
    The richness of natural images makes the quest for optimal representations in image processing and computer vision challenging. The latter observation has not prevented the design of image representations, which trade off between efficiency and complexity, while achieving accurate rendering of smooth regions as well as reproducing faithful contours and textures. The most recent ones, proposed in the past decade, share an hybrid heritage highlighting the multiscale and oriented nature of edges and patterns in images. This paper presents a panorama of the aforementioned literature on decompositions in multiscale, multi-orientation bases or dictionaries. They typically exhibit redundancy to improve sparsity in the transformed domain and sometimes its invariance with respect to simple geometric deformations (translation, rotation). Oriented multiscale dictionaries extend traditional wavelet processing and may offer rotation invariance. Highly redundant dictionaries require specific algorithms to simplify the search for an efficient (sparse) representation. We also discuss the extension of multiscale geometric decompositions to non-Euclidean domains such as the sphere or arbitrary meshed surfaces. The etymology of panorama suggests an overview, based on a choice of partially overlapping "pictures". We hope that this paper will contribute to the appreciation and apprehension of a stream of current research directions in image understanding.Comment: 65 pages, 33 figures, 303 reference

    Rotation-Covariant Texture Learning Using Steerable Riesz Wavelets

    Get PDF
    We propose a texture learning approach that exploits local organizations of scales and directions. First, linear combinations of Riesz wavelets are learned using kernel support vector machines. The resulting texture signatures are modeling optimal class-wise discriminatory properties. The visualization of the obtained signatures allows verifying the visual relevance of the learned concepts. Second, the local orientations of the signatures are optimized to maximize their responses, which is carried out analytically and can still be expressed as a linear combination of the initial steerable Riesz templates. The global process is iteratively repeated to obtain final rotation-covariant texture signatures. Rapid convergence of class-wise signatures is observed, which demonstrates that the instances are projected into a feature space that leverages the local organizations of scales and directions. Experimental evaluation reveals average classification accuracies in the range of 97% to 98% for the Outex_TC_00010, the Outex_TC_00012, and the Contrib_TC_00000 suites for even orders of the Riesz transform, and suggests high robustness to changes in images orientation and illumination. The proposed framework requires no arbitrary choices of scales and directions and is expected to perform well in a large range of computer vision applications

    On The Potential of Image Moments for Medical Diagnosis

    Get PDF
    Medical imaging is widely used for diagnosis and postoperative or post-therapy monitoring. The ever-increasing number of images produced has encouraged the introduction of automated methods to assist doctors or pathologists. In recent years, especially after the advent of convolutional neural networks, many researchers have focused on this approach, considering it to be the only method for diagnosis since it can perform a direct classification of images. However, many diagnostic systems still rely on handcrafted features to improve interpretability and limit resource consumption. In this work, we focused our efforts on orthogonal moments, first by providing an overview and taxonomy of their macrocategories and then by analysing their classification performance on very different medical tasks represented by four public benchmark data sets. The results confirmed that convolutional neural networks achieved excellent performance on all tasks. Despite being composed of much fewer features than those extracted by the networks, orthogonal moments proved to be competitive with them, showing comparable and, in some cases, better performance. In addition, Cartesian and harmonic categories provided a very low standard deviation, proving their robustness in medical diagnostic tasks. We strongly believe that the integration of the studied orthogonal moments can lead to more robust and reliable diagnostic systems, considering the performance obtained and the low variation of the results. Finally, since they have been shown to be effective on both magnetic resonance and computed tomography images, they can be easily extended to other imaging techniques

    Texture classification using discrete Tchebichef moments

    Get PDF
    In this paper, a method to characterize texture images based on discrete Tchebichef moments is presented. A global signature vector is derived from the moment matrix by taking into account both the magnitudes of the moments and their order. The performance of our method in several texture classification problems was compared with that achieved through other standard approaches. These include Haralick's gray-level co-occurrence matrices, Gabor filters, and local binary patterns. An extensive texture classification study was carried out by selecting images with different contents from the Brodatz, Outex, and VisTex databases. The results show that the proposed method is able to capture the essential information about texture, showing comparable or even higher performance than conventional procedures. Thus, it can be considered as an effective and competitive technique for texture characterization. © 2013 Optical Society of America.J. Víctor Marcos is a Juan de la Cierva research fellow funded by the Spanish Ministry of Economy and Competitiveness.Peer Reviewe
    • …
    corecore