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Abstract

Efficient representation of visual information lies at the foundation of many im-

age processing tasks, including compression, filtering, and feature extraction.

Efficiency of a representation refers to the ability to capture significant informa-

tion of an object of interest in a small description. For practical applications, this

representation has to be realized by structured transforms and fast algorithms.

Recently, it has become evident that commonly used separable transforms (such

as wavelets) are not necessarily best suited for images. Thus, there is a strong

motivation to search for more powerful schemes that can capture the intrinsic

geometrical structure of pictorial information.

This thesis focuses on the development of new “true” two-dimensional rep-

resentations for images. The emphasis is on the discrete framework that can

lead to algorithmic implementations. The first method constructs multiresolu-

tion, local and directional image expansions by using non-separable filter banks.

This discrete transform is developed in connection with the continuous-space

curvelet construction in harmonic analysis. As a result, the proposed trans-

form provides an efficient representation for two-dimensional piecewise smooth

signals that resemble images. The link between the developed filter banks and

the continuous-space constructions is set up in a newly defined directional mul-

tiresolution analysis. The second method constructs a new family of block

directional and orthonormal transforms based on the ridgelet idea, and thus

offers an efficient representation for images that are smooth away from straight

edges. Finally, directional multiresolution image representations are employed

together with statistical modeling, leading to powerful texture models and suc-

cessful image retrieval systems.
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Résumé

La représentation adéquate de l’information visuelle est à la base des tech-

niques de traitement du signal, de compression et d’identification de struc-

ture. Par représentation adéquate on entends la description succincte et précise

d’une partie de la scène qui soit digne d’intérêt. En pratique, cette descrip-

tion doit être générée par des transformations structurelles et des algorithmes

rapides. Récemment, il est apparut évident que les transformations usuelles de

type séparables, telles que la transformée en ondelettes, ne représentent pas

la panacée des outils de traitement de l’images. Le besoin de disposer d’outils

permettant l’identification de la structure géométrique d’une scène se fait ainsi

sentir.

Cette thèse met l’accent sur la recherche de nouvelles techniques perme-

ttant une description (( rééllement bidimensionelle ))de l’image, et plus partic-

ulièrement sur les méthodes discrètes qui conduisent à des algorithmes util-

isables en pratique. La première technique construit une décomposition multi-

résolution, locale et directionnelle de l’image en utilisant un banc de filtre multi-

dimensionnel. Cette décomposition est développée en analogie avec la récente

transformation en (( curvelets ))utilisée dans le domaine de l’analyse harmonique,

et fournit une description compacte des fonction bidimensionelles continues par

morceau, qui sont considérées comme de bonnes représentations des images na-

turelles. Le lien entre les courbelettes et les bancs de filtre est démontrée dans un

cadre nouvellement définit d’analyse multi-résolution directionnelle. La seconde

technique présentée dans cette thèse construit une nouvelle famille de trans-

formées directionnelle orthogonales en blocs basée sur l’idée des (( ridgelets )),

qui offre une représentation adéquate des images qui sont régulières hors des

zones de contours rectilignes. Finalement, la représentation directionnelle et

multi-résolution des images est utilisée conjointement avec des méthodes statis-

tiques permettant ainsi la création de modèles de textures performants ainsi que

la création d’outils puissants de recherches d’images par contenu.
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Pina Marziliano, Zoran Pečenović, Jocelyne Plantefol, and Rahul Shukla. Email

is a great asset for a young researcher to seek for suggestions and feedback from

many experts. I am grateful to the discussions and interactions with Richard

Baraniuk, Thierry Blu, Emmanuel Candès, David Donoho, Vivek Goyal, Gabor
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Chapter 1

Introduction

1.1 Motivation

Over the last decade or so, wavelets have had a growing impact on many fields

due to their unifying role in theory as well as their success in applications. At

the heart of the theory, wavelets provide us with the construction of bases for

signal expansion. Given a signal x, it can be represented by a linear combination

of elementary signals called wavelets, {ψn}n∈N, as

x =
+∞∑
n=0

cnψn, where cn = 〈x, ψn〉. (1.1)

Figure 1.1: Light can be represented by a mixture of primary colors. This was first

discovered by Newton in 1672 [116].

To visualize the concept, consider the following illustrative experiment shown

in Figure 1.1. Assume that a ray of light source is decomposed into several color

components. With a right mixture of those colors, we can reproduce the original

light source at the other end. In this experiment, seven primary colors provide

a basis for representing any light sources; in the same way as wavelets are bases

for representing signals. Such decomposition is useful since it allows us to treat

each component independently, in the same spirit as the “divide and conquer”

strategy.

In many applications, one would like to approximate a signal given its basis

expansion (1.1) [103]. One way to do that is to keep the first -M components,

1



2 Chapter 1.

for instance the first two colors: red and yellow, in the light source experiment.

This is referred to as linear approximation since it is equivalent to projecting

the input object onto the subspace spanned by the first-M basis elements. The

linear approximation can be written as

x̂
(LA)
M =

M−1∑
n=0

cnψn. (1.2)

However, if a green-dominant light source comes in then the linear approx-

imation would produce a very poor result. A better scheme for approximation

is to keep the best-M components in the color expansion. This is referred to as

non-linear approximation since it is adaptive and is based on the input signal

[46, 47]. In general, the non-linear approximation can be written as

x̂
(NLA)
M =

∑
n∈IM

cnψn, (1.3)

where IM is the set of M indices corresponding to the M -largest |cn|. The non-

linear approximation scheme certainly works well for the green-dominant light

source, and in fact for any light source that is made up of few colors.

As a more applied example, consider the approximation of a one-dimensional

piecewise smooth signal with N = 1024 samples using both linear and non-linear

approximation schemes [173]. In both cases, only M = 64 coefficients are kept.

Figure 1.2 shows the results using the Fourier basis. In this case we see that the

non-linear approximation is not necessarily better than linear approximation,

but both provide poor results. Moreover, there are annoying artifacts, due to

Gibbs oscillations [118], in the reconstructed signals.

Figure 1.3 shows the results of the same experiment but using a wavelet basis.

With the linear approximation scheme, the resulting signal is also very poor.

On the other hand, the result using non-linear approximation with wavelets is

excellent: the signal is almost perfectly recovered with, we reemphasize, 64 out

of 1024 wavelet coefficients.

We can therefore consider the “efficiency” of an expansion: that is, for most

objects of interest, the expansion is sparse, or can be well represented by a few

components. Clearly, this efficient representation is realized by a non-linear ap-

proximation scheme. We observe that efficiency is the main objective of many

representation systems. For the human visual system, efficiency means that few

visual neurons need to be excited when we see a typical view. For image com-

pression or content-based retrieval systems, the use of efficient representation

implies the compactness of the compressed file or the index entry for a typical

image in the database. The experiments with the 1-D signal above indicate

that wavelets provide a very sparse or efficient representation for piecewise

smooth signals. This is the key reason for the success of wavelets in many signal

processing applications.

Given the success of wavelets for 1-D piecewise smooth signals, one might

asks “is this the end of the story?”. Unfortunately, commonly used separable

wavelet transforms (that is obtained by applying a 1-D transform separately in
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Figure 1.2: Approximation using Fourier basis. The original signal has N = 1024

samples. The approximated signals are reconstructed from M = 64 Fourier co-

efficients that are either the first coefficients (linear approximation) or the most

significant coefficients (non-linear approximation). Note that the peak in the mid-

dle of the original signal is completely missed in both schemes. E is measured as

the sum of sample square errors.
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Figure 1.3: Same experiment as in Figure 1.2, but using a wavelet basis with two

vanishing moments and six levels of decomposition. The signal is almost perfectly

recovered in the non-linear approximation scheme.

each dimension) have some limitations in higher dimensions. Figure 1.4 shows

an example of the 2-D wavelet transform of a natural image. The significant
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wavelet coefficients are shown in white dots, which are around the points with

sharp contrasts in the intensity – or edges of the image. The key point to

note here is that the locations of these significant coefficients exhibit visible

geometrical correlation as they form simple curves. In essence, wavelets in 2-D

are good at catching edge points, but do not see the smoothness along contours.

This disappointing behavior indicates that more powerful representations are

needed in higher dimensions.

(a) (b)

Figure 1.4: Wavelet transform of an image. (a) The “peppers” image. (b) The

positions of the significant wavelet coefficients are shown in white, they are around

the edges of the image.

To be more precise, to first order, we can consider a simple model for natu-

ral images that is composed of piecewise smooth regions separated by smooth

boundaries, as shown in Figure 1.5. In computer vision, it is also known that

boundaries of shapes provide the most useful information. This model obviously

ignores the important image information, namely texture, and we will address

the texture modeling problem later on. In the 2-D piecewise smooth model,

the discontinuities are generated by edges – referred to as points in the image

where there is a sharp contrast in the intensity – whereas edges are often gath-

ered along smooth contours that are created by typically smooth boundaries of

physical objects. With this image model, the goal is to explore the intrinsic

geometrical structure of natural images. In short, the action is at the edges!

To visualize the limitation of the 2-D separable wavelet transform in rep-

resenting images with smooth contours, we consider the following scenario.

Imagine that two painters, one with a “wavelet”-style and the other with a

“X-let”-style, want to paint a natural scene (Figure 1.6). Both painters apply

a refinement technique to increase resolution from coarse to fine. In this case,

efficiency is measured by how quickly, that is with the least number of brush

strokes, one can faithfully reproduce the scene. Consider the situation when a



1.1. Motivation 5

������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������

������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������regions

smooth

boundary

smooth

Figure 1.5: A model for natural images that is composed of piecewise smooth

regions separated by smooth boundaries.

smooth contour is being painted. As 2-D wavelets are constructed from tensor

products of 1-D wavelets, the “wavelet”-style painter is limited to use brushes

of square shapes along the contour, with different sizes corresponding to the

multiresolution of wavelets. As the resolution is getting finer we can clearly

see the limitation of the wavelet scheme since it requires many finer “dots” to

capture the contour. The “X-let”-style, on the other hand, has more freedom in

making brush strokes in different directions and rectangular shapes that follow

the contour. It can be clearly seen that the “X-let”-style is much more efficient

than the “wavelet”-style. In fact, “X-let” is the underlying spirit of the recent

curvelet system [20] in harmonic analysis that will be studied and implemented

in this thesis.

Wavelet X-let

Figure 1.6: Wavelet versus new scheme: illustrating the successive refinement of

a smooth contour by the two systems.

The main point to note from this painting scenario is that a separable wavelet

scheme with isometric basis elements fails to recognize that the boundary is

smooth. To be more efficient, new schemes have to be richer in directions and

support shapes for their basis elements.
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We can even look further to see what we can learn from nature. Visual

information is very well captured and represented by the human visual system.

Psychology studies show that only 20 bits per second is what can be taken

in by the human eye [70]. Yet with that rate, it typically takes only a few

seconds or about 100 bits to capture a visual scene. By contrast, to represent a

typical image of size 512×512 pixels with the most advanced image compression
system, namely JPEG-2000 which uses wavelets, at least tens of kilobytes are

required! This suggests there is still plenty of room for improvements in the

current techniques for image representation.

What makes the human visual system very efficient in representing pictorial

information? We know from physiological studies [82, 44] that the receptive

fields in the visual cortex are characterized as being localized, oriented and

bandpass. Recently, several studies to identify the sparse components of natural

image patches of small sizes [117]; produced results that are shown in Figure 1.7.

Strikingly, these sparse components resemble closely the aforementioned charac-

teristics of the visual cortex. This matching points to the efficiency hypothesis of

the human visual system that its purpose is to capture the essential information

with a minimum number of excited neurons. Without this, our brain would have

to use much more energy when we see the world surrounding us! Furthermore,

we observe a distinguishing feature of the sparse codes in Figure 1.7, namely

that they can be organized into a pyramidal directional structure.

16 x 16 patches

from natural images

Search for
Sparse Code

Figure 1.7: Experiment producing sparse components of natural image by Ol-

shausen and Field [117]. The 16× 16 image patches extracted from natural scenes

are used to search for a basis that maximizes both preserve information and sparse-

ness of the expansions.

1.2 Problem Statement

The discussion from the previous section presents a strong motivation for “true”

2-D representation schemes that can facilitate the next generation of image

processing applications. The primary goal of the thesis is to develop structured

transforms with fast algorithms that provide sparse representations for two-
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dimensional piecewise smooth signals resembling images. Our emphasis is on a

discrete framework that can lead to algorithmic implementations. Inspired by

the painting scenario and the studies related to the human visual system, in the

following we identify a “wish list” for new image representations:

Multiresolution: The representation should allow images to be successively

approximated starting from a coarse version and going to fine-resolution

version.

Localization: The basis elements in the representation should be well concen-

trated in both spatial and the frequency domains.

Critical sampling: For some applications (e.g. compression), the representa-

tion should be a basis, or a frame with small redundancy.

Directionality: The representation should contain basis functions oriented at

variety of directions, much more than the three directions that are offered

by separable wavelets.

Anisotropy: To capture smooth contours in images, the representation should

contain basis functions with variety of shapes, in particular with different

aspect ratios.

Among these desiderata, the first three are successfully provided by the

separable wavelet system. However, the last two require new challenging non-

separable constructions.

Efficient or sparse image expansion is only the first step in many image pro-

cessing applications. The second objective of the thesis is to explore multiscale

directional decompositions in visual information retrieval application, especially

for texture images. Here, the key issue is on the modeling of the transform co-

efficients, together with correct similarity measurements between models.

To sum up, in this thesis we aim to:

• Develop new image representations with the aforementioned properties on
a discrete framework that can lead to algorithmic implementations.

• Derive an analysis framework that precisely connect the newly developed

discrete transforms with the continuous-domain constructions.

• Explore sparse image representations together with statistical modeling
for image retrieval and other applications.

1.3 Related Work

Perhaps one of the most interesting result in wavelet research is the connection

between the wavelet transform in harmonic analysis and filter banks in discrete

signal processing (Figure 1.8). The connection was set up by the multiresolution

analysis by Mallat and Meyer [101, 112]. Such a connection allows the wavelet
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transform, initially defined in the continuous domain, to be computed with fast

algorithms based on filter banks. The multiresolution analysis provides a natural

framework for the understanding of wavelet bases, and starting from iterated

filter banks leads to the famous construction of compactly supported wavelets

by Daubechies [40].

2

2

2

2
x

analysis synthesis

H1

H0

G1

G0

y1

y0 x0

x1

+ x̂
Mallat

G12

G02

G12

G02

+
+ Daubechies

Figure 1.8: Fundamental links between wavelets and filter banks. The three di-

mensional plot is taken from the cover of [175], which represents the convergence

of a discrete filter to a continuous scaling function.

From the filter bank perspective, there are two schemes that can lead to

construction of two-dimensional wavelet bases [169, 175]. A straightforward

method is to use separable filter banks as mentioned before, which leads to

tensor product wavelet (Figure 1.9).

An alternative is to use non-separable filter banks, with the most famous

example being the quincunx filter bank [93, 30] (Figure 1.10). Non-separable

could be referred to either the filters or the sampling lattice. These filter banks

typically have higher complexity and the filter design issue is much more chal-

lenging as compared to the 1-D case.

Nevertheless, as can be seen from the frequency partition diagrams, both the

separable and non-separable quincunx filter banks are very limited in treating

directionality. In 1992, Bamberger and Smith [9] explored the non-separable

feature in constructing a 2-D directional filter bank that can be maximally

decimated while achieving perfect reconstruction. At that time, the focus was

on the directional decomposition for image analysis purposes, thus the issues

related to the construction of bases for image representation and the link with

the continuous domain were not addressed.

An interesting and important question that relates the filter banks with the

construction of bases is what conditions should be imposed on the filters of an

iterated filter bank so that iterations lead to regular functions? The situation
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Figure 1.9: Separable wavelet filter bank in 2-D. (a) Block diagram. The filters are

in one-dimensional. The iteration is done on the “low-low” band. (b) Frequency

partition.
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Figure 1.10: A non-separable wavelet filter bank: the quincunx case. (a) Block

diagram. The filters are two-dimensional. Sampling is represented by sub-lattices.

The iteration is done on the lowpass band. (b) Frequency partition.

in 1-D is illustrated in Figure 1.11. Understanding this regularity condition is

the key in the construction of wavelets from filter banks [42, 160]. In general,

the regularity issue for 2-D iterated filter banks is much more involved than in

the 1-D case (see for example [33]).

Several well-know systems that provide multiscale and directional represen-

tations include the cortex transform [178], the steerable pyramid [152], two-

dimensional directional wavelets [4], brushlets [111] and complex wavelets [90].

The main difference between these systems with the one developed in this thesis

is that the previous methods do not either aim at critical sampling or connect

to continuous-domain constructions through iterated filter banks.
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Figure 1.11: Iterated 1-D filter bank where two similar filters lead to very different

iteration behaviors.

A key insight into the construction of directional bases from the Radon trans-

form was provided by Candès and Donoho [19, 21] with the ridgelet transform.

The idea is to map a line singularity into a point singularity using the Radon

transform. Then, the wavelet transform can be used to handle the point singu-

larity. The result is an efficient representation for 2-D functions with piecewise

smooth regions separated by a line singularity.

The ridgelet transform is then extended by the same authors into the curvelet

transform [20] that can handle singularities along smooth curves. The idea is

that by smooth windowing, a curve singularity is broken into a line singularity

and can be handled by a local ridgelet transform. The curvelet construction

lead to the surprising fact that efficient representation of 2-D piecewise smooth

functions can be achieved with a fixed transform that has a correct handling of

space, scale and direction. The initial ridgelet and curvelet transforms are both

defined in continuous spaces.

A different approach to handle the geometrical regularity of images is taken

by the recent bandelet transform [125]. In this transform, the discontinuity

curves are detected before hand and explicitly represented by an adaptive ex-

pansion.
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1.4 Thesis Outline

The thesis is organized as follows. In the next three chapters, we focus on

the constructions of bases and frames for image representation using multi-

dimensional filter banks. InChapter 2, the Laplacian pyramid (LP) introduced

by Burt and Adelson [18] is studied as a frame operator, and this reveals that the

usual reconstruction is sub-optimal. With orthogonal filters, the LP is shown

to be a tight frame, and thus the optimal linear reconstruction using the dual

frame operator has a simple structure which is symmetrical with the forward

transform. In more general cases, we propose an efficient filter bank (FB) for

the reconstruction of the LP which uses a projector and performs better than

the usual method. Next, by setting up the LP as an oversampled FB, we give a

complete parameterization of all synthesis FB’s providing perfect reconstruction.

Finally, we consider the situation where the LP scheme is iterated and derive

the continuous-time frame associated with the LP.

Chapter 3 studies a two-dimensional directional filter bank (DFB) proposed

by Bamberger and Smith [9] that can be maximally decimated while achieving

perfect reconstruction. We develop it further, in particular under the angle

of providing orthogonal bases. To facilitate this, we provide a detail study

on the behavior of the iterated DFB that includes an explicit formulation of

the equivalent filters and the sampling matrices for the DFB channels. The

properties of directional bases from the DFB is demonstrated with the “sinc”

case, showing the existence of “local directional bases”.

Chapter 4 proposes a new flexible multiscale and directional image repre-

sentation, named pyramidal directional filter banks. The scheme combines the

previous studied Laplacian pyramids and the directional filter banks to provide

a sparse representation for two-dimensional piecewise smooth signals resem-

bling images. The underlying expansion is a frame and can be designed to be a

tight frame. Pyramidal directional filter banks can provide an effective method

to implement the digital curvelet transform. The link between curvelets and

pyramidal directional filter banks is established formally via a multiresolution

framework, in much the same way as the continuous wavelets were connected

with filter banks in one-dimension.

Initially, the ridgelet transform was defined in a continuous space. For prac-

tical applications, the development of discrete versions of the ridgelet transform

that lead to algorithmic implementations is a challenging problem. In Chap-

ter 5, we propose a version of the ridgelet transform for discrete and finite-size

images. It uses the finite Radon transform introduced by Bolker [15] as a basic

building block. The proposed transform is invertible, non-redundant and com-

puted via fast algorithms. Furthermore, this construction leads to a large family

of directional orthonormal bases for images. Numerical results show that the

new transform is more effective than the wavelet transform in approximating

and denoising images with straight edges.

An emerging multimedia application of directional multiresolution image

representations, namely content-based image retrieval, is studied inChapter 6.
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First, we develop a general statistical framework for image retrieval by jointly

considering the two problems of feature extraction and similarity measurement

in a coherent manner, while keeping in mind the complexity constraint for such

applications. This framework is then applied successfully to the texture retrieval

problem, where it exhibits significant improvement in retrieval rate over existing

methods. For this, we consider several wavelet-domain texture models, first by

simply modeling marginal distributions of subband coefficients by generalized

Gaussian densities, and later by the use of more complex hidden Markov models

[38] that can capture the dependencies of wavelet descriptors across scales and

orientations.

Finally, we conclude inChapter 7 with a summary and an outlook on future

research.



Chapter 2

Framing Pyramid

2.1 Introduction and Motivation

Multiscale data representation is a powerful idea. It captures data in a hierarchi-

cal manner where each level corresponds to a reduced-resolution approximation.

One of the early examples of such a scheme is the Laplacian pyramid (LP), pro-

posed by Burt and Adelson [18] for image coding. The basic idea of the LP

is the following. First, derive a coarse approximation of the original signal, by

lowpass filtering and downsampling. Based on this coarse version, predict the

original (by upsampling and filtering) and then calculate the difference as the

prediction error. Usually, for reconstruction, the signal is obtained by simply

adding back the difference to the prediction from the coarse signal. The process

can be iterated on the coarse version. Analysis and usual synthesis of the LP

are shown in Figure 2.1(a) and 2.1(b), respectively.

+_M MH G
x p

c

d

(a)

+M G
c

d

x̂

(b)

Figure 2.1: Laplacian pyramid scheme. (a) Analysis: the outputs are a coarse

approximation c and a difference d between the original signal and the prediction.

The process can be iterated by decomposing the coarse version repeatedly. (b) Usual

synthesis.

A drawback of the LP is implicit oversampling. Therefore, in compression

applications it is normally replaced by subband coding or wavelet transform

0This chapter includes research conducted jointly with Martin Vetterli [56, 57].

13
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which is a critically sampled scheme and often an orthogonal decomposition.

However, the LP has the advantage over the critically sampled wavelet scheme

that each pyramid level generates only one bandpass signal, even for multidi-

mensional cases. This property makes it easy to apply many multiresolution

algorithms using a coarse-to-fine strategy [141] to the LP. Furthermore, the re-

sulting bandpass signals of the LP do not suffer from the “scrambled” frequencies

as in the critical sampling scheme. The reason for this frequency scrambling ef-

fect is illustrated in Figure 2.2 for the 1-D case. As can be seen, the highpass

channel is folded back into the low frequency after downsampling, and thus its

spectrum is reflected. In the LP, this effect is avoided by downsampling the

lowpass channel only. Therefore the LP permits further subband decomposition

to be applied on its bandpass images. A possible scheme is a pyramidal de-

composition where the bandpass images of the LP are fed into directional filter

banks [9]. The final result is a set of directional subband images at multiple

scales [58].

highpass (HP)

downsampled HP

π

π

−π

−π

Figure 2.2: Illustration of the “frequency scrambling” in 1-D due to downsampling

of the highpass channel. Upper : spectrum after highpass filtering. Lower : spectrum

after downsampling. The filled regions indicate that the high frequency is folded

back into the low frequency.

For many applications like compression and denoising, the coefficients in

the transform domain are processed further, and this can introduce errors due

to quantization or thresholding. The processed coefficients are then used to

reconstruct the original data. For the LP, the usual reconstruction algorithm

– adding the prediction from the coarse version with the difference, produces

a perfectly reconstructed signal in the absence of noise, but turns out to be

usually suboptimal otherwise.

Because the LP is an overcomplete representation (there are more coefficients

after the analysis than in the input), it must be treated as a frame operator.

Frames are generalizations of bases which lead to redundant expansions. A key

observation is that one should use the dual frame operator for the reconstruction.

While this seems a somewhat trivial observation, it has not been used in practice,

probably because the usual reconstruction, while suboptimal, is very simple.

Yet, we will show that gains around 1 dB are actually possible over the usual

reconstruction. Beyond this improvement, we also believe that a full treatment

of what is one of the most standard image processing structure is probably
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worthwhile in its own right, be it only for pedagogical reasons.

Recently, there have been a considerable interest in wavelet and filter bank

frames [127, 43, 29, 146, 92], where the greater design freedom available by the

overcomplete systems leads to a variety of attractive features over bases. The

LP frame offers a simple scheme that has low computation complexity (there is

only one filtering channel), can be easily extended to higher dimensions (e.g. via

separable extension), and has small redundancy (even in higher dimensions).

The outline of the chapter is as follows. In Section 2.2, we introduce the

notation and set up the operators for the LP using both the time-domain and

the polyphase-domain representations. The dual frame operator or the pseudo

inverse is defined together with its properties for reconstruction. In Section 2.3,

we consider the LP with orthogonal filters and show that it is a tight frame,

and thus the pseudo inverse has a simple structure which is symmetrical with

the forward transform. In Section 2.4, inspired by the structure of the pseudo

inverse for the tight frame LP, we propose a new reconstruction for more gen-

eral LP’s that leads to better performance compared to the usual method. In

Section 2.5, by setting up the LP as an oversampled filter bank (FB), we find a

parameterization for all synthesis FB’s providing perfect reconstruction for the

LP. The oversampled FB view of the LP leads to a study of iterated LP and its

associated continuous frames, so called framelets, in Section 2.6. We conclude

in Section 2.7 with some discussions.

2.2 Preliminaries

2.2.1 Signals, Operators and Notations

Since the LP is valid for signals in any dimension and often used for images,

we use multi-dimensional notation for generality. But throughout the chapter,

formulas can also be simply regarded as one-dimensional. A discrete-time d-

dimensional signal is a sequence of real-valued numbers defined on the integer

lattice Zd, e.g. x[n], n ∈ Zd. Signals with finite energy belong to a Hilbert
space l2(Z

d) with the inner product defined as 〈x, y〉 =
∑

n∈Zd x[n]y[n], and

thus the l2-norm is ‖x‖ =
√

〈x, x〉 =
√∑

n∈Zd x[n]
2.

The z-transform of a discrete-time signal is denoted by

X(z) = Z{x[n]}
�
=

∑
n∈Zd

x[n]z−n.

where raising a d-dimensional complex vector z = (z1, . . . , zd)
T to a d-

dimensional integer vector n = (n1, . . . , nd)
T yields zn =

∏d
i=1 z

ni
i . On the

unit hyper-sphere z = ejω
�
= (ejω1 , . . . , ejωd)T , X(ejw) is the Fourier transform

of x[n]. For a matrix in the z-domain with real coefficients A(z), we will see that

the equivalence of the transpose of a real matrix is [A(z−1)]T , which we denote

by A∗(z). This notation is justified since on the unit hyper-sphere, A∗(ejω) is

the transpose conjugation of A(ejω).
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A filter is represented by its impulse response h[n] or transfer function

H(z) = Z{h[n]}.1 The output of the filter is the convolution of the input

with the impulse response h[n], i.e. y[n] = x[n] ∗ h[n] =
∑

k∈Zd x[k]h[n − k], or

equivalently, Y (z) = H(z)X(z).

The sampling operation is represented by a d×d nonsingular integer matrix

M [169]. For an M-fold downsampling, the input x[n] and the output xd[n] are

related by

xd[n] = x[Mn].

For an M-fold upsampling, the input x[n] and the output xu[n] are related

by

xu[n] =

{
x[k] if n = Mk, k ∈ Zd

0 otherwise.

In the z-domain, the upsampling operation can be simply written asXu(z) =

X(zM). The quantity zM is defined to be a vector whose k-th element is given

by zmk , where mk is the k-th column of the matrix M. We denote |det(M)| by
|M|.

2.2.2 Burt and Adelson’s Laplacian Pyramid

The structure of the Laplacian pyramid is shown in Figure 2.1. We concentrate

first on one level of the LP; multilevel LP’s are discussed later. The filtering

and downsampling operation for the LP shown in Figure 2.1(a) yields the coarse

approximation signal

c[n] =
∑
k∈Zd

x[k]h[Mn − k] = 〈x, h̃[· −Mn]〉, (2.1)

where we denote h̃[n] = h[−n]. The upsampling and filtering operation results

in

p[n] =
∑
k∈Zd

c[k]g[n−Mk] =
∑
k∈Zd

〈x, h̃[· −Mk]〉g[n−Mk]. (2.2)

Writing signals as column vectors, for example x = (x[n] : n ∈ Zd)T , we can
express these operations as left matrix multiplications

c = Hx and p = Gc,

where H and G correspond to (↓ M)H and G(↑ M), respectively. For example,

1In the sequel, we often assume the filter to have finite impulse response (FIR) and thus

H(z) is polynomial. The results, however, also hold for infinite impulse response (IIR) filters

by involving Laurent polynomials.
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when d = 1 (1-D case) and M = 2, we have

H =



. . .

. . . h[2] h[1] h[0] . . .

. . . h[2] h[1] h[0] . . .
. . .


 , and

G =




. . .
...

g[0]

g[1]
...

g[2] g[0]
... g[1]

g[2]
...

. . .




. (2.3)

In general, H has
{
h̃[n−Mk]

}
n∈Zd

as its rows and G has {g[n−Mk]}n∈Zd as

its columns. Typically, those are infinite matrices but they can also be consid-

ered as finite matrices when dealing with finite length signals with appropriate

boundary treatments. In the sequel, we denote I as the identity matrices with

appropriate sizes depending on the context. Using this matrix notation, the

difference signal of the LP can be written as

d = x− p = x− GHx = (I − GH)x.

By combining the previous relations, we can write the analysis operator of

the LP as follows (
c

d

)
︸︷︷︸
y

=

(
H

I − GH

)
︸ ︷︷ ︸

A

x. (2.4)

The usual inverse transform of the LP (refer to Figure 2.1(b)) computes:

x̂ = Gc+ d, thus it can be written as

x̂ =
(
G I

)︸ ︷︷ ︸
S1

(
c

d

)
. (2.5)

It is easy to check that S1A = I for any H and G, which agrees with the

well-known fact that the LP can be perfectly reconstructed with any pair of

filters H and G.

As mentioned in the introduction, a drawback of the LP is its oversampling.

After one step in the LP, we have a coarse version which is 1/|M| times the size
of the input and a difference signal that has the same size as the input. When

the scheme is iterated we have the following redundancy ratio:

1 +
1

|M|
+

1

|M|2
+ . . . →

|M|

|M| − 1
.
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For example, in 2-D with M = 2 · I, the oversampling is up to 33%. The
redundancy of the LP goes down in higher dimensions and/or larger downsam-

pling rates.

2.2.3 Polyphase-Domain Analysis

The matrix notation for the LP operations in the previous section is simple

to use but it does not reveal the matrix block structure of the LP operators

as can be seen in (2.3). To overcome this, we introduce the polyphase-domain

representation [169, 175] for the LP. The polyphase decomposition of a signal

with respect to the sampling matrix M is a set of |M| sub-signals which have

the same indices modulo M, for example,

xi[n] = x[Mn+ ki], i = 0, 1, . . . , |M| − 1, (2.6)

where {ki}0≤i<|M| is the set of integer vectors of the form Mt, such that

t ∈ [0, 1)d [169]. The signal is reconstructed from its polyphase components

by simply adding up the upsampled and shifted signals from those polyphase

components. More precisely, we can write x in the z-domain as

X(z) =

|M|−1∑
k=0

z−kiXi(z
M). (2.7)

Therefore, a signal can be represented by the vector of its polyphase compo-

nents, that is x(z)
�
= (X0(z), . . . , X|M|−1(z))

T . The synthesis filter G is decom-

posed just as the signal, while the analysis filter H has reverse phase. With this

representation, the output of the filtering and downsampling operation (2.1) can

be written as

c[n] =

|M|−1∑
i=0

∑
m∈Zd

x[Mm+ ki]h[Mn−Mm− ki]

=

|M|−1∑
i=0

∑
m∈Zd

xi[m]hi[n−m].

Thus taking the z-transform we have

C(z) =

|M|−1∑
i=0

Hi(z)Xi(z) = H(z)x(z), (2.8)

where H(z)
�
= (H0(z), . . . ,H|M|−1(z)). Similarly, the polyphase components of

the upsampling and filtering operation (2.2) are

pi[m] = p[Mm+ ki] =
∑
n∈Zd

c[n]g[Mm+ ki −Mn] =
∑
n∈Zd

c[n]gi[m − n].

In z-domain, this can be written as

Pi(z) = Gi(z)C(z) or p(z) = G(z)C(z), (2.9)
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where G(z)
�
= (G0(z), . . . , G|M|−1(z))

T . Therefore, the polyphase vector of the

difference signal in the LP is

d(z) = x(z)− p(z) = (I − G(z)H(z)) x(z).

So the analysis operator of the LP can be written in the polyphase-domain

as (
C(z)

d(z)

)
︸ ︷︷ ︸
y(z)

=

(
H(z)

I− G(z)H(z)

)
︸ ︷︷ ︸

A(z)

x(z). (2.10)

This clearly resembles the time-domain representation of the LP analysis

operation in (2.4). Therefore in the sequel we can use the time-domain and the

polyphase-domain representations interchangeably. Expressions derived for the

time-domain representation also hold for the polyphase-domain representations

with the obvious modifications and vice versa. Note that A(z) is a polynomial

matrix of size (|M|+ 1)× |M|.
From this, it is straightforward that the usual inverse operator for the LP

has the polyphase representation as

x̂(z) = S1(z) y(z),

where

S1(z) =
(
G(z) I

)
.

2.2.4 Frame Analysis

Frames were first introduced by Duffin and Schaeffer [68]; for a detailed intro-

duction, see [41, 42, 2, 103]. A family of functions {φk}k∈Γ in a Hilbert space

H is called a frame if there exist two constants A > 0 and B < ∞ such that

A‖f‖2 ≤
∑
k∈Γ

|〈f, φk〉|
2 ≤ B‖f‖2, ∀f ∈ H, (2.11)

where A and B are called the frame bounds. When A = B, the frame is said to

be tight. Associated with a frame is the frame operator F , defined as the linear

operator from H to l2(Γ) as

(Ff)k = 〈f, φk〉, for k ∈ Γ. (2.12)

It can be shown that the frame condition (2.11) is satisfied if and only if

F is invertible on its range with a bounded inverse [103]. For the Laplacian

pyramid, there always exists a bounded reconstruction inverse, which is the

usual reconstruction, thus we immediately get the following result.

Proposition 2.1 The LP with stable filters2 provides a frame expansion in

l2(Z
d).

2Stability of a filter means that a bounded input produces a bounded output.
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As shown above, the frame operator for the LP is represented by a left

matrix multiplication with A. Since the LP is a redundant transform, its frame

operator admits an infinite number of left inverses. Among those, the most

important is the dual frame operator or the pseudo inverse of A [80]

A† = (ATA)−1AT . (2.13)

In the polyphase-domain, the pseudo inverse of A(z) is given by [39]

A†(z) = (A∗(z)A(z))−1A∗(z). (2.14)

2.2.5 Noise Analysis

When there is additive “noise” in the frame coefficients, the pseudo inverse

eliminates the influence of errors that are orthogonal to the range of the frame

operator. Therefore, if we have access to ŷ = y + η instead of y = Ax, then

the pseudo inverse provides the solution x̂ = A†ŷ that minimizes the residual

‖Ax̂ − ŷ‖. This is called the least-squares solution. For a tight frame, the
pseudo inverse is simply the scaled transposed matrix of the frame operator,

since ATA = A · I.
We will now review results that allow us to quantify the performance of a

left inverse. It can be shown [103] that the pseudo inverse has minimum sup

norm among all the left inverses of the frame operator. Let S be an arbitrary

left inverse of A. The sup norm of an operator S is defined as

‖S‖ = sup
y �=0

‖Sy‖

‖y‖
, (2.15)

and for a matrix, it can be computed by [80]

‖S‖ = max{
√
λ : λ is an eigenvalue of SST }. (2.16)

The influence of the sup norm in the reconstruction can be seen in the

following. With the noise model setup as above, the reconstruction error by S

is

ε
�
= x̂− x = Sŷ − x = S(y + η)− x = S(Ax+ η)− x = Sη. (2.17)

Therefore,

‖ε‖ ≤ ‖S‖‖η‖. (2.18)

In other words, when the energy of the noise η is bounded, the sup norm

of the inverse matrix provides an upper bound for the reconstruction error, and

this bound is tight.

In some cases, we can assume that the additive noise η is white, which means

that

E{η[i], η[j]} = δ[i− j]σ2, for all i, j, (2.19)
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or its autocorrelation matrix Rη
�
= E{ηηT } = σ2 · I. This noise model is

approximately true when, for instance, y is uniformly scalar quantized. In this

case, the autocorrelation of the reconstruction error by S is

Rε
�
= E{εεT } = E{SηηTST } = SRηS

T = σ2SST .

Hence, for signals of finite length N , the reconstruction mean squared error

(MSE) is

MSE
�
= N−1E{‖ε‖2} = N−1tr(Rε) = N−1σ2tr(SST ) (2.20)

For infinite length signals that have polyphase representation defined as be-

fore, the reconstruction MSE can be computed in the Fourier domain using the

power spectrum of ε, which is given by [169]

Rε(e
jω) = S(ejω)Rη(e

jω)S∗(ejω).

Therefore, similarly to (2.20), with the white noise model given in (2.19) we

have

MSE =
σ2

|M|(2π)d

∫
[−π,π]d

tr(S(ejω)S∗(ejω))dω. (2.21)

Since the trace of a matrix equals to the sum of its eigenvalues, the eigen-

values of SST and S(ejω)S∗(ejω) (which are also the squares of the singular

values of S and S(ejω), respectively) play an important role in analyzing the

reconstruction error due to S. Using the orthogonal projection property of

the pseudo inverse, it can be shown [42, 13] that among all the left inverses,

the pseudo inverse minimize the reconstruction MSE due to white noise in the

frame coefficients. In summary, the pseudo inverse provides the optimal linear

reconstruction.

Example 2.1 To get a gist of the aforementioned properties of frames, consider

the following illustrative example. Suppose we have a redundant transform that

takes a scalar x ∈ R and outputs a vector y = (y1, y2)
T ∈ R2 such that yi =

x, i = 1, 2. There are infinite ways to reconstruct x from y: one simple way

is to assign x̂1 = y1, another way is to compute x̂2 = (y1 + y2)/2. Under the

white noise model given in (2.19), the performance by these two reconstruction

methods can be quantified as: MSE1 = E{‖x − x̂1‖2} = E{η21} = σ2, and

MSE2 = E{‖x − x̂2‖2} =
1
4E{(η1 + η2)

2} = σ2/2. Thus, we reduce the MSE

by half by using the second reconstruction method instead of the first one. In

fact, the second reconstruction method is the pseudo inverse, which minimizes

the MSE in this case.
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2.3 Laplacian Pyramid with Orthogonal Filters

2.3.1 The Tight Frame Case

Consider a special case where the filters in the LP are orthogonal filters with

respect to the sampling matrix M, which means

〈g, g[· −Mn]〉 = δ[n], and (2.22)

h[n] = g[−n], (2.23)

or equivalently, GTG = I and H = GT . The condition (2.23) can be written in

the polyphase-domain as H∗(z) = G(z). Since

〈g, g[· −Mn]〉 =

|M|−1∑
i=0

∑
m∈Zd

g[Mm+ ki]g[Mm−Mn+ ki]

=

|M|−1∑
i=0

∑
m∈Zd

gi[m]gi[m− n],

taking the z-transform of both sides of (2.22), the orthogonality condition on

the filter G is equivalent to

|M|−1∑
i=0

Gi(z)Gi(z
−1) = 1 or G∗(z)G(z) = 1. (2.24)

Orthogonal filters can be designed by using well-known methods, such as

separable filters from 1-D orthogonal filters [169, 175] or non-separable filters in

2-D for M = 2 · I2 [87, 94].

Theorem 2.1 The Laplacian pyramid with orthogonal filters is a tight frame

with frame bounds equal to 1. Conversely, suppose the LP is a tight frame, then

the frame bounds must be 1 and either H(z) = 0 or H∗(z) = 2[G∗(z)G(z) +

1]−1G(z). If the LP is a tight frame with FIR filters, and excluding the degener-

ated case H(z) = 0, then G∗(z)G(z) = 2α− 1 and H∗(z) = αG(z), where α ∈ R,

which means the filters are orthogonal up to a scale factor.

Proof: Suppose that the Laplacian pyramid uses orthogonal filters. Using

G∗(z)G(z) = 1 and H(z) = G∗(z) we can directly verify that

A∗(z)A(z) =
(
H∗(z) I − H∗(z)G∗(z)

)( H(z)

I− G(z)H(z)

)
= I.

Now suppose that LP is a tight frame, or ‖c‖2 + ‖d‖2 = A‖x‖2 for all

x ∈ l2(Z
d). Since H is a decimating operator, there exists an x �= 0 such that

Hx = 0. In this case, the output of the LP is c = 0, d = x. Hence the tight

frame bound A must be 1.

So the tight frame condition for the LP becomes A∗(z)A(z) = I. Expanding

and grouping terms, this equation becomes

H∗(z)[H(z)− G∗(z) + G∗(z)G(z)H(z)] = G(z)H(z). (2.25)
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Let K(z) = H(z) − G∗(z) + G∗(z)G(z)H(z). Note that K(z) is an 1 × |M|
matrix, and denote K(z) = (K0(z), . . . ,K|M|−1(z)). The key observation is that

both sides of (2.25) are outer products of two column vectors of |M| components.
Thus, (2.25) can be written as

Ki(z)H
∗(z) = Hi(z)G(z), for i = 0, . . . , |M| − 1.

If H(z) = 0, then (2.25) holds and we have a degenerated LP tight frame

since c = 0, d = x for all x. Otherwise, there exists a polyphase component

Hi(z) �= 0, which implies G(z) = [Ki(z)/Hi(z)]H∗(z) = α(z)H∗(z). Substitute

this back to (2.25), it becomes

α(z)2H∗(z)H(z)H∗(z)H(z) = [2α(z)− 1]H∗(z)H(z). (2.26)

Since H(z) �= 0, it can be shown that H(z) has right inverse H̄(z), such that

H(z)H̄(z) = 1. Multiplying both sides of (2.26) with H̄∗(z) on the left and H̄(z)

on the right, it is equivalent to H(z)H∗(z) = [2α(z) − 1]/α(z)2. It follows that
G∗(z)G(z) = 2α(z)−1, and thus H∗(z) = α(z)−1G(z) = 2[G∗(z)G(z)+1]−1G(z).

If in addition, we requires the filters to be FIR, then G∗(z)G(z) = 2α(z)− 1

and H(z)G(z) = 2 − 1/α(z) are (finite) polynomials, which implies that α(z)

must be a scalar. It follows that H(z) and G(z) are orthogonal filters. 2

Using the well-known result on the non-existence of orthogonal two-channel

filter banks with symmetric FIR filters (except for the Haar filters), we obtain

the following corollary of the above theorem.

Corollary 2.1 There are no LP tight frames for M = 2 with symmetric FIR

filters (except for H(z) = 0 or the Haar filters).

Remark 2.1 Under the orthogonality conditions, a geometrical interpretation

of the tight frame can be seen by rewriting (2.2) as

p[n] =
∑
k∈Zd

〈x, g[· −Mk]〉g[n−Mk].

Denote V the subspace spanned by the set of orthogonal vectors {g[· −

Mk]}k∈Zd . Then p is the orthogonal projection of x onto V . Together with

the fact that d = x− p, using the Pythagorean theorem leads to

‖x‖2 = ‖p‖2 + ‖d‖2 = ‖c‖2 + ‖d‖2. (2.27)

where the equality ‖p‖ = ‖c‖ comes from the fact that c are the coefficients in

the orthonormal expansion (2.2) of p in V . Equation (2.27) says that the LP

is a tight frame with the frame bounds A = B = 1.

Consequently, with orthogonal filters, the pseudo inverse of A is simply its

transpose matrix. Thus,

A† = AT =

(
H

I − GGT

)T

=
(
G I − GGT

)
.
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Therefore the reconstruction using the pseudo inverse is

x̂ = A†y = Gc+ (I − GGT )d = G(c− Hd) + d. (2.28)

The last expression is derived in order to reduce the computational com-

plexity of the pseudo inverse. It leads to an efficient filter bank structure for

reconstruction of the LP that is shown in Figure 2.3. In the polyphase domain,

the pseudo inverse becomes

A†(z) = A∗(z) =
(
G(z) I− G(z)G∗(z)

)
.

We emphasize two important facts here. First, the usual inverse is different

from the pseudo inverse, and thus is suboptimal. We will make a precise compar-

ison latter. Secondly, the pseudo inverse in this case has a symmetrical structure

with the forward transform, and thus has the same order of complexity.

++_M MH G
x̂

c

d

Figure 2.3: The proposed reconstruction scheme for the Laplacian pyramid in

Figure 2.1(a). It is the pseudo inverse when the filters are orthogonal.

Example 2.2 (The Haar case) Consider the 1-D LP with Haar filters: h̃ =

g =
(
1/

√
2, 1/

√
2
)
and M = 2. The output of the LP can be written as

c[n] = 1√
2
x[2n] + 1√

2
x[2n+ 1],

d[2n] = 1
2x[2n] − 1

2x[2n+ 1],

d[2n+ 1] = − 12x[2n] + 1
2x[2n+ 1].

(2.29)

In order to see the block structure of the transform matrices, we slightly

change the notation and write y = (. . . , c[n], d[2n], d[2n + 1], . . . )T . Using

(2.29), the analysis matrix of the LP is a block diagonal matrix

A =



. . .

BA
BA

. . .


 ,

where

BA =


1/

√
2 1/

√
2

1/2 −1/2

−1/2 1/2


 .
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Similarly, the usual synthesis matrix S1 is also a block diagonal matrix with

BS1 =

(
1/

√
2 1 0

1/
√
2 0 1

)
. (2.30)

The pseudo inverse A† = AT is also a block diagonal matrix with BA† = BT
A .

Since there is no overlapping between blocks, we can consider the transform for

a single block with 2 inputs and 3 outputs. The eigenvalues of BA†B
T
A† are {1, 1},

while the eigenvalues of BS1B
T
S1

are {1, 2}. Consequently,

‖BA†‖ = 1, tr(BA†B
T
A†) = 2, and

‖BS1‖ =
√
2, tr(BS1B

T
S1) = 3.

Therefore, in this case if we use the pseudo inverse instead of the usual

inverse, then we would reduce the upper bound of the reconstruction square error

in (2.18) by half, and the reconstruction MSE in (2.20) by two-third.

2.3.2 Eigenvalues of the LP Operators

The improvements of the pseudo inverse over the usual inverse in the last exam-

ple can be generalized for all LP’s with orthogonal filters. The key is to study

the eigenvalues of certain matrices. We will need the following basic result on

the eigenvalues.

Theorem 2.2 ([80] (p. 53)) Suppose A and B are real matrices of size m×n

and n×m respectively, with m ≤ n. Then BA has the same eigenvalues as AB,

counting multiplicity, together with additional n−m eigenvalues equal to 0.

For a square matrix A, denote the set of all its eigenvalues by σ(M), where

an eigenvalue λ with multiplicity n is written as λ(n). These eigenvalues are

the roots of the characteristic polynomial of A which is defined as PA(α)
�
=

det(αI−A). For a polynomial matrix A(z), its characteristic polynomial would

generally have coefficients as polynomials of z as well. Theorem 2.2 says that

PBA(α) = αn−mPAB(α). It can be verified that this result also holds when A

and B are polynomial matrices.

Proposition 2.2 Suppose the LP uses orthogonal filters. Then:

(a) σ(A∗(z)A(z)) =
{
1(|M|)

}
, and

(b) σ(S1(z)S∗1(z)) =
{
1(|M|−1), 2

}
.

Proof: Since A(z) represents a tight frame with frame bounds equal to 1,

we have A∗(z)A(z) = I. Therefore (a) follows directly. Next, consider

S1(z)S∗1(z) = G(z)G∗(z) + I. Since G∗(z)G(z) = 1 by the orthogonal con-

dition, from Theorem 2.2 it follows that σ(G(z)G∗(z)) =
{
0(|M|−1), 1

}
, or
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PG(z)G∗(z)(α) = (α − 1)α|M|−1. Thus,

PG(z)G∗(z)+I(α) = det(αI − G(z)G∗(z)− I)

= PG(z)G∗(z)(α − 1)

= (α − 2)(α − 1)|M|−1,

which implies (b). 2

Recall that with orthogonal filters, the pseudo inverse of the LP is A†(z) =

A∗(z). Thus, from (2.16) and (2.21) we immediately obtain the following results.

Corollary 2.2 Suppose the LP uses orthogonal filters. Then:

(a) ‖S1‖ =
√
2, and

(b) ‖A†‖ = 1.

As a result, when the noise energy is bounded, the upper bound of the recon-

struction square error in (2.18) using the pseudo inverse is equal to half of the

one that uses the usual inverse.

Corollary 2.3 Suppose the LP uses orthogonal filters and its coefficients are

contaminated by an additive white noise with variance σ2. Then for one level

LP the reconstruction mean square error using the usual inverse is MSE1 =

σ2(1 + 1/|M|), while using the pseudo inverse it is MSE2 = σ2. When the LP

is iterated with J-levels, then for the usual inverse we have

MSE
(J)
1 = σ2

(
1 +

1

|M|
+ . . .+

1

|M|J

)
→ σ2

|M|

|M| − 1
,

while for the pseudo inverse we still have MSE
(J)
2 = σ2.

Therefore with white noise on the LP coefficients, the reduction in the recon-

struction MSE by using the pseudo inverse instead of using the usual inverse is

from (1+1/|M|) times for one level LP up to (1+1/(|M|−1)) times for multiple

levels LP’s. In particular, for the commonly used LP in 2-D with M = 2 · I2, the

pseudo inverse improves the signal-to-noise ratio (SNR) of the reconstruction

signal from 0.97 dB (with one level LP) to 1.25 dB (with iterated LP).

Remark 2.2 Let us clarify the difference in the performance measurements

between Corollary 2.2 and Corollary 2.3. The results in Corollary 2.2 use the

maximal eigenvalues from Proposition 2.2, whereas the results in Corollary 2.3

use the average of these eigenvalues. Thus, the gain factor by the pseudo inverse

in Corollary 2.2 is fixed, while the gain factor in Corollary 2.3 gets smaller as

|M| becomes larger.

Finally, we have the following properties on the operators that reconstruct

from the coarse and difference signals using the pseudo inverse.
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Proposition 2.3 Consider G(z) and D(z) = I−G(z)H(z). Suppose the LP uses

orthogonal filters. Then:

(a) σ(G(z)G∗(z)) =
{
0(|M|−1), 1

}
,

(c) D∗(z) = D(z),

(b) D(z)D(z) = D(z),

(d) σ(D(z)) =
{
0, 1(|M|−1)

}
.

Proof: Part (a) was proved in the proof of Proposition 2.2. Part (b) and

(c) are easily verified using the orthogonal conditions: G∗(z)G(z) = 1 and

H(z) = G∗(z). Using characteristic polynomials similarly to the proof of Propo-

sition 2.2, part (d) is proved by observing that PD(z)(α) = ±PG(z)G∗(z)(1−α). 2

As a result, the operator for the difference signal in the LP, d = (I − GH)x,

is an orthogonal projection to a subspace, which has dimension equal to (|M| −
1)/|M| times the dimension of the signal space.3 Such a view can also be inferred

from the geometrical proof of Theorem 2.1.

2.4 Reconstruction using Projection

2.4.1 The New Reconstruction Algorithm

In this section we consider a more general case when H and G are arbitrary

filters. Even though any frame operator has a pseudo inverse, for complexity

reason, we will consider only the the inverses that can be realized by a fast

algorithm. Motivated by the tight frame case, we focus on the reconstruction

that has a structure shown in Figure 2.3. We then turn the problem around by

asking for which filters such an algorithm is indeed an inverse or pseudo inverse.

This has the same flavor as the filter design problem for perfect reconstruction

filter banks, thus we can resort to many existing results. The following result

provides an answer to our question.

Theorem 2.3

1. The reconstruction shown in Figure 2.3 is an inverse transform of the LP

if and only if two filters H and G are biorthogonal with respect to the

sampling lattice M, which means the prediction operator of the LP (GH)

is a projector, or HG = I.

2. Furthermore, that reconstruction is the pseudo inverse if and only if the

prediction operator of the LP (GH) is an orthogonal projector.4

3For infinite length signals, this has to be interpreted in the polyphase-domain.
4Recall that given a Hilbert space H, a linear operator P mapping H onto itself is called

a projector if P 2 = P . Furthermore, if P is self-adjoint or P = PT then P is called an

orthogonal projector.
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Proof: 1. The transform matrix for the reconstruction algorithm in Figure 2.3

can be written as

S2 =
(
G I− GH

)
(2.31)

From the expression for A in (2.4), we have S2A = I−GH+(GH)2. Therefore

S2 is a left inverse of A if and only if GH = (GH)2 or GH is a projector.

We note that H and G possess right and left inverses, respectively (which

involves inverse filters of H and G). Thus the projection condition GH = GHGH

is equivalent to

HG = I or 〈h̃[· −Mk], g[· −Ml]〉 = δ[k − l] ∀k, l ∈ Zd. (2.32)

Filters H and G satisfying (2.32) are said to be biorthogonal filters (with

respect to the sampling matrix M). This proves part 1.

2. For part 2, we require additionally that S2 is a pseudo inverse of A. From

(2.13) this means that ATAS2 = AT . Using the assumption that HG = I, after

some manipulations we have that

ATAS2 =
(
HT (I − GH)(I − HTGT )

)
So the pseudo inverse condition is simplified to

(I − GH)(I − HTGT ) = (I − GH)T (2.33)

Notice that the left hand side of (2.33) is a symmetric matrix, thus it is the

case for (I − GH)T and GH as well. Therefore GH is an orthogonal projector,

which proves the part 2. 2

Remark 2.3 It is interesting to note that the two conditions for the LP in

the above proposition, i.e. projection and orthogonal projection, are exactly the

same as the conditions for the improved LP’s that are studied in [166]. Those

conditions lead to LP with interpolation and least squares LP, respectively. The

motivation for those modifications there is to minimize the prediction error d of

the LP, whereas our motivation is to have a better reconstruction algorithm for

the LP. Still, the results from [166] motivate the use of filters with the afore-

mentioned properties for the LP.

Remark 2.4 The orthogonal projection case obviously includes the LP with

orthogonal filters studied in the last section. It is shown in [166] that under the

orthogonal projection condition, if one of the LP filter is given, then the other

filter is uniquely determined.

Therefore, the minimum requirement for the FB shown in Figure 2.3 to be

a bona fide inverse of the LP is the biorthogonality condition (2.32) on the

filters H and G, which can be expressed equivalently in the polyphase-domain

as H(z)G(z) = 1. There exist many designs for such filters due to their role in
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wavelet constructions [31, 174]. Among them, a popular choice for images is the

“9-7” filters from [31, 174]. Another interesting example is based on the original

LP filter suggested in [18], which is especially popular for applications in vision,

together with its dual filter [5]. Tables 2.1 and 2.2 list the filter coefficients.

Note that these filters are symmetric and very close to being orthogonal. As

a result, the proposed reconstruction in Figure 2.3 is very close to the pseudo

inverse.

n 0 ±1 ±2 ±3 ±4

h[n] 0.852699 0.377403 -0.110624 -0.023849 0.037828

g[n] 0.788486 0.418092 -0.040689 -0.064539

Table 2.1: Coefficients for the “9-7” biorthogonal filters.

With biorthogonal filters, the LP has an interesting geometrical interpreta-

tion. Let us define two subspaces V and Ṽ that are spanned by {g[·−Mk]}k∈Zd
and {h̃[· − Mk]}k∈Zd , respectively. These are also the column and row spaces

of G and H. For all x in l2(Z
d), the prediction operator in the LP, p = GHx,

computes a projection of x onto V . Since HG = I, the difference signal d = x−p
has the property that

Hd = H(x− GHx) = Hx− Hx = 0.

Therefore, d is perpendicular to Ṽ . This fact is illustrated in Figure 2.4(a).

The prediction operator in the LP (GH) can be called an oblique projector [168]

and denoted by PV .

Let us define W the orthogonal complementary subspace of Ṽ . Then it is

easy to verify that d = x−PV x is a projection of x onto W such that the error

is parallel to V (again, refer to Figure 2.4(a)). Denote this projection as PW ,

PW = I − GH. It is easy to see that PW is an orthogonal projection when PV

is. In addition,

(x− PV x) ∈ W ∀x, and

PV x = 0 ⇔ x ∈ W. (2.34)

Next let us compare the usual reconstruction method as in Figure 2.1(b),

denoted REC-1,

x̂1 = S1y = Gc+ d, (2.35)

n 0 ±1 ±2 ±3

h[n]/
√
2 0.6 0.25 -0.05 0

g[n]/
√
2 0.607143 0.260714 -0.053571 -0.010714

Table 2.2: Coefficients for the original LP filter and its dual filter.
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V

Ṽ
W

x

p = PV x

d = PWx

(a)

V

W

xd

p

d̂
PW d̂

x̂1x̂2

(b)

Figure 2.4: Geometrical interpretation of the LP with biorthogonal filters. (a) The

LP as an oblique projector: p = PV x is the projection of x onto V such that

the difference signal d = x − PV x is perpendicular to Ṽ . (b) Comparing two

reconstruction methods when d is corrupted by noise and becomes d̂. The usual

reconstruction REC-1 adds d̂ directly to the reconstructed signal, while the new

reconstruction REC-2 adds the PW projection of d̂ and thus eliminates the error

component in d̂ that is parallel to V .

with the new reconstruction using the FB as in Figure 2.3, denoted REC-2,

x̂2 = S2y = Gc+ (I− GH)d. (2.36)

These two reconstruction algorithms are different in the way of handling the

difference signal d. More specifically, the REC-1 method adds d directly while

the REC-2 method adds the PW projection of d to the reconstructed signal. In

the absence of noise, the two methods yield identical results (as one expects)

since from (2.34) we have d ∈ W . However, as shown in Figure 2.4(b), when

there is noise in the LP coefficients, the REC-2 method eliminates the influence

of the error component in d̂ that is parallel to V .

For more quantitative measurements on the performance of the two methods,

suppose that we wish to approximate x given ŷ = Ax + η. With no further

information about the error in the LP coefficients η, it makes sense to chose

x̂ that minimizes the residual ‖Ax̂ − ŷ‖. As mentioned before, the optimal

linear solution to this problem is the pseudo inverse of A. Using this as the

measurement for the performance in reconstruction, the following result states

that REC-2 always performs better than REC-1.

Proposition 2.4 Assume that H and G are biorthogonal filters. Let x̂1 and

x̂2 be the results of reconstruction from noisy LP coefficients ŷ using REC-1

and REC-2, respectively. Then we have

‖Ax̂1 − ŷ‖ ≥ ‖Ax̂2 − ŷ‖, (2.37)

where equality holds if and only if Hd̂ = 0.



2.4. Reconstruction using Projection 31

Proof: Using the definition of A, S1, S2 in (2.4), (2.5), (2.31) and the fact that

GH = I, we have after some manipulations

Ax̂1 − ŷ = AS1ŷ − ŷ =

(
Hd̂

−GHd̂

)
, and

Ax̂2 − ŷ = AS2ŷ − ŷ =

(
0

−GHd̂

)
.

Therefore,

‖Ax̂1 − ŷ‖
2 = ||Hd̂||2 + ||GHd̂||2 ≥ ||GHd̂||2 = ‖Ax̂2 − ŷ‖

2.

2

2.4.2 Reconstruction Error Analysis

Note that the above comparison does not give us exact behavior of the recon-

struction error. In this section, we will study this error under some additional

assumptions on the coefficient noise. Our analysis is complicated further since in

coding, the LP is often used with quantization noise feedback where the coarse

signal c is quantized before being fed back to the predictor. This case is referred

to as the closed-loop mode in Figure 2.5. The open-loop mode refers to the case

that has been considered so far, namely when the noise is added to the coeffi-

cients after the LP transform. A discussion of those two quantization modes in

pyramid coding can be found in [133]. Note that with the closed-loop mode, we

are no longer in the linear framework, so that optimality of the pseudo-inverse

does not hold.5

+

+

+_
open-loop

closed-loop

MMH G
x

ĉ

d̂

ηc

ηd

Figure 2.5: Laplacian pyramid encoding. The open-loop mode bypasses the coarse

level quantization, whereas the closed-loop mode includes it.

To analyze the reconstruction error, we separate the noise in the LP coef-

ficients into two components: η = (ηc,ηd)
T , corresponding to the coarse and

detail quantization as shown in Figure 2.5. In the open-loop (ol) mode, we can

apply (2.17) to obtain the reconstruction errors using REC-1 and REC-2 as

ε
(ol)
1 = Gηc + ηd, and

ε
(ol)
2 = Gηc + (I − GH)ηd. (2.38)

5In that case, a consistent reconstruction algorithm [73] can lead to improvements.
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In the closed-loop (cl) mode, the outputs of the LP after adding noise are

ĉ = c+ ηc = Hx+ ηc, and

d̂ = d+ ηd = x− Gĉ+ ηd = (I − GH)x− Gηc + ηd.

Compared to the open-loop mode, an extra noisy term −Gηc is added to

the output d̂. From these noisy LP coefficients, the usual method REC-1 re-

constructs

x̂
(cl)
1 = Gĉ+ d̂ = x+ ηd.

Thus the term −Gηc is canceled in the reconstructed signal by REC-1. For

the proposed method REC-2, under the biorthogonal assumption GH = I, after

some manipulations we have

x̂
(cl)
2 = Gĉ+ (I − GH)d̂ = x+ Gηc + (I− GH)ηd.

In this case, the projector for the difference signal (I − GH) annihilates the

noisy term −Gηc in d̂ because (I−GH)G = G−GHG = 0. So the reconstruction

errors using REC-1 and REC-2 in the closed-loop mode are

ε
(cl)
1 = ηd, and

ε
(cl)
2 = Gηc + (I − GH)ηd. (2.39)

From (2.38) and (2.39) we observe that with the REC-1 method, the coarse

level noise ηc does not effect the reconstruction signal in the closed-loop mode.

This makes the usual reconstruction method attractive in coding application.

However, the problem of allocating bits to the quantizers Qc and Qd for the

coarse and difference signals becomes difficult. The reason is that in minimizing

ε
(cl)
1 the choice for Qd depends on the choice for Qc, and thus one must use

a complicated bit allocation technique [133]. With the REC-2 method, the

reconstruction errors are the same in both open- and closed-loop modes, thus

we can simply use the open-loop mode. Furthermore, in the tight frame case,

because ‖ε‖2 = ‖η‖2 the square error distortion can be minimized in the LP

domain using standard bit allocation techniques such as [149].

Now suppose that ‖ηc‖ is negligible compared to ‖ηd‖. This is a reasonable

assumption since ηc has |M| times fewer samples than ηd. Furthermore, suppose
that the predictor (GH) becomes an orthogonal projection which implies ‖(I −

GH)ηd‖ ≤ ‖ηd‖. Under these conditions in both modes we have: ‖ε2‖ ≤ ‖ε1‖,

or REC-2 performs better than REC-1. A finer analysis under the additive

white noise model is provided by the following result.

Proposition 2.5 Suppose the LP use orthogonal filters and the additive noises

ηc and ηd to the LP coefficients are uncorrelated white with variances σ2c and

σ2d, respectively. Then the reconstruction mean square errors by using REC-1

and REC-2 are:
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(a) For the open-loop mode:

MSE
(ol)
1 =

1

|M|
σ2c + σ2d

MSE
(ol)
2 =

1

|M|
σ2c +

|M| − 1

|M|
σ2d

(a) For the closed-loop mode:

MSE
(cl)
1 = σ2d

MSE
(cl)
2 =

1

|M|
σ2c +

|M| − 1

|M|
σ2d

Proof: Since ηc and ηd are uncorrelated and white, applying (2.21) to (2.38)

we have

MSE
(ol)
2 =

σ2c
|M|(2π)d

∫
[−π,π]d

tr(G(ejω)G∗(ejω))dω +

σ2d
|M|(2π)d

∫
[−π,π]d

tr(D(ejω)D∗(ejω))dω.

From this, using Proposition 2.3 we get the desired result for MSE
(ol)
2 .

Other results follow similarly. 2

Numerical results on real images follow the above analysis very closely, even

for filters that are only approximately orthogonal such as the “9-7” biorthogonal

filters in Table 2.1 (which was used in all of our experiments). For example, in

the image coding application, assume that uniform scalar quantizers with equal

step for coarse and difference signals, ∆c = ∆d = ∆ are used, then we have

σ2c ≈ σ2d ≈ ∆2/12. In this case, the new inverse REC-2 improves the SNR of the

reconstructed signal over the usual inverse REC-1 by 10 log10(5/4) = 0.97 dB

in the open-loop mode, while giving the same performance as the usual inverse

in the closed-loop mode. Figure 2.6 shows the result for the “Barbara” image

of size 512×512. However, note that the optimal choice for ∆c and ∆d depends

on the signal.

In some other applications like denoising, the LP coefficients are thresholded

so that only the M most significant coefficients are retained. (This is normally

done in the open-loop mode.) In this case, it is difficult to model the coefficient

noise which strongly depends on the input signal. Table 2.3 presents the nu-

merical results for some standard test images. We observe that the new inverse

consistently provides better performance by around 0.5 dB in SNR.
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Figure 2.6: Comparison of reconstructions from the quantized LP coefficients of

the “Barbara” image. The LP is decomposed with just two levels.

M 212 214 216

Barbara REC-1 9.68 12.56 20.94

REC-2 9.87 13.18 21.75

Goldhill REC-1 12.30 15.79 21.55

REC-2 12.60 16.23 22.19

Peppers REC-1 15.06 20.81 26.77

REC-2 15.62 21.33 27.32

Table 2.3: SNR’s of the reconstructed signals from the M most significant LP

coefficients. The image sizes are 512× 512. The LP is decomposed with six levels.

2.5 Laplacian Pyramid as an Oversampled Filter

Bank

2.5.1 Equivalent Filters in an Oversampled Filter Bank

The polyphase matrices for the LP operators given in Section 2.2.3 suggest

that we can treat each polyphase component of the difference signal separately

as being filtered and downsampled by M. We can reformulate the LP as an

oversampled FB as shown in Figure 2.7. Note that every LP can be expressed

as an oversampled FB, but not every oversampled filter bank in Figure 2.7

corresponds to a LP structure, since we will see that for the LP, all filters Ki

are specified by H and G.

From (2.10), it follows that the polyphase vector for the equivalent filter Ki

is the (i+1)-st row of the matrix I−G(z)H(z), which is equal to eTi −Gi(z)H(z),
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where ei is the (i+ 1)-st column of the identity matrix. Thus,

Ki(z) = zki − Gi(z
M)H(z), for i = 0, . . . , |M| − 1. (2.40)

M M

MM

+

MM

H G

K0

K|M|−1

F0

F|M|−1

x x̂

c

d

d0

d|M|−1

Figure 2.7: Laplacian pyramid as an oversampled filter bank, where{
d0, . . . , d|M|−1

}
are the polyphase components of d.

Similarly, on the synthesis side, for the REC-1 method, the equivalent filter

F
[1]
i has the polyphase vector as ei, therefore

F
[1]
i (z) = z−ki , for i = 0, . . . , |M| − 1. (2.41)

For the REC-2 method, the equivalent filters F
[2]
i has the polyphase vector

as ei − G(z)Hi(z), which implies that

F
[2]
i (z) = z−ki −G(z)Hi(z

M), for i = 0, . . . , |M| − 1. (2.42)

Since H(z) and G(z) are both lowpass filters, it is easy to see that Ki(z)

and F
[2]
i (z) are highpass filters, whereas F

[1]
i (z) are allpass filters. Figure 2.8

displays the frequency responses of the equivalent filters for the LP in 1-D using

the biorthogonal filter pair “9-7” from Table 2.1.

In the 1-D case with M = 2 and biorthogonal filters, using the property

G0(z)H0(z) + G1(z)H1(z) = 1, we can simplify the expressions for equivalent

filters in (2.40) as

K0(z) = −zH1(z
2)G(−z)

K1(z) = +zH0(z
2)G(−z),

and for the synthesis filters of the REC-2 method as

F
[2]
0 (z) = −z−1G1(z

2)H(−z)

F
[2]
1 (z) = +z−1G0(z

2)H(−z)

As a result, if the LP filters H(ejω) and G(ejω) are designed to have ph
and pg zeros at ω = π, then Ki(e

jω) and F [2](ejω) have pg and ph zeros at

ω = 0, respectively. This result can be observed in Figure 2.8 for the “9-7” case
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Figure 2.8: Frequency responses of the equivalent filters for the LP using the

biorthogonal filter pair “9-7”. (a) Analysis. (b) Synthesis, using the usual (REC-

1, denoted by superscript [1]) and the new (REC-2, denoted by superscript [2])

methods.

where ph = pg = 4. The number of zeros at ω = π of the filter determines the

maximum degree of polynomials that can be reproduced by that filter and is

referred to the accuracy number [160]. The number of zeros at ω = 0 indicates

the maximum degree of polynomial that are annihilated by the filters and is

referred to the number of vanishing moments. Therefore, the LP in 1-D with

high accuracy filters also has good compression properties for polynomial signals.

For example, for the LP with “9-7” filters, the output d is zero whenever the

input is a polynomial signal of degree up to three.

2.5.2 General Reconstruction

An interesting question is, what is the most general reconstruction for a given

LP? In the polyphase-domain, this is equivalent to determine the most general

form of the synthesis polyphase matrix S(z) such that it satisfies the following

perfect reconstruction (PR) condition [169, 175]

S(z)A(z) = I. (2.43)

Corresponding to a polyphase matrix S(z) satisfying the PR condition (2.43)

is a set of synthesis filters G and Fi for the FB in Figure 2.7 so the input signal

can be perfectly reconstructed from the output of the LP. One parameterization

for the left inverse of A(z) is given in [14] as

S(z) = S̃(z) + U(z)[I − A(z)S̃(z)] (2.44)

where S̃(z) is any particular left inverse of A, and U(z) is an |M|×(|M|+1) matrix
with bounded entries. In our case, a good choice for S̃(z) is the usual inverse
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S1(z) =
(
G(z) I − G(z)H(z)

)
. Let us split S(z) into two sub-matrices Sc(z)

and Sd(z) of size |M| × 1 and |M| × |M|, respectively: S(z) =
(
Sc(z) Sd(z)

)
;

and similarly for U(z): U(z) =
(
Uc(z) Ud(z)

)
. Then the reconstruction for the

LP using such S(z) can be written in polyphase-domain as

x̂(z) = Sc(z)C(z) + Sd(z)d(z)

Substituting S̃(z) = S1(z) into (2.44) and after some manipulations on the

block matrices, we obtain the following result.

Theorem 2.4 The most general form for the synthesis polyphase matrix pro-

viding perfect reconstruction for a LP can be written as S(z) =
(
Sc(z) Sd(z)

)
with

Sc(z) = G(z)− [Uc(z)− Ud(z)G(z)] [H(z)G(z)− 1],

Sd(z) = I− [Uc(z)− Ud(z)G(z)] H(z), (2.45)

and where Uc(z) and Ud(z)) are matrices of size |M| × 1 and |M| × |M|, respec-
tively, with bounded entries.

As a consequence of the above result, for a given LP, matrices Uc(z) and

Ud(z) can be optimized so that the resulting synthesis filters have certain de-

sired properties. We observe that if the LP uses biorthogonal filters satisfying

H(z)G(z) = 1, then from (2.45) we have Sc(z) = G(z). This means that all the

synthesis FB’s providing perfect reconstruction for the LP in this case necessar-

ily have G as the synthesis filter for the coarse channel.

Example 2.3 Let us consider the LP with Haar filters as in Example 2.2. In

this case, we have H0(z) = H1(z) = G0(z) = G1(z) = 1/
√
2. By applying

(2.45) and denoting Vi(z) = (−2Ui,1(z) + Ui,2(z) + Ui,3(z)) /(2
√
2), i = 1, 2,

any synthesis polyphase matrices S(z) providing PR can be written as

S(z) =

(
G0(z) 1 + V1(z) V1(z)

G1(z) V2(z) 1 + V2(z)

)
.

Thus, the most general form of synthesis filters for the Haar LP are G(z)

and

F0(z) = 1 + V (z),

F1(z) = z−1 + V (z),

with any stable filter V (z), where we denote V (z) = V1(z
2) + z−1V2(z

2). The

usual and pseudo inverses correspond to V (z) = 0 and V (z) = (−1 + z−1)/2,

respectively.
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2.6 Iterated Laplacian Pyramids and Derived Con-

tinuous Frames

2.6.1 Iterated Laplacian Pyramids

We now shift our focus to multilevel LP’s where the scheme in Figure 2.1 is

iterated on the coarse signal. The oversampled FB representation of the LP in

Figure 2.7 allows us to analyze the multilevel LP as an iterated FB. Using the

multirate identity, which says that filtering by G(z) followed by upsampling by

M is equivalent to upsampling by M followed by filtering by G(zM) [169, 175],

we have the following equivalent synthesis filters at the n-level of a multilevel

LP as

F
(n)
i (z) = Fi(z

Mn−1)
n−2∏
j=0

G(zM
j

), i = 0, . . . , |M| − 1. (2.46)

Next, consider what happens, when the synthesis filters in (2.41) and (2.42)

are substituted into (2.46). Figure 2.9 shows an example of frequency responses

for the equivalent filters. In the REC-1 method, we see that the synthesis

functions for the LP are all low frequency signals. Thus, the errors from highpass

subbands of a multilevel LP do not remain in these subbands but appear as

broadband noise in the reconstructed signal. In [150], this effect was noted as

the most serious disadvantage of the LP for coding applications. In the REC-2

method, the synthesis functions have similar frequency characteristics as the

analysis functions, which are essentially highpass filters. Clearly, reconstruction

using the REC-2 method remedies the previous mentioned problem of the LP.

The advantage of the new reconstruction method REC-2 over REC-1 is even

more prominent when the errors in the LP coefficients have non-zero mean. In

such case, with the REC-1 method, this non-zero mean propagates through all

the lowpass synthesis filters and appears in the reconstructed signal. By con-

trast, with the REC-2 method, the non-zero mean is canceled by the bandpass

synthesis filters. Figure 2.10 shows an example of this situation where the errors

in the LP coefficients are uniformly distributed in [0, 0.1].

2.6.2 Framelets from the Laplacian Pyramid

As iterated orthogonal filter banks lead to wavelets, a multilevel LP is associated

with a frame for continuous functions that is called wavelet frame or framelets

[139, 10]. We concentrate first on the orthogonal case. Using the multiresolution

analysis framework by Mallat and Meyer [101, 112, 103], it follows that, under

certain conditions, associated with the orthogonal lowpass filter G in the LP is

an orthonormal scaling function φ(t) ∈ L2(Rd) that generates a multiresolution

analysis (MRA) represented by a sequence of nested subspaces {Vj}j∈Z,

. . . V2 ⊂ V1 ⊂ V0 ⊂ V−1 ⊂ V−2 . . . (2.47)
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Figure 2.9: Frequency responses of the equivalent synthesis filters for the multi-

level LP with “9-7” filters. (a) Usual reconstruction method REC-1. Note that

all synthesis filters are lowpass. (b) New reconstruction method REC-2. Here, the

synthesis filters are bandpass and match with the frequency regions of corresponding

subbands, as expected. Consequently, REC-2 confines the influence of noise from

the LP only in these localized bands.

with

Closure


⋃

j∈Z

Vj


 = L2(Rd), (2.48)

⋂
j∈Z

Vj = {0} . (2.49)

The scaling function φ is specified from the filter G via the two-scale equa-

tion:

φ(t) = |M|1/2
∑
n∈Zd

g[n]φ(Mt− n) (2.50)

Denote

φj,n(t) = |M|−j/2φ(M−jt− n), j ∈ Z, n ∈ Zd. (2.51)

Then the family {φj,n}n∈Zd is an orthonormal basis of Vj for all j ∈ Z.

Define Wj to be the orthogonal complement of Vj in Vj−1:

Vj−1 = Vj ⊕Wj . (2.52)

Denote Fi (0 ≤ i ≤ |M| − 1) the equivalent synthesis filters for the new

reconstruction method REC-2, which in this case are simply the time-reversed

versions of the analysis filters Ki. Note that Fi are highpass filters. As in the
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(a) (b)

Figure 2.10: Reconstructions from the LP coefficients that are contaminated by

an additive uniform white noise in the interval [0, 0.1] (the original pixel values are

between 0 and 1). The LP is decomposed with 6 levels. (a) Usual reconstruction

method REC-1: SNR = 6.28 dB. (b) New reconstruction method REC-2: SNR =

17.42 dB.

wavelet filter bank, we associate to each of these filters a continuous function

ψ(i) where

ψ(i)(t) = |M|1/2
∑
n∈Zd

fi[n]φ(Mt− n). (2.53)

These functions also generate families of scaled and translated functions as

ψ
(i)
j,n = |M|−j/2ψ(i)(M−jt− n), j ∈ Z, n ∈ Zd. (2.54)

The relationship between these functions and the computational procedure

of the LP can be seen as follows. Suppose f is a function in Vj−1, then

f(t) =
∑
n∈Zd

〈f, φj−1,n〉︸ ︷︷ ︸
c(j−1)[n]

φj−1,n(t). (2.55)

Using the two-scale equations for φ and ψ, it is easy to verify that the inner

products of f with functions at the next scale can be written as

c(j)[n] = 〈f, φj,n〉 =
∑
k∈Zd

c(j−1)[k]g[k −Mn], (2.56)

d
(j)
i [n] = 〈f, ψ(i)j,n〉 =

∑
k∈Zd

c(j−1)[k]fi[k −Mn]. (2.57)

Therefore, {c(j)[n], d(j)[n]} is exactly the output of the LP given the input
sequence c(j−1)[n].
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Theorem 2.5 Suppose the LP with orthogonal filter generates an MRA. Then

for a scale j, {ψ(i)j,n}0≤i≤|M|−1, n∈Zd is a tight frame of Wj. For all scales,

{ψ(i)j,n}0≤i≤|M|−1, j∈Z, n∈Z2 is a tight frame of L2(Rd). In all cases, the frame

bounds equal to 1.

Proof: Let f be a function in Wj . This is equivalent to f ∈ Vj−1 and f ⊥ Vj .

Therefore, f can be expanded by an orthonormal basis of Vj−1 as in (2.55), and

c(j)[n] = 〈f, φj,n〉 = 0, for all n ∈ Zd.

Now suppose that f is analyzed via the LP as in (2.57). From Theorem 2.1,

with orthogonal filters, the LP provides a tight frame with frame bounds equal

1, or ||c(j−1)||2 = ||c(j)||2 +
∑|M|−1

i=0 ||d
(j)
i ||2.

Consequently,

||f ||2 = ||c(j−1)||2

=

|M|−1∑
i=0

||d(j)i ||2

=

|M|−1∑
i=0

∑
n∈Zd

|〈f, ψ(i)j,n〉|
2,

which proves the tight frame condition for Wj . The result for L
2(Rd) immedi-

ately follows since the MRA conditions implies that

L2(Rd) =
⊕
j∈Z

Wj ,

a decomposition of L2(Rd) into mutual orthogonal subspaces. 2

With this, the family {ψ(i)j,n}0≤i≤|M|−1, j∈Z, n∈Z2 is referred to as a tight

wavelet frame or tight framelets [139]. For more general filters, with a simi-

lar setup, the LP filter bank in Figure 2.7 leads to a pair of wavelet frames –

sometimes called bi-framelets [43] – generated by functions {ψ(i)} and {ψ̃(i)}

for the analysis and synthesis sides, respectively. Figure 2.11 shows the 1-D

bi-framelets derived from the iterated LP using “9-7” filters.

2.7 Concluding Remarks

The Laplacian pyramid was studied using the theory of frames and oversam-

pled filter banks. We proposed a new reconstruction algorithm for the LP

based on projection, which is the pseudo inverse in certain cases. The new

method presents an efficient filter bank, that leads to improvements over the

usual method for reconstruction in the presence of noise. With Theorem 2.1, 2.3,

and 2.4, we provided a complete characterization of tight frame, reconstruction

using projection, and general reconstruction for the LP, respectively. Finally,

we derived the continuous-domain frames associated with the iterated LP.



42 Chapter 2.

−6 −4 −2 0 2 4 6
−1

−0.5

0

0.5

1

1.5

t

ψ(0)

ψ(1)

(a) LP framelets

−6 −4 −2 0 2 4 6
−1

−0.5

0

0.5

1

1.5

t

ψ̃(0)

ψ̃(1)

(b) Reconstruction framelets

Figure 2.11: Bi-frame from the LP with the “9-7” filters. (a) Analysis framelets.

(b) Synthesis framelets using the new reconstruction method.

Our study suggests that it is useful to look at the LP from different per-

spectives: the standard view, the wavelet view and the oversampled filter bank

view. In the wavelet view, the difference signal of the LP can be seen as the

summation of the upsampled and filtered subband signals from a critical wavelet

filter bank. Equivalently, the difference signal is the summation of all projec-

tions of the input signal into wavelet subspaces at a given scale. Such a view

is reflected in the study of the LP with orthogonal and biorthogonal filters. In

the oversampled filter bank view, the difference signal in the LP is seen a com-

bination from multiple highpass channels in the filter bank. This view provides

an effective mechanism to investigate more general structures of the LP as well

as the behavior of multilevel LP’s.

For practical applications, we recommend the use of the symmetric biorthog-

onal filters with sufficient accuracy numbers, such as the “9-7” pair for the LP,

together with the new reconstruction method REC-2. The resulting LP ex-

hibits excellent compression property for piecewise smooth signals while having

a simple structure, even in higher dimensions.
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Iterated Directional Filter

Banks

3.1 Introduction

Filter banks (FB) are powerful tools in digital signal processing. On the prac-

tical side, they provide an efficient and structured method for decomposing

and analyzing discrete signals [169, 175]. On the theoretical side, filter banks

play an important role that, since certain constructions can lead to multireso-

lution bases in the continuous domain, with wavelets as the primary example

[42, 174, 160, 103].

While extensive research on FB and their related constructions for bases have

been carried out in the one-dimensional (1-D) case, there are limited results in

the multi-dimensional (M-D) case. On the one hand, the most common ap-

proach is to generalize 1-D systems to higher dimensions in a separable fashion.

In such a case, the theory carries over straightforwardly and the implementation

has low complexity. On the other hand, several studies [30, 93, 27] indicate that

interesting non-separable FB and bases can be constructed in M-D. However,

to our knowledge, in the past, non-separable methods have had been of limited

use in applications. The reason is the high complexity and the unclear practical

needs for such methods. In addition, the design issues for non-separable FB are

often much more complicated.

Recently, there has been an active research effort for a new and “true” two-

dimensional (2-D) image representations [173]. One of the major gaps to be filled

in the existing toolkits for image processing, is to explore the intrinsic geomet-

rical structure of typical images. Recent developments on new 2-D multiscale

representations beyond wavelets are the ridgelet and curvelet constructions by

Candès and Donoho [21, 20], and they indicate that directionality is a crucial

feature for an efficient image representation. This result is also supported by

past studies on the human visual system [44] as well as by recent studies to

0This chapter includes research conducted jointly with Martin Vetterli [58, 54].
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identify the sparse components of natural images [117]. These results point out

the directional characteristic of the response of visual cortical cells, which can

be interpreted as the result of providing a sparse code for natural scenes.

In the filter bank literature, Bamberger and Smith in 1992 [9] explored non-

separable FB in constructing a 2-D directional filter bank (DFB) that can be

maximally decimated while achieving perfect reconstruction. However the use

of the DFB so far has been limited to image analysis applications [7, 121], where

the emphasis was placed on obtaining good directional selectivity filter banks.

In this work, we are interested in using the DFB as a structured linear

expansion for images. In particular, we want to construct local and directional

bases using the DFB. In order to do that, it is necessary to study in detail the

behavior of the iterated DFB, including understanding of the equivalent filters

and the sampling matrices for the DFB channels. Furthermore, we have to

address the regularity issue, that ensures the convergence and smoothness of

the associated bases of the iterated DFB.

The chapter begins with a brief overview of multi-dimensional multirate

systems that sets up the background for later discussion. Section 3.3 discusses

the DFB in detail using a new construction that is simpler and more intuitive

than the original one given in [9]. This new construction allows us to give

explicit formulas for the equivalent sampling matrices and filters of each channel

in the iterated DFB. Section 3.4 studies the directional local bases generated

by the DFB. In particular, we examine in detail the “sinc” case, where the

basis functions are assumed to have ideal frequency response. This leads to

a connection between the iterated DFB and a local Radon transform in the

continuous domain. Finally, Section 3.5 concludes with some discussions and

an outlook.

Notations: Vectors are denoted by bold-face symbols, while matrices are

denoted by capital serif symbols. The z-transform of a multi-dimensional signal

is defined as

X(z) =
∑
n∈Zd

x[n]z−n,

where raising a d-dimensional complex vector z = (z0, . . . , zd−1)
T to a d-

dimensional integer vector n = (n0, . . . , nd−1)
T yields zn =

∏d−1
i=0 znii . The

quantity zM is defined to be a vector whose (k + 1)-st element is given by zmk ,

where mk is the (k + 1)-st column of the matrix M.

The discrete-time Fourier transform of a multi-dimensional signal is defined

as

X(ω) =
∑
n∈Zd

x[n]e−jω
Tn.

Notice that we use the same capital letter for both the z-transform and

Fourier transform of the signal.
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3.2 Multi-Dimensional Multirate Systems

We start by reviewing some of the concepts and results in multi-dimensional

multirate systems [172, 176, 93, 169, 175]. In particular, we examine in detail

the quincunx filter bank, since it serves as the core of directional filter banks.

3.2.1 Sampling in Multiple Dimensions

In multi-dimensional multirate systems, sampling operations are defined on lat-

tices. A lattice in d dimensions is represented by a d × d nonsingular integer

matrix M as

LAT (M) = {m :m = Mn, n ∈ Zd}, (3.1)

In other words, the indices of points belonging to the sub-lattice LAT (M)

are given as weighted integer combinations of the columns of M. The original

lattice is assumed to be Zd. For example, the following matrices are possi-

ble representations of the two-dimensional quincunx sub-lattice [172] shown in

Figure 3.1 in which one out of two points is retained:

Q0 =

(
1 −1
1 1

)
, Q1 =

(
1 1

−1 1

)
(3.2)

n0

n1

Figure 3.1: Quincunx sampling lattice.

For anM-fold downsampling the input x(n) and the output xd(n) are related

by [176, 169]

xd[n] = x[Mn]

Xd(ω) =
1

|det(M)|

∑
k∈N (MT )

X(M−Tω − 2πM−Tk). (3.3)

Here N (M) is defined as the set of integer vectors of the form Mt, where

t ∈ [0, 1)d. The number of elements in N (M) is equal to |det(M)|. The matrix

M−T = (MT )−1 generates the reciprocal lattice of LAT (M)[67], which consists

of points representing the replicated spectra in the frequency domain.
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For an M-fold upsampling, the input x(n) and the output xu(n) are related

by

xu[n] =

{
x[M−1n] if n ∈ LAT (M),

0 otherwise

Xu(ω) = X(MTω),

Xu(z) = X(zM). (3.4)

There are special cases when the sampling operations use unimodular in-

teger matrices (i.e. matrices with determinant equal to ±1). Sampling by a
unimodular integer matrix does not change the data rate but only rearranges

the input samples; thus it is referred to as a resampling operation. Furthermore

it can be shown [23] that

Proposition 3.1 LAT (A) = LAT (B) if and only if A = BE where E is a

unimodular integer matrix.

The following four basic unimodular matrices are used in the DFB in order

to provide the equivalence of the rotation operations:

R0 =

(
1 1

0 1

)
, R1 =

(
1 −1
0 1

)
,

R2 =

(
1 0

1 1

)
, R3 =

(
1 0

−1 1

)
. (3.5)

Figure 3.2 shows an example of a resampled image. Note that R0R1 =

R2R3 = I2 (here I2 denotes the 2 × 2 identity matrix) so that, for example,

upsampling by R0 is equivalent to downsampling by R1.

(a) (b)

Figure 3.2: Example of a resampled image. (a) The “cameraman” image. (b) The

“cameraman” image after being resampled by R0.

A useful tool in analyzing multi-dimensional multirate operations is the

Smith form that can diagonalize any integer matrix M into a product UDV

where U and V are unimodular integer matrices and D is an integer diagonal
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matrices [169]. The quincunx matrix in (3.2) can be expressed in the Smith

form as

Q0 = R1D0R2 = R2D1R1 and

Q1 = R0D0R3 = R3D1R0, (3.6)

where

D0 =

(
2 0

0 1

)
and D1 =

(
1 0

0 2

)
(3.7)

are two 2-D diagonal matrices that correspond to dyadic sampling in each di-

mension.

For the interchange of filtering and sampling, multirate identities [169, 175]

can be used. The identity for the analysis side of the filter bank is shown in

Figure 3.3; the one for the synthesis side can be inferred similarly. Downsam-

pling by M followed by filtering with a filter H(ω) is equivalent to filtering

with the filter H(MTω), which is obtained by upsampling H(ω) by M, before

downsampling.

MM ≡H(ω) H(MTω)

Figure 3.3: Multi-dimensional multirate identity for interchange of downsampling

and filtering.

3.2.2 Quincunx Filter Bank

Finally, let us look at the quincunx filter bank (QFB) shown in Figure 3.4. In

this chapter, we consider the quincunx sampling matrix Q to be either Q0 or Q1.

Those sampling matrices generate the same sub-lattice but the downsampling

operation rotates the input image by −45◦ and 45◦, respectively.

+x

H0

H1

G0

G1

y0

y1

x̂

Q

Q

Q

Q

Figure 3.4: Quincunx filter bank.

Using (3.3) and (3.4), the input output relationship of the QFB can be

expressed as

X̂(ω) =
1

2
[H0(ω)G0(ω) +H1(ω)G1(ω)]X(ω) +

1

2
[H0(ω + π)G0(ω) +H1(ω + π)G1(ω)]X(ω + π), (3.8)
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where π = (π, π)T .

Note that there is a strong resemblance between this expression and the one

for the two-channel filter bank in 1-D (see, for example, [175]). Thus, results in

the 1-D counterpart can be extended to the quincunx case. In particular, the

QFB provides a biorthogonal expansion if and only if it satisfies the following

perfect reconstruction conditions that ensure X̂(ω) = X(ω)

H0(ω)G0(ω) +H1(ω)G1(ω) = 2, (3.9)

H0(ω + π)G0(ω) +H1(ω + π)G1(ω) = 0. (3.10)

In addition, if the synthesis filters are the reversed versions of the analysis

filters then the QFB provides an orthogonal expansion. When the filters are

restricted to be finite impulse response (FIR), the perfect reconstruction condi-

tions imply that the synthesis filters are specified by the analysis filters (up to

a shift and scale factor)

G0(z) = z
kH1(−z), G1(z) = −zkH0(−z). (3.11)

The QFB can be used to split the frequency spectrum of the input signal

into a lowpass and a highpass channel using a diamond-shaped filter pair, or

into a horizontal and a vertical channel using a fan filter pair. Frequency char-

acteristics of these filters are shown in Figure 3.5. Note that we can obtain

one filter pair from the other by simply modulating the filters by π in either

the ω0 or ω1 frequency variable. From (3.9) and (3.10) it can be seen that if

the same modulation is applied to both analysis and synthesis filters then the

perfect reconstruction conditions are preserved. Thus the design problem for

the fan QFB boils down to the design of diamond-shaped QFB, and vice versa.
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Figure 3.5: Two possible support configurations for the filters in the QFB. Each

region represents the ideal frequency support of a filter in the pair. (a) Diamond-

shaped filter pair. (b) Fan filter pair.
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3.3 Directional Filter Banks

3.3.1 New Construction

In 1992, Bamberger and Smith [9] introduced a 2-D directional filter bank (DFB)

that can be maximally decimated while achieving perfect reconstruction. The

DFB is efficiently implemented via a l-level tree-structured decomposition that

leads to 2l subbands with wedge-shaped frequency partition as shown in Fig-

ure 3.6.

6

3210

5

6

7

3 2

5

74

1

4

0

ω0

ω1 (π, π)

(−π,−π)

Figure 3.6: Directional filter bank frequency partitioning where l = 3 and there

are 23 = 8 real wedge-shaped frequency bands.

The original construction of the DFB in [9] involves modulating the input

signal and using diamond-shaped filters. Furthermore, to obtain the desired

frequency partition, an involved tree expanding rule has to be followed (see [122,

121] for details). As a result, the frequency regions for the resulting subbands

do not follow a simple ordering as shown in Figure 3.6 based on the channel

indices.

To simplify the analysis of the iterated DFB, in the following we propose a

new formulation for the DFB that is based only on the QFB’s with fan filters.

The new DFB avoids the modulation of the input image and has a simpler rule

for expanding the decomposition tree. We focus on the analysis side of the

DFB since the synthesis is exactly symmetric. Intuitively, the wedge-shaped

frequency partition of the DFB is realized by an appropriate combination of

directional frequency splitting by the fan QFB’s and the “rotation” operations

done by resampling.

To obtain a four directional frequency partitioning, the first two decomposi-

tion levels of the DFB are given in Figure 3.7. We chose the sampling matrices

in the first and second level to be Q0 and Q1, respectively, so that the overall

sampling after two levels is Q0Q1 = 2 · I2, or downsampling by two in each
dimension.

Using the multirate identity in Figure 3.3, we can interchange the filters at

the second level in Figure 3.7 with the sampling matrix Q0. This interchange

transforms a fan filter into an equivalent filter with a quadrant frequency re-

sponse. Combining it with the fan filters at the first level results in the desired
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0

1

2

3

Q0

Q0

Q1

Q1

Q1

Q1

Figure 3.7: The first two levels of the DFB. At each level, QFB’s with fan filters

are used. The black regions represent the ideal frequency supports of the filters.

four directional subbands as shown in Figure 3.8. For later reference, we de-

note the equivalent filters corresponding to these four directional subbands as

Ki, i = 0, 1, 2, 3.
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2
1 0

3

2

10

3

ω0

ω1 (π, π)

(−π,−π)

(c)

Figure 3.8: The support configuration of the equivalent filters in the first two

levels of the DFB. (a) First level: fan filters. (b) Second level: quadrant filters.

(c) Combining the supports of the two levels. The equivalent filters corresponding

to those four directions are denoted by Ki, i = 0, 1, 2, 3.

From the third level, to achieve finer frequency partition, we use quincunx

filter banks together with resampling operations as shown in Figure 3.9. There

are four types of resampled QFB’s, corresponding to the four resampling ma-

trices in (3.5). Resampled QFB’s of type 0 and 1 are used in the first half of

DFB channels, which leads to subbands corresponding to basically horizontal

directions or directions between +45◦ and −45◦ (for example, the frequency
regions indexed by 0,1,2, and 3 in Figure 3.6). Type 2 and 3 are used in the

second half of the DFB channels and lead to subbands corresponding to the re-

maining directions. Starting from the third level, we construct the second half

of the DFB channels by simply swapping the two dimension n0 and n1 from

the corresponding channels in the first half. This applies to both the sampling

matrices (for example R0 becomes R2, Q0 becomes Q1) and the filters in the
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QFB’s. As a result, we only have to concentrate on the first half of the DFB

channels.

QFB RiRi

Figure 3.9: Quincunx filter banks with resampling operations that are used in the

DFB starting from the third level.

The analysis side of the resampled QFB’s of type 0 and 1 is detailed on the

left of Figure 3.10. Notice the ordering of frequency supports of the fan filters

in each QFB. The expansion rule from the third level in the first half of the

channels for the iterated DFB is as follow: at each node, the upper channel is

expanded using the type 0 filter bank while the lower channel is expanded using

the type 1 filter bank.

0

1

0

0

1

0

H0,0

H0,1

F0,0

F0,1

Q0

Q0

R0

P0

P0

≡

(a) Type 0

1

0

1

1

0

1

H1,0

H1,1

F1,0

F1,1

Q1

Q1

R1

P1

P1

≡

(b) Type 1

Figure 3.10: Left: The analysis side of the two resampled QFB’s that are used

from the third level in the first half channels of the DFB. Right: The equivalent filter

banks using parallelogram filters. The black regions represent the ideal frequency

supports of the filters.

Using the multirate identity in Figure 3.3, the analysis side of the resam-

pled QFB’s can be expressed equivalently by the filter banks on the right of

Figure 3.10 as being filtered by

Fi,j(ω) = Hi,j(R
T
i ω) (3.12)
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followed by downsampling by Pi = RiQi, for i, j ∈ {0, 1}. The filters Fi,j(ω)

obtained by resampling the fan filters Hi,j(ω) in (3.12) are called parallelogram

filters [9].

With the Smith form of the quincunx matrices in (3.6), we can simplify the

overall sampling matrices for the resampled QFB’s in Figure 3.10 as

P0 = R0Q0 = D0R2,

P1 = R1Q1 = D0R3. (3.13)

From this by applying Proposition 3.1, we have

LAT (P0) = LAT (P1) = LAT (D0),

which means that the sampling lattices for the resampled QFB’s of type 0 and 1

are equivalent to downsampling by 2 along the n0 dimension. (Remember that

we are only considering directions which are basically horizontal.)

We index the channels of a DFB with l-levels from top to bottom with the

integers from 0 to 2l−1, in that order. Associate with a channel in the first half
indexed by k (0 ≤ k < 2l−1) is a sequence of path types (where a type is either

0 or 1, see Figure 3.10) (t2, t3, . . . , tl) of the filter banks from the second level

leading to that channel. According to the expanding rule, (t2−1, t3−1, . . . , tl−1)
is the binary representation of k, or

k =
l∑

i=2

ti2
l−i. (3.14)

With this path type, using the equivalent filter banks in Figure 3.10, the

sequence of filtering and downsampling for the channel k can be written as

Kt2 − (↓ 2 · I2)− Ft2,t3 − (↓ Pt2)− . . . − Ftl−1,tl − (↓ Ptl−1). (3.15)

From this, using the multirate identity recursively, we can transform the

analysis side of the channel k (0 ≤ k < 2l−1) of an l-level DFB into a single

filtering with the equivalent filter H
(l)
k (ω) followed by downsampling by the

overall sampling matrix M
(l)
k , where

M
(l)
k = 2 ·

l−1∏
i=2

Pti , (3.16)

H
(l)
k (ω) = Kt2(ω)

l−1∏
i=2

Fti,ti+1((M
(i)
k )

Tω). (3.17)

In (3.17) the matrix M
(i)
k , (i = 2, . . . , l) is understood as the partial product of

the overall sampling matrix in (3.17).

3.3.2 Properties of the DFB

We offer a detailed analysis of the DFB. The following result provides the explicit

expressions for the overall sampling matrices in (3.17).
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Proposition 3.2 The overall sampling matrix for the channel k (0 ≤ k < 2l−1)

in a l-levels DFB, l ≥ 2, is

M
(l)
k = 2 ·Dl−2

0 R
sl(k)
3 , (3.18)

where sl(k) = 2 k/2! − 2l−2 + 1.

Proof: Substituting (3.13) into (3.17) and noting that R2 = R−13 , we have

M
(l)
k = 2 ·

l−1∏
i=2

(
D0R

2ti−1
3

)
= 2 · Dl−2

0 R
∑l−1
i=2(2ti−1)2

l−i−1

3 (3.19)

The second equality is obtained by swapping the positions of D0 and R3 in

the matrix product using the fact that

Rk
3D0 =

(
1 0

−k 1

)(
2 0

0 1

)
=

(
2 0

0 1

)(
1 0

−2k 1

)
= D0R

2k
3 , ∀k ∈ Z.

Using the relation between k and its sequence of path type (t2, t3, . . . , tl) in

(3.14) we can simplify the power of R3 in (3.19) as

sl(k) =
l−1∑
i=2

(2ti − 1)2
l−i−1

=
l−1∑
i=2

ti2
l−i −

l−1∑
i=2

2l−i−1

= 2 k/2! − 2l−2 + 1.

2

Remark 3.1 Let k′ =  k/2!, then we can write sl(2k
′) = sl(2k

′ + 1) = 2k′ −
2l−2 + 1, which agrees with the fact that the channels 2k′ and 2k′ + 1 share the

same sampling matrix since they attach to the two channels of a QFB in the

last level. Because 0 ≤ k′ < 2l−2, sl(k) is odd and |sl(k)| < 2l−2.

Using the above result together with Proposition 3.1, we obtain an important

property of the DFB in which the sampling lattice of its subbands (when l ≥ 2)

are diagonal or separable.

Corollary 3.1 The overall sampling lattices of a DFB with l-levels, l ≥ 2, is

equal to LAT (2 · Dl−2
0 ) for the first half channels and LAT (2 · Dl−2

1 ) for the

second half channels.

We now ready to demonstrate that the DFB constructed as in Section 3.3.1

indeed splits the 2-D spectrum into subbands with wedge-shaped frequency

partitions as shown in Figure 3.6. Denote these wedge-shaped frequency regions
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by R
(l)
k , (0 ≤ k < 2l). Specifically, for 0 ≤ k < 2l−1, R

(l)
k is the region

inside the basic spectrum square [−pi,+π]2 that is sandwiched between two

lines ω0 = (k − 2l−2)ω1/2l−2 and ω0 = (k + 1− 2l−2)ω1/2l−2; whereas R
(l)

k+2l−1

is the region that is sandwiched between two lines ω1 = (k − 2l−2)ω0/2l−2 and

ω1 = (k + 1− 2l−2)ω0/2l−2.

Theorem 3.1 Suppose that a tree structured DFB with l-levels uses QFB’s with

ideal fan filters. Then the equivalent filter H
(l)
k (ω) for the channel k, 0 ≤ k < 2l,

has ideal frequency response in the region R
(l)
k . This mean, the first half of the

channels of the DFB scan the basically horizontal directions between 45◦ and

−45◦, while the second half of the channels scan the basically vertical directions

between 45◦ and 135◦.

Proof: We will prove this by induction. The cases l = 1 and l = 2 were

already shown in Section 3.3.1 for the first two decomposition levels of the

DFB. Suppose that the equivalent filters H
(l)
k (ω), 0 ≤ k < 2l−1 for a l-levels

DFB has the desired frequency responses. The (l+1)-levels DFB is obtained by

appending to each channel of a l-levels DFB a QFB according to the expanding

rule. We consider two cases where k is even and odd.

(i) k = 2k′: Then a type 0 resampled QFB is appended to the channel k in the

level l. This leads to two channels in the level l + 1, indexed by 4k′ and

4k′ + 1, with the following equivalent filters:

H
(l+1)
4k′ (ω) = H

(l)
2k′(ω) F0,0((M

(l)
2k′)

Tω)

H
(l+1)
4k′+1(ω) = H

(l)
2k′(ω) F0,1((M

(l)
2k′)

Tω) (3.20)

(ii) k = 2k′ + 1: Then a type 1 resampled QFB is appended to the channel k

in the level l. This leads to two channels in the level l + 1, indexed by

4k′ + 2 and 4k′ + 3, with the following equivalent filters:

H
(l+1)
4k′+2(ω) = H

(l)
2k′+1(ω) F1,0((M

(l)
2k′+1)

Tω)

H
(l+1)
4k′+3(ω) = H

(l)
2k′+1(ω) F1,1((M

(l)
2k′+1)

Tω) (3.21)

Using the expressions for M
(l)
k in (3.18) it can be verified that in (3.20) and

(3.21), upsampling by M
(l)
k effectively squeezes and shears the basic spectrum of

the parallelogram filters Fi,j(ω) (which are given in Figure 3.10) so that the copy

that overlaps with the frequency support of H
(l)
k (ω) is illustrated in Figure 3.11.

Clearly, this divides the frequency support of H
(l)
k (ω) into finer slices. Thus,

the equivalent filters H
(l+1)
k (ω) at the next level also has the desired frequency

responses.

2

In practice, filters with non-ideal frequency responses are used. Nevertheless,

the upsampling operation by M
(l)
k applied on the filters Fi,j shears their impulse
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Figure 3.11: Illustration on how the frequency is divided into finer regions by the

next decomposition level in the DFB. The region inside the thick lines represents the

ideal frequency support of the equivalent filter after l levels. The regions inside the

thin lines are copies of the basic spectrum of the upsampled parallelogram filters.

responses to different directions, which in turn produces equivalent filters that

have linear supports in space and span all directions. Figure 3.12 demonstrates

this fact by showing the impulse responses of 32 equivalent filters for the first

half channels of a 6-levels DFB that uses Haar filters.

Figure 3.12: Impulse responses of 32 equivalent filters for the first half channels

of a 6-levels DFB that use the Haar filters. Black and gray squares correspond to

+1 and −1, respectively.

The original DFB [9] was known to generate visually distorted subband im-

ages, as the modulation and resampling operations introduce “frequency scram-

bling”. In [8], the modulation problem is remedied by using the equivalent and

modulated filters at each level of the DFB. For the resampling problem, Park

et al. [122] propose the use of backsampling operations at the end of the anal-

ysis side of the DFB so that the overall sampling matrices for all channels are

diagonal. Their back sampling matrices have to be computed recursively along

the branches of the expanding DFB tree.

Our new formulation for the DFB already solves the modulation problem.

To correct the resampling problem, the expressions for the overall sampling

matrices in (3.18) leads to an explicit formula for the backsampling matrices in
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our construction as follows

B
(l)
k = R

−sl(k)
3 =

(
1 0

sl(k) 1

)
. (3.22)

Again, these matrix are for the first half channels with 0 ≤ k < 2l−1; the

ones for the second half channels are obtained by transposing these matrices.

By appending a downsampling by B
(l)
k at the end of the analysis side of the

channel k in the DFB, it becomes equivalent to filtering by H
(l)
k (z) followed by

downsampling by S
(l)
k = M

(l)
k B

(l)
k , where

S
(l)
k =

{
diag(2l−1, 2) for 0 ≤ k < 2l−1

diag(2, 2l−1) for 2l−1 ≤ k < 2l
(3.23)

Since B
(l)
k are unimodular matrices, sampling by these matrices only rear-

ranges the coefficients in the DFB subbands, which enhances its visualization.

Figure 3.13 shows an example of the DFB. The test image is the synthesis “zone

plate” image cos(r2) [86] where the directional frequencies match with the spa-

tial locations. The subband images from the DFB clearly show the correct

directional frequency partitioning that was mentioned.

(a) (b)

Figure 3.13: Example of the DFB. (a) The “zone plate” image. (b) The “zone

plate” image decomposed by a DFB with 4 levels that leads to 16 subbands. The

QFB’s use the biorthogonal FIR quincunx filters designed by Phoong et al. [129]

with support sizes equal to 23 × 23 and 45 × 45.

3.3.3 Filter Design

The following proposition relates the conditions for the DFB to be biorthogonal

or orthogonal with respect to its kernel QFB’s.
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Proposition 3.3 The DFB provides a biorthogonal or orthogonal expansion if

and only if its kernel QFB’s are biorthogonal or orthogonal, respectively.

Proof: Since the resampling operations in the DFB are invertible, the DFB is

a perfect reconstruction filter bank if and only if the QFB’s used at each level

are perfect reconstruction. This proves the biorthogonal condition.

The orthogonality additionally requires the synthesis filters to be the time-

reversed version of the analysis filters. By matching the analysis equivalent

filters of the DFB in (3.17) with the synthesis equivalent filters (which are

symmetrical) it is easy to see that the DFB is orthogonal if and only if its

QFB’s is. 2

As a result, the design issue for the DFB essentially amounts to the design

of QFB’s with the desired properties. In particular, we only have to design one

QFB with diamond-shaped filters and modulate the filters to obtain the QFB’s

with fan filters for the use in the DFB.

For synthesizing biorthogonal quincunx systems, there are two main ap-

proaches [99]. In the first approach [3], the McClellan transformation [109] is

used to map 1-D biorthogonal two channel filter banks to 2-D biorthogonal so-

lutions. The second approach is based on the polyphase mapping and leads to

efficient filter banks that uses the ladder structure where all the filtering op-

erations are separable [129]. For orthogonal systems, one can use the cascade

structures [93] or design directly in the time domain, possible with the help of

Gröbner bases [120, 97].

3.3.4 Adaptive DFB’s

The DFB considered so far employs a full tree decomposition for a particular

number of levels. Finer directional selectivity requires larger number of decom-

position levels, which in turn implies sparser sampling lattices. Consequently,

there is a trade-off between the directional resolution and the partial resolution

in the DFB. Thus for some applications, we propose the use of adaptive DFB’s,

in which the decisions of splitting each node on the filter bank tree depend on

the input signals. This is similar to the wavelet packets approach [35, 134].

The potential of this scheme that is it can offers a rich menu of discrete bases,

from which the “best” one can be chosen (“best” according to a particular cri-

terion). Moreover, as with wavelet packets, the best basis can be found via a

fast dynamic programming algorithm.

3.4 Directional Local Bases

3.4.1 Discrete Series Expansion from the DFB

The results from Section 3.3.2 prompt us to consider a multi-channel direc-

tional filter bank (MDFB) (see Figure 3.14) which results from transforming an
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l-levels DFB into 2l channels with equivalent filters and diagonal sampling ma-

trices given in (3.23). Obviously, all the channels in the MDFB have the same

sampling density, which is equal to the number of channels, as det(Sk) = 2l,

for k = 0, . . . , 2l − 1. The multi-channel view allows us to study in depth the

structure of the basis generated by a DFB. Unless stated otherwise, in this sec-

tion we consider the number levels l of the DFB to be fixed, l ≥ 2, and thus the

superscript (l) can be omitted.

+x

H0

H1

H2l−1

G0

G1

G2l−1

S0S0

S1S1

S2l−1S2l−1

y0

y1

y2l−1

x̂

Figure 3.14: The multi-channel view of a l-levels DFB that has 2l channels with

equivalent filters and diagonal sampling matrices.

We recall that the frequency region associated to the filtersHk(ω) andGk(ω)

in Figure 3.14 is Rk that was defined just before Theorem 3.1. A fundamental

property of the MDFB is that shifting the frequency region Rk on the reciprocal

lattice of Sk tiles the frequency plane, as illustrated in Figure 3.15. More spe-

cially, denoting δR the characteristic function of the region R, i.e. δR(ω) equals

to 1 if ω ∈ R and 0 otherwise, then it is easy to verify that∑
m∈Z2

δRk(ω − 2πS−Tk m) = 1 for all k = 0, . . . , 2l − 1; ω ∈ R2. (3.24)

Suppose that the filter bank in Figure 3.14 is perfect reconstruction, then

an arbitrary signal x[n] in l2(Z2) can be written as

x[n] =
2l−1∑
k=0

∑
m∈Z2

yk[m]gk[n− Skm], (3.25)

where

yk[m] = 〈x, hk[Skm− ·]〉. (3.26)

Moreover, the expansion in (3.25) is unique. Therefore, the family

{gk[n− Skm]}0≤k<2l,m∈Z2 (3.27)

which is obtained by translating the impulse responses of the synthesis filters Gk

over the sampling lattices Sk, is a basis for discrete signals in l2(Z2). The family

{hk[Skm− n]}0≤k<2l,m∈Z2 obtained similarly from the time-reversed version
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ω0

ω1

π

π

Figure 3.15: Illustration of the tiling property of the frequency regions for the

filters in the multi-channel DFB. Shifting the ideal frequency region (in black) on

the reciprocal lattice (represented by the black points) would tile the frequency

plane.

of the analysis filters is called the dual basis. By substituting x[n] = gk[n−Skm]

into (3.25) and invoking the uniqueness of the expansion we obtain the following

biorthogonal relation between these two bases:

〈gk[· − Skm], hk′ [Sk′m
′ − ·]〉 = δ[k − k′]δ[m−m′]. (3.28)

The expansion (3.25) becomes orthogonal when gk[n − Skm] = hk[Skm −

n], which means the synthesis filters are time-reversed version of the anal-

ysis filters. The name directional local basis is justified for the family

{gk[n− Skm]}0≤k<2l,m∈Z2 since the filter Gk exhibits directional property and

the signal gk[n− Sk] is locally supported around Skm. In this basis, k and m

are the direction and location indices, respectively.

3.4.2 Two Extreme Cases: Polyphase and Sinc Expansions

We will illustrate in this section how the series expansion is realized in the

MDFB with two representative cases: one uses the “delay” filters and the other

one uses “sinc” filters. The first case also demonstrates how the MDFB can be

decomposed into polyphase components, which is not so obvious since the filter

bank uses a mixture of two sampling lattices. The second case shows how the

spectrum is split by the MDFB in the ideal case.

The key idea for the polyphase decomposition of the MDFB is to assign

the two sampling matrices Sk, 0 ≤ k < 2l−1, and Sk, 2l−1 ≤ k < 2l, to the

two separate cosets of the quincunx lattice. An example is given in Figure 3.16

where l = 3 and thus there are 8 polyphase components. Formally, we define

the representative point for the polyphase component k as

pk =

{
(k, k)T if 0 ≤ k < 2l−1,

(k + 1− 2l−1, k − 2l−1)T if 2l−1 ≤ k < 2l.
(3.29)
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Figure 3.16: Example of polyphase decomposition in the MDFB where l = 3 and

thus there are 8 polyphase components. Points indexed by k (0 ≤ k < 8) form the

k-th polyphase component and they live in a sub-lattice represented by S
(3)
k . Notice

that points of same color live in a quincunx sub-lattice.

Lemma 3.1 For each n ∈ Z2, there exists a unique set pair (k,m) where

k ∈
{
0, . . . , 2l − 1

}
, m ∈ Z2 such that

n = pk + Skm (3.30)

Proof: We will prove this by uniquely constructing (k,m) given n. If 0 ≤ k <

2l−1, equation (3.30) becomes{
n0 = k + 2l−1m0,

n1 = k + 2m1.

This requires n0 + n1 to be even. In this case, k and m0 are determined as the

remainder and the quotient of dividing n0 by 2
l−1, respectively; while m1 =

(n1 − k)/2, which is an integer since n0 + n1 is even and n0 = k (mod 2).

Similarly, if 2l−1 ≤ k < 2l, equation (3.30) becomes{
n0 = k + 1− 2l−1 + 2m0,

n1 = k − 2l−1 + 2l−1m1.

This requires n0 + n1 to be odd and determines k − 2l−1 and m1 to be

the remainder and the quotient of dividing n1 by 2
l−1, respectively; while

m0 = (n0 − k − 1 + 2l−1)/2. 2

As a result, when the filters Gk are simply delays Gk(z) = z
−pk , the basis

in (3.27) can be written as {δ[n− pk − Skm]}0≤k<2l,m∈Z2 , which is exactly

the same as the standard basis for l2(Z2). The MDFB with such filters imple-

ments a polyphase transform that decompose a signal x[n] into 2l sub-signals

{xk[n]}k=0,... ,2l−1, where

xk[n] = x[pk + Skn]. (3.31)
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We now turn to the case where the filters in the MDFB have ideal frequency

response. Theorem 3.1 shows that such filters are obtained by iterating the

DFB where QFB’s with ideal fan filters are used at each level. We refer to this

as the “sinc” case for the DFB. Consider

Gk(ω) = 2
l/2 · ej〈ω,pk〉 · δRk(ω). (3.32)

The first term for Gk is a scale factor so that ‖gk[n]‖ = 1. The second term

corresponds to a shift so that the impulse response gk[n] is centered at pk. This

shift is important for the completeness of the basis in l2(Z2). Taking the inverse

discrete-time Fourier transform of (3.32) yields

gk[n− pk] =
2l/2

(2π)2

∫
Rk

ejω
Tndω

For 0 ≤ k < 2l−1, the region Rk can be specified such that the range of

ω0 depends linearly on ω1. With this, after some manipulations we obtain an

explicit expression for the impulse response of the ideal MDFB filters as

gk[n− pk] =
2l/2

(2π)2

∫ π

0

dω1

∫ (k+1−2l−2)ω1/2l−2
(k−2l−2)ω1/2l−2

dω0

(
ejω

Tn + e−jω
Tn

)

=
2l/2

2πn0

[
ψ

((
k + 1

2l−2
− 1

)
n0 + n1

)

− ψ

((
k

2l−2
− 1

)
n0 + n1

)]
(3.33)

where

ψ(x) =
1− cos(πx)

πx
(3.34)

which behaves similarly to a 1-D sinc function. Therefore, gk[n] can be seen as

the samples of the difference between two ridge functions with sinc-like ridge

profiles, which are oriented around the line n1 = −(k/2l−2− 1)n0, and damped

by 1/n0. For 2
l−1 ≤ k < 2l, the impulse responses are obtained similarly by

swapping the two dimensions n0 and n1.

Proposition 3.4 With the filters Gk given in (3.32), the family (3.27) is an

orthonormal basis for signals from l2(Z2).

Proof: This result can be obtained by applying Proposition 3.3 to the “sinc”

case. However, we will prove it directly by demonstrating orthogonality of the

family (3.27) as well as completeness. First, the orthogonal condition requires

that

〈gk(· − Skm), gk′(· − Sk′m
′)〉 = δ[k − k′]δ[m−m′]. (3.35)

Since the frequency supports of the filters Gk do not overlap, (3.35) immedi-

ately holds for different filters. When k = k′, the left hand side of (3.35) can be
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seen as an Sk-fold downsampling of the autocorrelation of gk[n]. In the Fourier

domain, the autocorrelation of gk[n] equals to |Gk(ω)|2 = 2lδRk(ω). Therefore

using (3.3), our problem reduces to∑
m∈N (STk )

δRk(S
−T
k ω − 2πS−Tk m)) = 1,

which comes from (3.24) after a change of variable, and thus orthogonality is

proven.

For completeness, suppose it is not true, that is, suppose that there exists a

signal x[n] with ‖x‖ > 0, such that

〈x, gk[· − Skm]〉 = 0 for all k,m. (3.36)

For a fixed k, the left side of (3.36) can be interpreted as x[n] convolved

with gk[−n], followed by a downsampling by Sk. So using (3.3) we can write

(3.36) equivalently in the Fourier domain as∑
m∈N (STk )

X(ω − 2πS−Tk m) Gk(−ω − 2πS−Tk m) = 0, ∀ω ∈ R2.

Since the support of Gk(ω) is non-overlapping with its alias due to down-

sampling by Si as is demonstrated in (3.24), the last equation implies

X(ω) = 0, ∀ω ∈ Rk. Combining these we have X(ω) = 0, ∀ω ∈ [−π, π]2 or

‖x‖ = 0. This contradicts the assumption that ‖x‖ > 0, and thus the set is

complete. 2

In summary, in this section we have examined two extreme bases that can be

constructed from the MDFB: one has perfect localization in time domain and

the other perfect localization in the frequency domain. More interesting cases

exists between these extremes using better filters.

3.4.3 Bases in the Continuous Domain

Under certain regularity conditions, the discrete bases generated by the DFB will

leads to, through iteration of the number of levels l, to bases in the continuous

domain. We will demonstrate this through the “sinc” case. For each filter given

in (3.32) define a continuous function θ
(l)
k (t) by interpolating the sequence g

(l)
k [n]

on a grid of intervals 2−l × 2−l with a normalized 2-D sinc interpolator (so it is
of norm 1)

φ(l)(t) = 2l
sin(2lπt0)

2lπt0

sin(2lπt1)

2lπt1
. (3.37)

The Fourier transform of θ
(l)
k (t) can be written as

Θ
(l)
k (ω) = 2

−lδ{[−2lπ, 2lπ]2}G
(l)
k [2

lω].
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Hence, for 0 ≤ k < 2l−1 (the case where 2l−1 ≤ k < 2l follows similarly by

swapping the two dimensions), Θ
(l)
k (ω) is an indicator function for the region

inside the square [−2lπ, 2lπ]2 and is sandwiched between two lines ω0 = (k −
2l−2)ω1/2

l−2 and ω0 = (k + 1 − 2l−2)ω1/2
l−2. Similarly to (3.33), taking the

inverse Fourier transform yields

θ
(l)
k (t− 2

−lp
(l)
k ) = θ(l)(t0, t1 − (2

−(l−2)k − 1)t0). (3.38)

where,

θ(l)(t) =
2l/2

2πt0
[ψ(4t0 + 2

lt1)− ψ(2lt1)]. (3.39)

In this case, functions corresponding to different directions (i.e. different

values of k) are obtained by “shearing” a prototype function. Figure 3.17 shows

a 3-D plot of the function θ(l)(t). We observe a main ridge along the line t1 = 0.
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Figure 3.17: Prototype function θ(3)(t) for the continuous bases resulting from a

“sinc” DFB with l = 3. To enhance the visualization, only the region t ∈ [−1, 1]2

is shown. Outside this region, the function decays rapidly.

Denote BL([−2lπ, 2lπ]2) the space of two-dimensional real and bandlimited
functions to 2lπ (that means functions whose Fourier transform vanish outside

the square [−2lπ, 2lπ]2). Using the ideal frequency characteristic of the func-
tions θ

(l)
k (t), in exactly the same way as the proof for Proposition 3.4, we obtain

the following result.

Proposition 3.5 The family{
θ
(l)
k (t− 2

−lS
(l)
k m)

}
0≤k<2l,m∈Z2

is an orthonormal basis for BL([−2lπ, 2lπ]2).

Therefore a bandlimited function f(t) ∈ BL([−2lπ, 2lπ]2) can be expressed
by series expansion

f(t) =
2l−1∑
k=0

∑
m∈Z2

〈f, θ(l)k (· − 2
−lS

(l)
k m)〉 θ

(l)
k (t− 2

−lS
(l)
k m), (3.40)
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which can be seen as an alternative to the traditional sampling scheme by the

isometric tensor-product function in (3.37).

Now consider the situation when l goes to infinity. The basis in Proposi-

tion 3.5 then becomes a basis for R2. The prototype function θ(l)(t) can be seen

by “squeezing” the function in Figure 3.17 along the axis t1. Formally, since

|ψ(x)| = |
1− cos(πx)

πx
| ≤

2

π|x|
, for x �= 0,

it follows that for t1 �= 0

|2l/2ψ(2lt1)| ≤
2

π2l/2|t1|

→ 0 as l → ∞.

Applying this to (3.39) gives

lim
l→∞

θ(l)(t) = 0, for t1 �= 0.

While along the line t1 = 0,

θ(l)(t0, 0) = 2
l/2ψ(4t0)

2πt0

With this, we see that the expansion (3.40) resembles a local Radon trans-

form for function in R2.

3.5 Discussion

The directional filter bank studied in this chapter is a powerful mechanism for

decomposing images into local and directional expansions. The filter bank is

implemented efficiently with a tree structure. Especially when the quincunx

filters can be realized by separable filters in the polyphase domain, the DFB

has the same complexity as the 2-D wavelet packet transform. In the next

chapter, the DFB is combined with a multiscale decomposition that leads to an

efficient representation for piecewise smooth functions resembling images.

Since all the equivalent filters in the DFB are derived from the filters in the

kernel QFB, an interesting and important question is what condition should one

imposes on the filters of the QFB so that iterations in DFB converge to smooth

or regular functions? In general, the regularity issue for 2-D iterated filter banks

is much more involved than in the 1-D case. For directional filter banks, the

problem is even more complicated since iterations are carried out in all branches.

We have demonstrated the convergent of the “sinc” case to regular functions

for all branches, see Figure 3.17. Figure 3.18 shows a preliminary result on the

search for compactly supported regular filters for the DFB.
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Figure 3.18: Examples of different regularity behaviors in the iterated directional

filter banks. On the left is a known regular filter for the iterated quincunx filter

bank [30] but fails in the DFB. On the right is a newly designed filter which is the

shortest orthogonal filter that converges to a regular function in one branch of the

iterated DFB.





Chapter 4

Curvelets and Filter Banks

4.1 Motivation

In this chapter, we focus on the construction of efficient linear expansions for

two-dimensional functions which are smooth away from discontinuities across

smooth curves. Such functions resemble natural images where discontinuities

are generated by edges – referred to the points in the image where there is a

sharp contrast in the intensity, whereas edges are often gathered along smooth

contours which are created by (typically) smooth boundaries of physical objects.

Efficiency of a linear expansion means that the coefficients for functions belong-

ing to the class of interest are sparse, and thus it implies efficient representations

for such functions using a non-linear approximation (NLA) scheme.

Over the last decade, wavelets have had a growing impact on signal process-

ing, mainly due to their good NLA performance for piecewise smooth functions

in one dimension (1-D). Unfortunately, this is not the case in two dimensions (2-

D). In essence, wavelets are good at catching point or zero-dimensional disconti-

nuities, but as already mentioned, two-dimensional piecewise smooth functions

resembling images have one-dimensional discontinuities. Intuitively, wavelets

in 2-D obtained by a tensor-product of one dimensional wavelets will be good

at isolating the discontinuity at an edge point, but will not see the smoothness

along the contour. This indicates that more powerful representations are needed

in higher dimensions.

This fact has a direct impact on the performance of wavelets in many ap-

plications. As an example, for the image denoising problem, state-of-the-art

techniques are based on thresholding of wavelet coefficients [61, 103]. While

being simple, these methods work very effectively, mainly due to the property

of the wavelet transform that most image information is contained in a small

number of significant coefficients – around the locations of singularities or im-

age edges. However, since wavelets fail to represent efficiently singularities along

lines or curves, wavelet-based techniques fail to explore the geometrical struc-

ture that is typical in smooth edges of images. Therefore, new denoising schemes

0This chapter includes research conducted jointly with Martin Vetterli [58, 54].
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which are based on “true” two-dimensional transforms are expected to improve

the performance over the current wavelet-based methods.

Recently, Candes and Donoho [20] pioneered a new system of representation,

named curvelet, that was shown to achieve optimal approximation behavior in a

certain sense for 2-D piecewise smooth functions in R2 where the discontinuity

curve is a C2 function.1 More specifically, anM -term non-linear approximation

for such piecewise smooth functions using curvelets has L2 square error decaying

like O(M−2), and this is the best rate that can be achieved by a large class of

approximation processes [62]. An attractive property of the curvelet system is

that such correct approximation behavior is simply obtained via thresholding a

fixed transform.

Back to the image denoising problem, there are other approaches that explore

the geometrical regularity of edges, for example by chaining adjacent wavelet

coefficients and then thresholding them over these contours [104, 105]. However,

the curvelet transform approach, with its “built-in” geometrical structure, pro-

vide a more direct way – by simply thresholding significant curvelet coefficients

– in denoising images with smooth edges.

The original construction of the curvelet transform [20] is based on window-

ing the subband images into blocks and applying the ridgelet transform [19, 21]

on these blocks. We will show that this approach poses several problems when

one tries to implement the curvelet transform for discrete images and uses it in

applications. Furthermore, as the curvelet transform was originally defined in

the frequency domain, it is not clear how curvelets are sampled in the spatial

domain. In fact, in [64], one of the fundamental research challenges for curvelets

stated as: “is there a spatial domain scheme for refinement which, at each gen-

eration doubles the spatial resolution as well as the angular resolution?”. This

is what we will try to explore in the following.

One of the main subject of this chapter is that we establish a link between

curvelets and filter banks and propose a new filter bank structure, named pyra-

midal directional filter banks (PDFB), that can achieve a curvelet-like image

decomposition. As as a result, the PDFB provides an effective algorithmic

implementation of the curvelet transform for digital images. Moreover, the pro-

posed filter bank defines a new sampling pattern for the curvelet expansion in

the spatial domain, which is entirely specified on rectangular grids. The PDFB

uses appropriate combination of the Laplacian pyramid and the directional filter

banks that were studied in Chapter 2 and Chapter 3, respectively.

4.2 Curvelets Background

4.2.1 Original Construction

In a nutshell, the curvelet transform [22] is obtained by filtering and then apply-

ing a windowed ridgelet transform on each bandpass image. In R2, ridgelets are

constant along ridge lines x1 cos(θ) + x2 sin(θ) = const and are wavelets (with

1Cp is the space of functions that are bounded and p-times continuously differentiable.
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a scale s) along the orthogonal direction. In frequency domain, such ridgelet

function is essentially localized in the corona |ω| ∈ [2s, 2s+1] and around the

angle θ. The ridgelet transform to provide a sparse representation for smooth

objects with straight edges. A brief review of the ridgelet transform is given in

Section 5.2.

To sum up, the curvelet decomposition composes of the following steps [22]:

1. Subband decomposition of the object into a sequence of subbands.

2. Windowing each subband into blocks of appropriate size, depending on its

center frequency.

3. Applying the ridgelet transform on these blocks.

The motivation behind the curvelet transform is that by smooth windowing,

segments of smooth curves would look straight in subimages, hence they can

be well captured by a local ridgelet transform. Subband decomposition is used

to keep the number of ridgelets at multiple scales under control by the fact

that ridgelets of a given scale live in a certain subband. The window’s size and

subband frequency are coordinated such that curvelets have support obeying

the key anisotropy scaling relation for curves [22]:

width ∝ length2. (4.1)

The scaling relation (4.1) for curves is illustrated in Figure 4.1. Suppose

that we want to analyze a C2 curve at a given point. We define the coordinate

system such that the v-axis is a tangent line and the u-axis is on the normal

vector of the curve at the analyzed point. Then the curve can be parameterized

as u = u(v). Since u(v) ∈ C2, the Taylor series expansion gives

u(v) ≈ u(0) + u′(0)v +
u′′(0)

2
v2, when v ≈ 0. (4.2)

Furthermore, because the v-axis is tangent to the curve at the point (0, 0),

it follows that u(0) = u′(0) = 0 and u′′(0) = κ which is the curvature of the

curve at that point. Thus we can rewrite (4.2) as

u(v) ≈
κ

2
v2, when v ≈ 0. (4.3)

Next suppose that the underlying 2-D function that have discontinuities

along the curve u = u(v) is locally approximated by a basis function with

rectangular support of size l×w, then it follows that w = u(l/2) (see Figure 4.1).

Using (4.3), we obtain the following relation between the width w and the length

l of the basis function

w ≈
κ

8
l2. (4.4)

Consequently, in a correct multiscale representation for curve discontinuities,

when the scale becomes finer, the width of the basis functions should be refined

at a quadric speed of the length. Curvelets provide such a representation.
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u
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u = u(v)

Figure 4.1: The anisotropy scaling relation for curves. The rectangular supports of

the basis functions that fit a curve exhibit the quadric relation: width ∝ length2.

There are two important remarks at this point. First, if the discontinuity

curves are only assumed to be in C2, then approximating them with linear

structures with rectangular support, shown in Figure 4.1 is the best that can

be done. This is the reason why curvelets provide the optimal approximation

rate for such 2-D piecewise smooth functions. However, when the discontinuity

curves are known to be more regular, the curvelet representation is no longer op-

timal. For example with C3 curves, an expansion with elements having parabolic

shapes fitted along the curves can provide a non-linear approximation rate of

O(M−3). Secondly, the curve scaling relation (4.1) has to be interpreted lo-

cally since in (4.4) the leading constant depends on the local curvature of the

discontinuity curve.

4.2.2 Non-linear Approximation Behaviors

We next sketch illustrations on the non-linear approximation behaviors of differ-

ent representation systems. Rather than being rigorous, the following discussion

aims at providing an intuition that can serve as a guideline for our construction

of the pyramidal directional filter banks latter. For a complete and rigorous

discussion, we refer to [62].

Consider a simple “Horizon” mode of piecewise smooth functions f(x1, x2)

defined on the unit square [0, 1]2:

f(x1, x2) = 1{x2≥c(x1)} 0 ≤ x1, x2 ≤ 1,

where the boundary of two pieces (or the contour) c(x1) is in Cp and has fi-

nite length inside the unit square. Clearly, such 2-D function has complexity

equivalent to a 1-D function, namely its contour c(x1). The reason for studying

this model is that the approximation rates for 2-D piecewise smooth functions

resembling images are typically dominant by the discontinuity curves.

An oracle system, which knows precisely the contour curve c(x1), would

do the best to approximate this curve when approximating the underlying 2-D

function f(x1, x2). Because f takes value either 0 or 1, the approximation errors
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for surface and curve are related by

||f − f̂ ||2 =

∫
[0,1]2

(f − f̂)2

≤

∫
[0,1]

|c − ĉ|

≤

(∫
[0,1]

(c − ĉ)2

)1/2
= ||c− ĉ||.

where the second inequality comes from the Cauchy-Schwartz’s inequality. Since

the curve c(x1) ∈ Cp, the optimal approximation rate is achieved by anM -term

linear approximation using the Fourier basis or a wavelet basis with enough

vanishing moment. These provide ||c− ĉM ||2 ∼ O(M−2p) [65]. Thus the optimal

approximation rate for the 2-D piecewise smooth function f is

||f − f̂
(optimal)
M ||2 ∼ O(M−p). (4.5)

Let us consider how a wavelet system performs for such function. Assume

that the orthonormal wavelet transform with the separable Haar wavelet is

employed. At the level j, wavelet basis functions have support on dyadic square

of size 2−j (see Figure 4.2(a)). Call nj the number of dyadic squares at level j

that intersect with the contour on the unit square. Since the contour has finite

length, it follows that

nj ∼ O(2j). (4.6)

Thus, there are O(2j) nonzero wavelet coefficients at the scale 2−j . This

is the problem of the separable wavelet transform for 2-D piecewise smooth

functions. For the 1-D piecewise smooth function, the number of significant

wavelet coefficients at each scale is bounded by a constant; in the 2-D case this

number grows exponentially as the scale gets finer. The total number of nonzero

wavelet coefficients up to the level J is

NJ =
J∑

j=0

nj ∼ O(2J). (4.7)

Along the discontinuity curve c, it is easy to see that these nonzero wavelet

coefficients decay like O(2−j) at the j-th level. Next suppose that we keep only

M = NJ nonzero coefficients up to the level J in the wavelet expansion. Then

the error due to truncation of the wavelet series is

||f − f̂
(wavelet)
M ||2 ∼

∞∑
j=J+1

2j(2−j)2

∼ O(2−J ). (4.8)
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basis functions

curveletwavelet

c2j/2

2−j

2−j

c2−j/2

Figure 4.2: Non-linear approximation of a 2-D piecewise smooth function using

wavelets and curvelets. Curvelet basis functions can be viewed as a local grouping

of wavelet basis functions into linear structures so that they can capture the smooth

discontinuity curve more efficiently.

Combining (4.7) and (4.8) we obtain the following non-linear approximation

rate of the wavelet expansion for the “Horizon” model

||f − f̂
(wavelet)
M ||2 ∼ O(M−1). (4.9)

Therefore, when the discontinuity curves c is sufficiently smooth, c ∈ Cp

with p > 1, wavelet approximation is suboptimal. It is important to note

that the smoothness of the discontinuity curve is irrelevant to the performance

of the wavelet approximation. In comparison, the approximation rate for the

“Horizon” functions using the Fourier basis is [63]

||f − f (Fourier)||2 ∼ O(M−1/2). (4.10)

Therefore, it would be interesting to examine if we can improve the per-

formance of the wavelet representation when the discontinuity curve is known

to be smooth? Examining the wavelet transform in Figure 1.4 and Figure 1.6

suggests that rather than treating each significant wavelet coefficient along the

discontinuity curve independently, one should group the nearby coefficients since

their locations are locally correlated. Recall that at the level j, the essential

support of the wavelet basis functions has size 2−j . The curve scaling relation

(4.1) suggests that we can group about c2j/2 nearby wavelet basis functions into

one basis function with a linear structure so that its width is proportional to its

length squared (see Figure 4.2). This grouping operation reduces the number of

significant coefficients at the level j from O(2j) to O(2j/2). Consequently, this

new representation provides the same approximation error as wavelets in (4.8)

with only M ′ ∼
∑J

j=0 2
j/2 or O(2J/2) coefficients. In other words, the M -term

non-linear approximation using this improved wavelet representation decays like

||f − f̂
(improved−wavelet)
M ||2 ∼ O(M−2). (4.11)

Comparing with (4.5) and (4.9), we see that for C2 discontinuity curves,

the new representation is superior compared to wavelets and actually achieves
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the optimal rate. The curvelet system achieves this optimality using a similar

argument. In the original curvelet construction [20], the linear structure of the

basis function comes from the ridgelet basis while the curve scaling relation is

ensured by suitable combination of subband filtering and windowing.

Alternatively, we could link the significant wavelet coefficients along the

entire discontinuity curve and represent this curve as a smooth 1-D function.

This is the spirit of the bandelet construction by Le Pennec and Mallat [125].

A similar approach is taken by Dragotti and Vetterli with their edgeprint data

structure for image compression [66]. Clearly, such scheme resembles the pre-

vious oracle-based method, and thus provides better approximation rate when

the discontinuity curve is more regular as with c ∈ Cp,

||f − f̂
(bandelet)
M ||2 ∼ O(M−p). (4.12)

Note that, however the bandelet expansion is an adaptive scheme and re-

quires a detection of the discontinuity curve before hand.

4.2.3 Curvelets and Filter Banks

The original approach for curvelet decomposition [20] poses several problems

in practical applications. First, since it is a block-based transform, either the

approximated images have blocking effects or one has to use overlapping win-

dows and thus increase the redundancy. Secondly, the use of ridgelet transform,

which is defined on polar coordinate, makes the implementation of the curvelet

transform for discrete images on rectangular coordinates very challenging. In

[64, 159, 6], different interpolation approaches were proposed to solve the po-

lar versus rectangular coordinate transform problem, all requiring overcomplete

systems. Consequently, the version of the discrete curvelet transform in [159]

for example has a redundancy factor equal to 16J + 1 where J is the number

of multiscale levels. This results in the fact that curvelets are very limited in

certain applications such as compression.

To overcome the problem of block-based approach, one could use a filter bank

approach [175, 169] instead, in very much the same way as the lapped transforms

[106]. The relation between the two approaches is depicted in Figure 4.3. The

filter bank approach as in the lapped transform can solve the blocking effect

while being critically sampled.

The grouping of wavelet coefficients argument in the last section suggests

that we can have a curvelet-like representation (and thus achieve the optimal

approximation rate) by first applying a multiscale decomposition and applying a

local Radon transform to gather the basis functions in the same scale into linear

structures. The local Radon decomposition can be obtained by a directional

filter bank [9]. That is, we first use a wavelet-like decomposition for edge (points)

detection, and then a local directional bases for contour segments detection.

Therefore, we can achieve a curvelet-like decomposition by a double filter

bank in which a multiscale decomposition is used to capture the point discon-

tinuities (i.e. edge detection), followed by a directional decomposition to link
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IMAGE

Subband
Decomposition

Block
Ridgelet

Transform

(a)

(b)

Figure 4.3: Two approaches for curvelet decomposition. (a) Original block-based

approach: block ridgelet transforms are applied to subband images. (b) Proposed

filter bank approach: image is decomposed by a double filter bank structure. In this

case, basis functions are given by the filter impulse responses and their translates

with respect to the subsampling grids. The key issue here is to find a correct

subsampling.

point discontinuities into linear structures. In this approach, the curve scaling

relation is ensured by a suitable coordination between the scale and the support

of the directional basis, which in turn is linked to the number of directions.

4.3 Pyramidal Directional Filter Banks

4.3.1 Multiscale and Directional Decomposition

The directional filter bank (DFB) is designed to capture the high frequency com-

ponents (representing directionality) of images. Therefore, low frequency com-

ponents are handled poorly by the DFB. In fact, with the frequency partition
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shown in Figure 3.6, low frequencies would “leak” into several directional sub-

bands, hence DFB does not provide a sparse representation for images. To im-

prove the situation, low frequencies should be removed before to the DFB. This

provides another reason to combine the DFB with a multiresolution scheme.

One way of achieving a multiscale decomposition is to use a Laplacian pyra-

mid (LP) introduced by Burt and Adelson [18]. The LP decomposition at

each step generates a sampled lowpass version of the original and the differ-

ence between the original and the prediction, resulting in a bandpass image. A

drawback of the LP is the implicit oversampling. However, in contrast to the

critically sampled wavelet scheme, the LP has the distinguishing feature that

each pyramid level generates only one bandpass image (even for multidimen-

sional cases) which does not have “scrambled” frequencies. As illustrated in

Figure 2.2, this frequency scrambling happens in the wavelet filter bank when

a highpass channel, after downsampling, is folded back into the low frequency

band, and thus its spectrum is reflected. In the LP, this effect is avoided by

downsampling the lowpass channel only.

Therefore the LP permits further subband decomposition to be applied on

its bandpass images. Those bandpass images can be fed into a DFB so that

directional information can be well captured. Figure 4.4 depicts this pyramidal

directional filter bank (PDFB). The scheme can be iterated repeatedly on the

coarse image. The end result is a decomposition into directional subbands at

multiple scales. The scheme is flexible since it allows for a different number of

directions at each scale.

(2,2)

multiscale dec. directional dec.

(a)

ω1

ω2 (π, π)

(−π,−π)

(b)

Figure 4.4: Pyramidal directional filter bank. (a) Block diagram. First, a standard

multiscale decomposition into octave bands, where the lowpass channel is subsam-

pled while the highpass is not. Then, a directional decomposition by the DFB

is applied to each highpass channel. (b) Resulting frequency division, where the

number of directions is increased with frequency.

With perfect reconstruction LP and DFB, the PDFB is obviously perfect

reconstruction, and thus it is a frame operator for 2-D signals. The PDFB has
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the same redundancy as the LP: up to 33% when subsampling by two in each

dimension. If the filters in the LP are orthogonal (that is, h[n] = g[−n] and g[n]

is orthogonal to its translates with respect to the subsampling lattice), then it

can be shown that LP is a tight frame with energy conservation [56]. In that case,

assuming an image x is decomposed into J bandpass images bj, j = 1, 2, . . . , J

and a lowpass image aJ ,
2 then we have

‖x‖2 =
J∑

j=1

‖bj‖
2 + ‖aJ‖

2. (4.13)

In addition, we assume that the DFB is also orthonormal, which means

that it transforms each bandpass image bj into a set of coefficients dj with:

‖bj‖2 = ‖dj‖2. Then the decomposition by PDFB: x #→ (d1, d2, . . . , dJ , aJ) has

also the energy conservation property:

‖x‖2 =
J∑

j=1

‖dj‖
2 + ‖aJ‖

2. (4.14)

Thus we have the following result on the PDFB.

Proposition 4.1 The PDFB is a tight frame with frame bounds equal to 1 when

orthogonal filters are used in both the LP and the DFB.

Tight frames have important properties in some applications. For example,

the error introduced in the transform domain is the same as the error in the

reconstructed signal.

Let us point out that there are other multiscale and directional decomposi-

tions such as the cortex transform [178] and the steerable pyramid [152]. Our

PDFB differs from those in that it allows different number of directions at each

scale while nearly achieving critical sampling. In addition, we make the link to

continuous-time construction precise, both through a relation to curvelets, and

by studying the convergence of iterated DFB’s.

4.3.2 PDFB for Curvelets

Next we will demonstrate that a PDFB where the number of directions is dou-

bled at every other finer scale in the pyramid satisfies these key properties of

curvelets discussed in Section 4.2.1. That is, we apply a DFB with  n0 − j/2!

levels or 2�n0−j/2� direction to the bandpass image bj of the LP. Thus, the PDFB

provides a discrete implementation for the curvelet transform.

A LP, with downsampling by two in each direction, is taken at every level,

providing an octave-band decomposition: the LP bandpass image bj at the level

j creates subband with a corona support based on the interval [π2−j, π2−j+1],

for j = 1, 2, . . . , J . Combining this with a directional decomposition by a DFB,

we obtain the frequency tiling for curvelets as shown in Figure 4.5.

2The index is such that the level j = 1 corresponds to the finest scale.



4.3. Pyramidal Directional Filter Banks 77

ω1

ω2 (π, π)

(−π,−π)

Figure 4.5: Resulting frequency division by a pyramidal directional filter bank for

the curvelet transform. As the scale is refined from coarse to fine, the number of

directions is doubled at every other octave band.

In term of basis functions, a coefficient in the LP subband bj corresponds

to a basis function that has local support in a square of size about 2j . While

a basis function from a DFB with  n0 − j/2! iterated levels has support in a

rectangle of length about 2n0−j/2 and width about 1. Therefore, in the PDFB,

a basis function at the pyramid level j has support as:

width ≈ 2j and length ≈ 2j .2n0−j/2 = 2n02j/2, (4.15)

which clearly satisfies the anisotropy scaling relation (4.1) of curvelets.

Figure 4.6 graphically depicts this property of a PDFB implementing a

curvelet transform. As can be seen from the two shown pyramidal levels, the

support size of the LP is reduced by four times while the number of directions

of the DFB is doubled. With this, the support size of the PDFB basis images

are changed from one level to next in accordance with the curve scaling relation.

Also note that in this representation, as the scale is getting finer, there are more

directions.

Figure 4.7 shows some real basis images from an actual PDFB that imple-

ments the digital curvelet transform. Again we can see that as the scale getting

coarser, these basis images have their widths double at every level, while their

lengths double at every other level. Therefore, in overall these basis images

satisfy the anisotropy scaling relation.

Figure 4.8 shows an example image that is transformed by the PDFB imple-

menting the discrete ridgelet transform. As we can see, the coefficients in the

transform domain are very sparse – significant coefficients are located around

edges and in the right directional subbands. With non-linear approximation

using the PDFB, smooth regions are represented efficiently by the small size

lowpass image while smooth edges are efficiently represented by a few direc-

tional local coefficients.

In [159], Starck et al. describe a different approach for the digital curvelet

transform, in which they directly “discretize” the continuous definition. Their

implementation uses the discrete Radon transform on image blocks, and thus

the number of represented directions, which equals the block size, is reduced by
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* =

LP DFB PDFB

* =

Figure 4.6: Illustration of the PDFB basis images for the curvelet transform. From

the upper line to the lower line, the scale is reduced by four while the number of

directions is doubled.

j = 1 j = 2 j = 3 j = 4

Figure 4.7: Basis images from a PDFB that implements the curvelet transform.

They have linear structure and satisfy the anisotropy scaling relation.

half for every finer scale. This is unlike the curvelet construction in continuous

space, or our construction. Furthermore, there is a redundancy factor equals to

16J + 1 in their implementation compared with 1.3 in ours.

4.4 Multiresolution Analysis

Since curvelets and PDFB are multiscale transforms, they exhibit successive

approximation properties. The key in understanding this multiresolution anal-

ysis is the embedded grids of approximation [103]. The multiresolution analysis

is the bridge that provides the link between the continuous domain construc-

tion (i.e. curvelets) and the discrete domain implementation (i.e. PDFB). The

original curvelet construction of Candès and Donoho [20] uses block ridgelet

transforms implies a mixture of rectangular and polar grids, and thus it is diffi-

cult to see how the embedded grids of approximation can be defined. Our filter

bank approach to the curvelet transform makes this task much simpler. In fact,

the sampling matrices from the PDFB for the curvelet transform directly result

in a rectangular embedded grid system.
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(a) (c)

(b)

Figure 4.8: Example of PDFB. (a) Input image. (b) Magnitudes of PDFB coeffi-

cients. (c) Reconstruction from one PDFB subband. The LP uses the biorthogonal

“9-7” filters while the DFB’s use the biorthogonal “23-45” quincunx filters (men-

tioned in Section 3.3).

4.4.1 Multiscale

The discussion in Section 2.6.2, which we will briefly review, shows that asso-

ciated with the discrete computation of the Laplacian pyramid is a multiscale

system in the continuous-domain. Suppose that the LP in the PDFB uses or-

thogonal filters and downsampling by two is taken in each dimension. Under

certain conditions, the lowpass filter G in the LP uniquely define an orthogonal

scaling function φ(t) ∈ L2(R2) via the two-scale equation

φ(t) = 2
∑
n∈Z2

g[n]φ(2t − n)

Denote

φj,n = 2
−jφ

(
t− 2jn

2j

)
, j ∈ Z, n ∈ Z2.
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Then the family {φj,n}n∈Z2 is an orthonormal basis of Vj for all j ∈ Z. The
sequence of nested subspaces {Vj}j∈Z satisfies the following invariant properties:

Shift invariance: f(t) ∈ Vj ⇔ f(t− 2jk) ∈ Vj , ∀j ∈ Z, k ∈ Z2

Scale invariance: f(t) ∈ Vj ⇔ f(2−1t) ∈ Vj+1, ∀j ∈ Z.

In other words, Vj is a subspace defined on a uniform grid with intervals

2j × 2j, which characterize the image approximation at the resolution 2−j. The

difference image in the LP carry the details necessary to increase the resolution

of an image approximation. LetWj be the orthogonal complement of Vj in Vj−1
(also see Figure 4.9)

Vj−1 = Vj ⊕Wj

ω0

ω1

Vj−1

Vj

Wj

Figure 4.9: Multiscale subspaces generated by the Laplacian pyramid.

The oversampled filter bank view of the LP in Section 2.5 indicates that each

polyphase component of the difference signal can be considered as a separate

filter bank channel like the coarse signal. Let Fi(z), 0 ≤ i ≤ 3 be the synthesis

filters for these polyphase components. Note that Fi(z) are highpass filters. As

in the wavelet filter bank, we associate with each of these filters a continuous

functions ψ(i)(t) where

ψ(i)(t) = 2
∑
n∈Z2

fi[n]φ(2t − n).

Theorem 2.5 states that for scale 2j , {ψ(i)j,n}0≤i≤3, n∈Z2 is a tight frame of

Wj . For all scales, {ψ
(i)
j,n}0≤i≤3, j∈Z, n∈Z2 is a tight frame of L

2(R2). In all cases,

the frame bounds are equal to 1.

Since Wj+1 is generated by four prototype functions, in general it is not a

shift invariant subspace, unless Fi(z) are shifted versions of a filter, or

Fi(z) = z−kiF (z) (4.16)
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where ki are the coset representatives of the downsampling lattice (2, 2)

k0 = (0, 0)
T , k1 = (1, 0)

T , k2 = (0, 1)
T , and k3 = (1, 1)

T . (4.17)

Nevertheless, based on this, we can mimic Wj+1 to be a shift invariant

subspace by denoting

µj,2n+ki(t) = ψ
(i)
j+1,n =

∑
m∈Z2

fi[m]φj,n+m(t). (4.18)

With this notation, the family {µj,n}n∈Z2 is a tight frame of Wj+1 and it

assimilates a uniform grid on R2 of intervals 2j × 2j .

4.4.2 Multidirection

Suppose that the DFB’s in the PDFB use orthogonal filters. Results in Chap-

ter 3 state that with a l-levels DFB, the family

{g(l)k [· − S
(l)
k n]}0≤k≤2l−1, n∈Z2 (4.19)

is a directional orthonormal basis of l2(Z2). Here g
(l)
k [n] are directional filters,

in which k = 0, . . . , 2l−1− 1 correspond to the directions in [−45◦,+45◦], while
k = 2l−1, . . . , 2l − 1 correspond directions in [+45◦,+135◦]. The sampling

matrices S
(l)
k are given in (3.23) which are all diagonal.

In the PDFB, the discrete basis (4.19) of the DFB can be regarded as a

change of basis for the continuous subspaces from the multiscale decomposition.

Although in the PDFB, the DFB is applied to the difference signal or the Wj+1

subspaces, we will first study what happens when the DFB is applied to the

multiresolution subspaces Vj .

Proposition 4.2 Define

θ
(l)
j,k,n(t) =

∑
m∈Z2

g
(l)
k [m − S

(l)
k n]φj,m(t) (4.20)

The family {θ(l)j,k,n}n∈Z2 is an orthonormal basis of a directional subspace

V
(l)
j,k for each k = 0, . . . , 2l − 1. These subspaces are orthogonal with

V
(l)
j,k = V

(l+1)
j,2k ⊕ V

(l+1)
j,2k+1, and (4.21)

Vj =
2l−1⊕
k=0

V
(l)
j,k . (4.22)

Proof: (Sketch) This result is proved by induction on the number of decom-

position levels l of the DFB, in much the same way for the wavelet packets

bases [34] (see also [103]). Assume that {θ(l)j,k,n}n∈Z2 is an orthonormal basis

of a subspace V
(l)
j,k . From Section 3.3, we see that to increase the directional

resolution, an extra level of decomposition by a pair of orthogonal filters is
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applied to the channel represented by g
(l)
k that leads to two channels with

equivalent filters g
(l+1)
2k and g

(l+1)
2k+1 . This transforms the orthonormal basis

{θ(l)j,k,n}n∈Z2 in two orthonormal families {θ(l+1)j,2k,n}n∈Z2 and {θ(l+1)j,2k+1,n}n∈Z2 .

Each of these families generates a subspace with finer directional resolution

that satisfy the “two-direction” equation (4.22). With this, starting from the

orthonormal basis {φj,n}n∈Z2 of Vj , all other orthonormal bases follow. 2

Figure 4.10 illustrates the “two-direction” subspace splitting by the DFB in

the frequency domain. In the spatial domain, V
(l)
j,k is a subspace at a scale 2

j

and a direction k among all 2l directions.
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Figure 4.10: Multidirection subspaces generated by the DFB.

Next by applying the directional decomposition by the family (4.19) onto

the detail subspace Wj+1 as done by the PDFB, we obtain the similar result.

Proposition 4.3 Define

ρ
(l)
j,k,n(t) =

∑
m∈Z2

g
(l)
k [m − S

(l)
k n]µj,m(t) (4.23)

The family {ρ(l)j,k,n}n∈Z2 is a tight frame of a subspace W
(l)
j+1,k with frame

bounds equal to 1, for each k = 0, . . . , 2l − 1. These subspaces are orthogonal

with

W
(l)
j+1,k = W

(l+1)
j,2k ⊕W

(l+1)
j,2k+1, and (4.24)

Wj+1 =
2l−1⊕
k=0

W
(l)
j+1,k. (4.25)

Proof: This result is obtained by applying Theorem 2.5 to the subspaces in

Proposition 4.2. 2
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Figure 4.11 shows a graphical representation of the subspaces in Proposi-

tion 4.3, seen in the frequency domain. The reason for {ρ(l)j,k,n}n∈Z2 to be an

overcomplete system for W
(l)
j+1,k is because it uses the same sampling grid as

the bigger subspace V
(l)
j,k .
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Figure 4.11: Multidirection subspaces generated by the PDFB.

Recall that Wj+1 is not shift invariant but the following result establishes

that its subspaces W
(l)
j+1,k are since they are generated by a single prototype

function.

Proposition 4.4 Let us denote

ρ
(l)
j,k(t) =

∑
m∈Z2

g
(l)
k [m]µj,m(t) (4.26)

Then for l ≥ 2

ρ
(l)
j,k,n(t) = ρ

(l)
j,k(t − 2

jS
(l)
k n) (4.27)

Proof: The definition of ψj,n(t) in (2.54) implies that

ψj,m+n(t) = ψj,m(t− 2
jn).

Applying this to (4.18) we have

µj,m+2n(t) = µj,m(t − 2
j2n).

In other words, µj,m are periodically shift invariant with even shifts in m ∈ Z2.

From (3.17) we see that with l ≥ 2, sampling by S
(l)
k is also even in each

dimension. Thus, with a change of variable we obtain

ρ
(l)
j,k,n(t) =

∑
m∈Z2

g
(l)
k [m − S

(l)
k n] µj,m(t)

=
∑
m∈Z2

g
(l)
k [m] µj,m(t − 2

jS
(l)
k n)

= ρ
(l)
j,k(t − 2

jS
(l)
k n).
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2

Consequently, the subspacesW
(l)
j+1,k satisfy the following shift invariant prop-

erty:

f(t) ∈ W
(l)
j+1,k ⇔ f(t− 2jS

(l)
k n) ∈ W

(l)
j+1,k, ∀n ∈ Z2. (4.28)

This says that the directional multiscale subspaces W
(l)
j+1,k are defined on a

rectangular grid with intervals 2j+l−1 × 2j+1 (or 2j+1 × 2j+l−1, depending on
whether it is basically horizontal or vertical). For later reference, by substituting

(4.18) into (4.26) we can write the prototype function ρ
(l)
j,k(t) directly as a linear

combination of the scaling function φj,m(t) as

ρ
(l)
j,k(t) =

3∑
i=0

∑
n

g
(l)
k [2n+ ki]

( ∑
m∈Z2

fi[m]φj,n+m

)

=
∑
m∈Z2

(
3∑

i=0

∑
n∈Z2

g
(l)
k [2n+ ki]fi[m− n]

)
︸ ︷︷ ︸

c
(l)
k [m]

φj,m(t). (4.29)

The sequence c
(l)
k [m] resemble a summation of convolutions between g

(l)
k [m]

and fi[m], thus it is a highpass and directional filter. Equation (4.29) reveals the

“ridgelet-like” behavior of the prototype function ρ
(l)
j,k(t) for Wj+1,k. Moreover,

we see that ρ
(l)
j,k(t) resembles a grouping of “edge-detection” elements at a scale

indexed by j and along a direction indexed by k.

4.4.3 Multiscale and Multidirection

Finally, integrating over scales we have the following result for the frames on

the space L2(R2).

Theorem 4.1 For a sequence of finite positive integers {lj}j≤j0 the family

{φj0,n(t), ρ
(lj)
j,k,n(t)}j≤j0, 0≤k≤2lj−1, n∈Z2 (4.30)

is a tight frame of L2(R2). For a sequence of finite positive integers {lj}j∈Z, the
family

{ρ
(lj)
j,k,n(t)}j∈Z, 0≤k≤2lj−1, n∈Z2 (4.31)

is a directional wavelet tight frame of L2(R2). In each case, the frame bounds

are equal to 1.
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Proof: This result is obtained by applying Proposition 4.3 to the following

decompositions of L2(R2) into mutual orthogonal subspaces:

L2(R2) = Vj0 ⊕


⊕

j≤j0

Wj


 , and

L2(R2) =
⊕
j∈Z

Wj .

2

As discussed in Section 4.3.2, the tight frame in (4.30) provides a curvelet-

like expansion when the number of directions is doubled at every other finer

scale. This means that if at the scale 2j0 we start with an lj0 -level DFB (which

has 2lj0 directions) then at finer scales 2j, j < j0, the number of decomposition

levels by the DFB should be:

lj =  lj0 − (j − j0)/2!, for j ≤ j0. (4.32)

Thus the embedded grid of approximation for the curvelet PDFB expansion

at the scale 2j is 2�n0+j/2� × 2j for basically horizontal directions and 2j ×

2�n0+j/2� for near vertical directions, where n0 = lj0 − j0/2 + 2. Figure 4.12

illustrates this sampling pattern at different scales and directions. The main

point to note here is that in the refinement process, one spatial dimension is

refined at twice the speed as the other spatial dimension.

Figure 4.6 and Figure 4.12 give a complete view of the multiresolution ap-

proximation of our curvelet construction based on the PDFB. They clearly show

a refinement scheme where the resolution increases in both spatial and direction

domain when going from coarse to fine scale, and the basis elements exhibit the

anisotropy scaling relation for curves.

To conform with the wavelet terminology, in the family (4.30) that provides

a curvelet expansion, the functions φ are called scaling functions, while the

functions ρ are called curvelet functions.

4.5 Experimental Results

4.5.1 Non-linear Approximation

In this section, we evaluate the non-linear approximation performance of the

PDFB that implements the discrete curvelet transform on some real images

and compare it with the performance by the 2-D discrete wavelet transform

(DWT2) The four test images shown in Figure 4.13 are: “Lena”, “Barbara”,

“Peppers”, and “D15” (a texture pattern from the Brodatz collection) – all of

size 512× 512. The first three images are piecewise smooth, while the last one
is a directional texture.

The wavelet transform used in the experiment is a biorthogonal transform

with the “9-7” filters [31] (see also Table 2.1) and 6 decomposition levels. The
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(a) (b)

(c) (d)

w

w

l

l

w/4

w/4

l/2

l/2

Figure 4.12: Embedded grids of approximation in spatial domain for a PDFB

that implements the curvelet transform. These are four illustrative subspaces Wj,k

representing coarser vs. finer scales and basically horizontal vs. basically vertical

directions. Each subspace is spanned by the shifts of a curvelet prototype function

given in (4.26). The sampling intervals match with the supports of the prototype

function, for example width w and length l, so that the shifts would tile the R2

plane.

PDFB also uses the “9-7” filters in the LP decomposition. While the DFB in

the PDFB uses the “23-45” biorthogonal quincunx filters designed by Phoong

et al. [129] that was mentioned in Section 3.3. The number of decomposition

levels by the DFB at the finest pyramidal scale is 5, which leads to 32 directions.

Note that in this case, both the DWT2 and the PDFB transforms share the

same multiscale detailed subspaces Wj as defined in Section 4.4.1, which are

generated by the “9-7” lowpass filters. The difference is that in the DWT2,

each subspaceWj is represented by a basis with three directions, whereas in the

PDFB it is represented by a redundant frame with many more directions.

First, the NLA performance is evaluated in terms of PSNR for each transform

as follows.

• For a given valueM , select theM -most significant coefficients in transform

domain.

• Reconstruct the image from these M coefficients and calculate the PSNR

(peak signal-to-noise-ratio).

• Plot the PSNR’s curve as a function of M .

Figure 4.14 shows the PSNR comparison results. For the “Lena” and “Pep-
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(a) Lena (b) Barbara

(c) Peppers (d) D15

Figure 4.13: Four test images that are used in the experiments. They are 8-bit

images of size 512× 512.

pers” images, the two transforms have similar performance, while for “Barbara”

and “D15”, the PDFB slightly improves the PSNR.

The similar performance in the reconstruction error leads us to examine in

detail the refinement schemes by the two transforms. Since the two transforms

share the same detailed subspaces, it is possible to restrict the comparison in

these subspaces. We expect most of the refinement actions would happen around

the image edges. Figure 4.15 and Figure 4.16 show sequences of non-linear

approximated images at the finest subspaceWj using the DWT2 and the PDFB,

respectively. What we see clearly resembles the painting scenario that was

discussed in the Introduction chapter. The DWT2 scheme slowly refines the
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(d) D15

Figure 4.14: Non-linear approximation results on different test images. DWT2:

dashed lines. PDFB: solid lines.

detailed image by isolated “dots” along the contour, while the PDFB scheme

quickly refines by well-adapted “sketches”. The improvement by the PDFB can

be seen both in terms of visual quality and the reconstruction error.

However, we observe that for typically smooth images, the energy distri-

bution in the high frequency bands is relatively small compared to the low

frequency bands. Therefore, the improvement in the detailed subspaces has

little effect on the overall reconstruction error. This is reason why the PDFB

did not give a significant improvement in terms of PSNR for the “Peppers” and

“Lena” images. Nevertheless, the PDFB is promising with the visual quality

(especially recovering image contours), as well as in image feature detection.

On the other hand, for the “Barbara” and “D15” images, where there is a

significant energy distribution in the high frequency region, the PDFB gives a

visible improvement. Figure 4.17 shows a detailed comparison of two non-linear

approximated images by the DWT2 and the PDFB. In this case, fine contours

(directional textures on cloths) are better represented by the PDFB transform.
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M = 2, MSE = 1.70e−04 M = 4, MSE = 1.70e−04 M = 8, MSE = 1.69e−04

M = 16, MSE = 1.67e−04 M = 32, MSE = 1.65e−04 M = 64, MSE = 1.61e−04

M = 128, MSE = 1.54e−04 M = 256, MSE = 1.45e−04 M = 512, MSE = 1.33e−04

Figure 4.15: Sequence of images showing the non-linear approximation at the

finest scale of the DWT2. M is the number of the most significant coefficients;

MSE is the mean square error against the projection of the input image into the

finest detailed subspace. The input is the “Peppers” image.

4.5.2 Image Denoising

The non-linear approximation power of the PDFB is furthermore tested in de-

noising experiments and compared with the wavelet transform. In both cases,

a simple hard thresholding by the same threshold value is performed in the

transform domain. In this comparison, the PDFB has a slight advantage over

the DWT2 since the PDFB is oversampled with a small factor. Nevertheless,

we want to verify the ability in recovering smooth edges by the PDFB repre-

sentation. Figure 4.18 displays a detail comparison of a denoising experiment,

where the PDFB is shown to be more effective in recovering edges, as well as in

signal-to-noise ratio (SNR).
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M = 2, MSE = 1.69e−04 M = 4, MSE = 1.69e−04 M = 8, MSE = 1.67e−04

M = 16, MSE = 1.64e−04 M = 32, MSE = 1.61e−04 M = 64, MSE = 1.56e−04

M = 128, MSE = 1.51e−04 M = 256, MSE = 1.44e−04 M = 512, MSE = 1.37e−04

Figure 4.16: Same as in Figure 4.15 but with the PDFB. Note that the PDFB

shares the same detailed subspace with the DWT2.

4.6 Conclusion

In this chapter we investigated the possibility of implementing the discrete

curvelet transform that offers a sparse representation for piecewise smooth im-

ages using the filter bank approach. We first identified two key features of the

curvelet transform that could lead to an improvement over the wavelet trans-

form, namely directionality and anisotropy. From this we proposed a new filter

bank structure, the pyramidal directional filter bank (PDFB), that can provide

a curvelet-like decomposition for images with a small redundancy factor. The

connection between curvelets and the PDFB was made precisely via a new di-

rectional multiresolution analysis, which provides successive refinements at both

spatial and directional resolution using frame elements satisfying the anisotropy

scaling relation for curves. Experiments with real images indicate the potential

of the PDFB in image processing applications.
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(a) Original image

(b) DWT2: PSNR = 24.34 dB (c) PDFB: PSNR = 25.70 dB

Figure 4.17: Detail of non-linear approximated images by the DWT2 and the

PDFB. In each case, the image originally of size 512× 512 is reconstructed from

the 4096-most significant coefficients in the transform domain.

We highlight below the advantages of the PDFB.

• It presents a efficient scheme for representing piecewise smooth images.

• It is a fixed transform, with effective tree data structures that can be
explored in coding application.

• It has potential in other image processing applications such as feature

detection and image analysis.
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Figure 4.18: Denoising experiment: original image (top left), noisy image (top

right, SNR = 9.55 dB), denoising using DWT2 (bottom left, SNR = 13.82 dB),

and denoising using PDFB (bottom right, SNR = 15.42 dB).



Chapter 5

The Finite Ridgelet Transform

5.1 Introduction

Many image processing tasks take advantage of sparse representations of im-

age data where most information is packed into a small number of samples.

Typically, these representations are achieved via invertible and non-redundant

transforms. Currently, the most popular choices for this purpose are the wavelet

transform [175, 65, 103] and the discrete cosine transform [137].

To overcome the weakness of wavelets in higher dimensions, Candès and

Donoho [19, 21] recently pioneered a new system of representations named

ridgelets which deal effectively with line singularities in 2-D. The idea is to

map a line singularity into a point singularity using the Radon transform [45].

Then, the wavelet transform can be used to effectively handle the point singu-

larity in the Radon domain (Figure 5.1). Their initial proposal was intended

for functions defined in the continuous R2 space.

Radon Transform Wavelet Transform

Figure 5.1: The ridgelet transform as the Radon transform followed by the wavelet

transform.

For practical applications, the development of discrete versions of the ridgelet

transform that lead to algorithmic implementations is a challenging problem.

Due to the radial nature of ridgelets, straightforward implementations based

on discretization of continuous formulae would require interpolation in polar

0This chapter includes research conducted jointly with Martin Vetterli [52, 51, 55].

93
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coordinates, and thus result in transforms that would be either redundant or

can not be perfectly reconstructed.

In [64, 159, 6], the authors take the redundant approach in defining discrete

Radon transforms that can lead to invertible discrete ridgelet transforms with

some appealing properties. For example, a recent preprint [6] proposes a new

notion of Radon transform for data in a rectangular coordinate such that the

lines exhibit geometrical faithfulness. Their transform is invertible with a fac-

tor four oversampled. However, the inverse transform is ill-conditioned in the

presence of noise and requires an iterative approximation algorithm.

In this chapter, we propose a discrete ridgelet transform that achieves both

invertibility and non-redundancy. In fact, our construction leads to a large fam-

ily of orthonormal and directional bases for digital images, including adaptive

schemes. As a result, the inverse transform is numerically stable and uses the

same algorithm as the forward transform. Because a basic building block in

our construction is the finite Radon transform [15], which has a wrap-around

(or aliased line) effect, our ridgelet transform is not geometrically faithful. The

properties of the new transform are demonstrated and studied in several appli-

cations.

The outline of this chapter is as follows. In the next section we review the

concept and motivation of ridgelets in the continuous domain. In Section 5.3,

we introduce the finite Radon transform with a novel ordering of coefficients

as a key step in our discrete ridgelet construction. The finite Radon transform

is then studied within the theory of frames. The finite ridgelet transform is

defined in Section 5.4, where the main result is a general family of orthonormal

transforms for digital images. In Sections 5.5, we propose several variations

on the initial design of the finite ridgelet transform. Numerical experiments

are presented in Section 5.6, where the new transform is compared with the

traditional ones, especially the wavelet transform. We conclude in Section 5.7

with some discussions.

5.2 Continuous Ridgelet Transform

We start by briefly reviewing the ridgelet transform and showing its connections

with other transforms in the continuous domain. Given an integrable bivariate

function f(x), its continuous ridgelet transform (CRT) in R2 is defined by [19,

21]

CRTf(a, b, θ) =

∫
R2

ψa,b,θ(x)f(x)dx, (5.1)

where the ridgelets ψa,b,θ(x) in 2-D are defined from a wavelet-type function in

1-D ψ(x) as

ψa,b,θ(x) = a−1/2ψ((x1 cos θ + x2 sin θ − b)/a). (5.2)

Figure 5.2 shows a typical ridgelet: the function is oriented at an angle θ

and is constant along the lines x1 cos θ + x2 sin θ = const.
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Figure 5.2: A typical ridgelet function ψa,b,θ(x1, x2).

For comparison, the (separable) continuous wavelet transform (CWT) in R2

of f(x) can be written as

CWTf (a1, a2, b1, b2) =

∫
R2

ψa1,a2,b1,b2(x)f(x)dx, (5.3)

where the wavelets in 2-D are tensor products

ψa1,a2,b1,b2(x) = ψa1,b1(x1)ψa2,b2(x2), (5.4)

of 1-D wavelets, ψa,b(t) = a−1/2ψ((t − b)/a).1

As can be seen, the CRT is similar to the 2-D CWT except that the point

parameters (b1, b2) are replaced by the line parameters (b, θ). In other words,

these 2-D multiscale transforms are related by:

Wavelets: → ψscale, point−position,

Ridgelets: → ψscale, line−position.

As a consequence, wavelets are very effective in representing objects with

isolated point singularities, while ridgelets are very effective in representing

objects with singularities along lines. In fact, one can think of ridgelets as a

way of concatenating 1-D wavelets along lines. Hence the motivation for using

ridgelets in image processing tasks is appealing since singularities are often

joined together along edges or contours in images.

In 2-D, points and lines are related via the Radon transform, thus the wavelet

and ridgelet transforms are linked via the Radon transform. More precisely,

denote the Radon transform as

Rf (θ, t) =

∫
R2

f(x)δ(x1 cos θ + x2 sin θ − t)dx, (5.5)

1In practice, however one typically enforces the same dilation scale on both directions thus

leading to three wavelets corresponding to horizontal, vertical and diagonal directions.
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then the ridgelet transform is the application of a 1-D wavelet transform to the

slices (also referred to as projections) of the Radon transform,

CRTf (a, b, θ) =

∫
R

ψa,b(t)Rf (θ, t)dt. (5.6)

x1

x2

θ

t

Rf (θ, t)

(a)

Radon
domain

1-D wavelet transform

2-D
Fourier
domain

Ridgelet
domain

1-D Fourier tra
nsform

(b)

Figure 5.3: Radon, Fourier and ridgelet transform. (a) The Radon transform in

R
2. For a fixed θ, Rf (θ, t) is a slice or projection in the Radon domain. (b) Rela-

tions between transforms. The ridgelet transform is the application of 1-D wavelet

transform to the slices of the Radon transform, while the 2-D Fourier transform is

the application of 1-D Fourier transform to those Radon slices.

Figure 5.3(a) shows a graphical representation of the Radon transform. It is

instructive to note that if in (5.6) instead of taking a 1-D wavelet transform, the

application of a 1-D Fourier transform along t would result in the 2-D Fourier

transform. More specifically, let Ff (ω) be the 2-D Fourier transform of f(x),

then we have

Ff (ξ cos θ, ξ sin θ) =

∫
R

e−jξtRf (θ, t)dt. (5.7)

This is the famous projection-slice theorem and is commonly used in image

reconstruction from projection methods [79, 142]. The relations between the

various transforms are shown in Figure 5.3(b).

5.3 Finite Radon Transform

5.3.1 Forward and Inverse Transforms

As suggested in the previous section, a discrete ridgelet transform can be

obtained via a discrete Radon transform. Numerous discretizations of the

Radon transforms have been devised to approximate the continuous formulae

[110, 79, 142, 12, 145, 89]. However, most of them were not designed to be
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invertible transforms for digital images. Alternatively, the finite Radon trans-

form theory (which means transform for finite length signals) [15, 71, 108, 144]

originated from combinatorics, provides an interesting solution. Also, in [177],

a closely related transform is derived from the periodization of the continuous

Radon transform.

The finite Radon transform (FRAT) is defined as summations of image pixels

over a certain set of “lines”. Those lines are defined in a finite geometry in a

similar way as the lines for the continuous Radon transform in the Euclidean

geometry. Denote Zp = {0, 1, . . . , p− 1}, where p is a prime number. Note

that Zp is a finite field with modulo p operations [98]. For later convenience,

we denote Z∗p = {0, 1, . . . , p}.

The FRAT of a real function f on the finite grid Z2p is defined as

rk[l] = FRATf (k, l) =
1
√
p

∑
(i,j)∈Lk,l

f [i, j]. (5.8)

Here Lk,l denotes the set of points that make up a line on the lattice Z2p , or

more precisely

Lk,l = {(i, j) : j = ki+ l (mod p), i ∈ Zp} , 0 ≤ k < p,

Lp,l = {(l, j) : j ∈ Zp} . (5.9)

Figure 5.4 shows an example of the finite lines Lk,l where points in the grid

Z2p are represented by image pixels. Note that due to the modulo operations in

the definition of lines for the FRAT, these lines exhibit a “wrap around” effect.

In other words, the FRAT treat the input image as one period of a periodic

image. Later, we will present several ways to limit this artifact.

We observe that in the FRAT domain, the energy is best compacted if the

mean is subtracted from the image f [i, j] prior to taking the transform given

in (5.8), which is assumed in the sequel. We also introduce the factor p−1/2 in

order to normalize the l2-norm between the input and output of the FRAT.

Just as in the Euclidean geometry, a line Lk,l on the affine plane Z2p is

uniquely represented by its slope or direction k ∈ Z∗p (k = p corresponds to

infinite slope or vertical lines) and its intercept l ∈ Zp. One can verify that

there are p2 + p lines defined in this way and every line contains p points.

Moreover, any two distinct points on Z2p belong to just one line. Also, two lines

of different slopes intersect at exactly one point. For any given slope, there are

p parallel lines that provide a complete cover of the plane Z2p . This means that

for an input image f [i, j] with zero-mean, we have

p−1∑
l=0

rk[l] =
1
√
p

∑
(i,j)∈Z2p

f [i, j] = 0 ∀k ∈ Z∗p . (5.10)

Thus, (5.10) explicitly reveals the redundancy of the FRAT: in each di-

rection, there are only p − 1 independent FRAT coefficients. Those coeffi-

cients at p + 1 directions together with the mean value make up totally of



98 Chapter 5.

(a)

Lk,l

(b)

Figure 5.4: (a) Lines for the 7 × 7 FRAT. Parallel lines are grouped in each of

the eight possible directions. Images in order from top to bottom, left to right are

corresponding to the values of k from 0 to 7. In each image, points (or pixels) in

different lines are assigned with different gray-scales. (b) “Wrap around” effect as

a result of the modulo operations in the definition of lines for the FRAT

(p + 1)(p − 1) + 1 = p2 independent coefficients (or degrees of freedom) in the

finite Radon domain, as expected.

By analogy with the continuous case, the finite back-projection (FBP) oper-

ator is defined as the sum of Radon coefficients of all the lines that go through

a given point, that is

FBPr(i, j) =
1
√
p

∑
(k,l)∈Pi,j

rk[l], (i, j) ∈ Z2p , (5.11)

where Pi,j denotes the set of indices of all the lines that go through a point

(i, j) ∈ Z2p . More specifically, using (5.9) we can write

Pi,j = {(k, l) : l = j − ki (mod p), k ∈ Zp} ∪ {(p, i)} . (5.12)

From the property of the finite geometry Z2p that every two points lie on

exactly one line, it follows that every point in Z2p lies on exactly one line from

the set Pi,j , except for the point (i, j) which lies on all p + 1 lines. Thus, by



5.3. Finite Radon Transform 99

substituting (5.8) into (5.11) we obtain

FBPr(i, j) =
1

p

∑
(k,l)∈Pi,j

∑
(i′,j′)∈Lk,l

f [i′, j′]

=
1

p


 ∑
(i′,j′)∈Z2p

f [i′, j′] + p.f [i, j]




= f [i, j]. (5.13)

So the back-projection operator defined in (5.11) indeed computes the in-

verse FRAT for zero-mean images. Therefore we have an efficient and exact

reconstruction algorithm for the FRAT. Furthermore, since the FBP operator

is the adjoint of the FRAT operator, the algorithm for the inverse of FRAT

has the same structure and is symmetric with the algorithm for the forward

transform.

It is easy to see that the FRAT requires exactly p3 additions and p2 multi-

plications. Moreover, for memory access efficiency, [108] describes an algorithm

for the FRAT in which for each projection k we need to pass through every pixel

of the original image only once using p histogrammers, one for each summation

in (5.8) of that projection. For images of moderate sizes, we observed that the

actual computational time of the FRAT is compatible with other O(p2 log(p2)

transforms, such as the 2-D FFT, where the leading constant can be large. For

example, on a Sun Ultra 5 computer, both the forward and inverse FRAT’s take

less than a second to compute on an image of size 257× 257.

5.3.2 Optimal Ordering of the Finite Radon Transform Coef-
ficients

The FRAT described in Section 5.3.1 uses (5.9) as a convenient way of specifying

finite lines on the Z2p grid via two parameters: the slope k and the intercept l.

However it is neither a unique nor the best way for our purpose. Let us consider

a more general definition of lines on the finite Z2p plane as

L′a,b,t =
{
(i, j) ∈ Z2p : ai+ bj − t = 0 (mod p)

}
, (5.14)

where a, b, t ∈ Zp and (a, b) �= (0, 0).

This is by analogy with the line equation: x1 cos θ + x2 sin θ − t = 0 in

R
2. Therefore, for a finite line defined as in (5.14), (a, b) has the role of the

normal vector, while t is the translation parameter. In this section, all equations

involving line parameters are carried out in the finite field Zp, which is assumed

in the sequel without the indication of mod p.

To relate (5.9) with (5.14), consider the general line equation in (5.14)

ai+ bj − t = 0. (5.15)

If b �= 0 then, (5.15) ⇔ j = −b−1ai + b−1t, where b−1 denotes the multi-

plicative inverse of b in the finite field Zp, i.e. bb
−1 = 1 (mod p). Otherwise, if

b = 0, then it is necessary that a �= 0, thus (5.15)⇔ i = a−1t.
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By matching the line equations in (5.9) and (5.14), we have the following

equivalences between these two specifications of finite lines in Z2p :

L′a,b,t ≡ Lk,l if a = −kb, b �= 0, t = bl, for 0 ≤ k < p, and

L′a,b,t ≡ Lp,l if a �= 0, b = 0, t = al.

In other words, there is a many to one (precisely, p − 1 to one) mapping

between the line parameters in (5.14) and in (5.9), such that they represent the

same line. It is easy to see that for any c ∈ Zp, c �= 0 then {cl : l ∈ Zp} is the
same as the set Zp. For a fixed normal vector (a, b), the set of parallel lines{
L′a,b,t : t ∈ Zp

}
equals to the set of p lines {Lk,l : l ∈ Zp} with the same slope

k, where k = −b−1a for b �= 0 and k = p for b = 0. Moreover, the set of lines

with the normal vector (a, b) is also equal to the set of lines with the normal

vector (na, nb), for each n = 1, 2, . . . , p− 1.
With the general line specification in (5.14), we now define the new FRAT

to be

ra,b[t] = FRATf (a, b, t) =
1
√
p

∑
(i,j)∈L′a,b,t

f [i, j]. (5.16)

From the discussion above we see that a new FRAT projection sequence:

(ra,b[0], ra,b[1], . . . , ra,b[p − 1]), is simply a reordering of a projection sequence

(rk[0], rk[1], . . . , rk[p − 1]) from (5.8). This ordering is important for us since

we later apply a 1-D wavelet transform on each FRAT projection. Clearly, the

chosen normal vectors (a, b) control the order for the coefficients in each FRAT’s

projection, as well as the represented directions of those projections.

The usual FRAT described in Section 5.3.1 uses the set of (p + 1) normal

vectors uk, where

uk = (−k, 1) for k = 0, 1, . . . , p − 1, and

up = (1, 0). (5.17)

In order to provide a complete representation, we need the FRAT to be

defined as in (5.16) with a set of p+ 1 normal vectors
{
(ak, bk) : k ∈ Z∗p

}
such

that they cover all p+1 distinct FRAT projections represented by
{
uk : k ∈ Z∗p

}
.

We have p− 1 choices for each of those normal vectors as

(ak, bk) = nuk, 1 ≤ n ≤ p− 1.

So what is the good choice for the p + 1 normal vectors of the FRAT? To

answer this we first prove the following projection slice theorem for the general

FRAT. A special case of this theorem is already shown in [108].

Defining Wp = e−2
√
−1π/p, the discrete Fourier transform (DFT) of a func-

tion f on Z2p can be written as

F [u, v] =
1

p

∑
(i,j)∈Z2p

f [i, j]Wui+vj
p , (5.18)
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and for FRAT projections on Zp as

Ra,b[w] =
1
√
p

∑
t∈Zp

ra,b[t]W
wt
p . (5.19)

Theorem 5.1 (Discrete projection-slice theorem) The 1-D DFT Ra,b[w]

of a FRAT projection ra,b[t] is identical to the 2-D DFT F [u, v] of f [i, j] eval-

uated along a discrete slice through the origin at direction (a, b):

Ra,b[w] = F [aw, bw]. (5.20)

Proof: Substituting (5.16) into (5.19) and using the fact that the set of p parallel

lines
{
L′a,b,t : t ∈ Zp

}
provides a complete cover of the plane Z2p , we obtain

Ra,b[w] =
1

p

∑
t∈Zp

∑
(i,j)∈L′a,b,t

f [i, j]Wwt
p

=
1

p

∑
(i,j)∈Z2p

f [i, j]Ww(ai+bj)
p

= F [aw, bw].

2

From (5.20), we can see the role of the FRAT normal vectors (a, b) in the

DFT domain: it controls the order of the coefficients in the corresponding

Fourier slices. In particular, F [a, b] equals to the first harmonic component

of the FRAT projection sequence with the normal vector (a, b). For the type of

images that we are interested in, e.g. of natural scenes, most of the energy is

concentrated in the low frequencies. Therefore in these cases, in order to ensure

that each FRAT projection is smooth or low frequency dominated so that it can

be represented well by the wavelet transform, the represented normal vector

(a, b) should be chosen to be as “close” to the origin of the Fourier plane as

possible.

Figure 5.5 illustrates this by showing an example of a discrete Fourier slice.

The normal vector for the corresponding FRAT projection can be chosen as a

vector from the origin to any other point on the Fourier slice. However, the

best normal vector is selected as the closest point to the origin. The choice of

the normal vector (a, b) as the closest point to the origin causes the represented

direction of the FRAT projection to have the least “wrap around” due to the

periodization of the transform. The effect of the new ordering of FRAT coef-

ficient in the image domain is illustrated in Figure 5.6 for the same example

projection. As can be seen, the “wrap around” effect is significantly reduced

with the optimal ordering compared to the usual one.

Formally, we define the set of p+1 optimal normal vectors
{
(a1k, b

1
k) : k ∈ Z∗p

}
as follows

(a1k, b
1
k) = arg min

(ak,bk)∈{nuk:1≤n≤p−1}
s.t. Cp(bk)≥0

‖(Cp(ak), Cp(bk))‖. (5.21)
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Figure 5.5: Example of a discrete Fourier slice (indicated by the black squares)

with the best normal vector for that FRAT projection. In this example, p = 17 and

the slope k = 11. The normal vector can be chosen as a vector from the origin to

any other points on the Fourier slide. The best normal vector is (1, 3) (the solid

arrow).

Here Cp(x) denotes the centralized function of period p: Cp(x) = x −

p.round(x/p). Hence, ‖(Cp(ak), Cp(bk))‖ represents the distance from the ori-

gin to the point (ak, bk) on the periodic Fourier plane as shown in Figure 5.5.

The constraint Cp(bk) ≥ 0 is imposed in order to remove the ambiguity in de-

ciding between (a, b) and (−a,−b) as the normal vector for a projection. As a

result, the optimal normal vectors are restricted to have angles in [0, π). We

use norm-2 for solving (5.21). Minimization is simply done for each k ∈ Z∗p
by computing p − 1 distances in (5.21) and select the smallest one. Figure 5.7
shows an example of the optimal set of normal vectors. In comparison with

the usual set of normal vectors
{
uk : k ∈ Z∗p

}
as given in (5.17), the new set{

(a1k, b
1
k) : k ∈ Z∗p

}
provides a much more uniform angular coverage.

After obtaining the set of normal vectors {(a1k, b
1
k)}, we can compute the

FRAT and its inverse with the same fast algorithms using histogrammers de-

scribed in Section 5.3.1. For a given p, solving (5.21) requires O(p2) operations

and therefore it is negligible compared to the transforms themselves. Further-

more, this can be pre-computed, thus only presents as a “one-time” cost.

For the sake of simplicity, we write rk[t] for ra�k,b�k [t] in the sequel. In other

words, from now we regard k as an index in the set of optimal FRAT normal

vectors rather than a slope. Likewise, the line L′a�k,b�k,t
is simply rewritten as

Lk,t, for 0 ≤ k ≤ p, 0 ≤ t < p.

5.3.3 Frame Analysis of the FRAT

Since the FRAT is a redundant transform, it can be studied as a frame operator.

In this section we will study the FRAT in more detail and reveal some of its

properties in this frame setting. A brief introduction to frames was given in

Section 2.2.4. For finite dimensional frames, suppose that F is a linear operator
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Figure 5.6: Lines for the FRAT projection as shown in Figure 5.5 using: (a) usual

ordering, (b) optimal ordering. They both represent the same set of lines but with

different orderings. The orderings are signified by the increasing of gray-scales. The

arrows indicate the represented directions in each case.

from RN to RM , defined by

(Fx)n = 〈x, ϕn〉, for n = 1, . . . ,M.

The set {ϕn}
M
n=1 ⊂ RN is called a frame of RN if the frame condition (2.11)

is satisfied, and in that case, F is called a frame operator. It can be shown that

any finite set of vectors that spans RN is a frame. The frame bound ratio B/A

indicates the numerical stability in reconstructing x from (Fx)n; the tighter the

frame, the more stable the reconstruction against coefficient noise.

The frame operator can be regarded as a left matrix multiplication with F ,

where F is an M × N matrix in which its nth row equals to ϕn. The frame

condition (2.11) can be rewritten as

xTAx ≤ xTFTFx ≤ xTBx, ∀x ∈ RN . (5.22)

Since FTF is symmetric, it is diagonalizable in an orthonormal basis [80],

thus (5.22) implies that the eigenvalues of FTF are between A andB. Therefore,

the tightest possible frame bounds A and B are the minimum and maximum

eigenvalues of FTF , respectively. In particular, a tight frame is equivalent to

FTF = A · I, which means the transpose of F equals to its left inverse within a

scale factor A.

Now let us return to the FRAT. Since it is invertible it can be regarded as

a frame operator in l2(Z
2
p) with the frame

{
ϕk,l : k ∈ Z∗p , l ∈ Zp

}
defined as

ϕk,l = p−1/2δLk,l (5.23)

where δS denotes the characteristic function for the set S, which means δS [i, j]

equals to 1 if (i, j) ∈ S and 0 otherwise.
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Figure 5.7: The set of normal vectors, which indicate the represented directions,

for the FRAT of size p = 17 using: (a) usual ordering; (b) optimal ordering.

Note that this frame is normalized since ‖ϕ(k,l)‖ = 1. Moreover, using

properties of lines in the finite geometry Z2p , it is easy to verify that

〈ϕk,l, ϕk′,l′〉 =



1 if k = k′, l = l′

0 if k = k′, l �= l′

1/p if k �= k′
(5.24)

Hence, the minimum angle between any two frame vectors of the FRAT is:

cos−1(1/p), which approaches the right angle for large p. Therefore, we can

state that the FRAT frame is “almost” orthogonal.

By writing images as column vectors, the FRAT can be regarded as a left

matrix multiplication with F = p−1/2R, where {R}(k,l), (i,j) is the (p
2+ p)× p2

incidence matrix of the affine geometry Z2p : R(k,l), (i,j) equals to 1 if (i, j) ∈ Lk,l

and 0 otherwise.

Proposition 5.1 The tightest bounds for the FRAT frame{
ϕk,l : k ∈ Z∗p , l ∈ Zp

}
in l2(Z

2
p) are A = 1 and B = p+ 1.

Proof: From (5.22), these tightest bounds can be computed from the eigenvalues

of C = FTF = p−1RTR. Since R is the incidence matrix for lines in Z2p ,

(RTR)(i,j), (i′,j′) equals the number of lines that go through both (i, j) and

(i′, j′). Using the properties of the finite geometry Z2p that every two points lie

in exactly one line and that there are exactly p+ 1 lines that go through each

point, it follows that the entries of C equal to (p+1)p−1 along its diagonal and

p−1 elsewhere.

The key observation is that C is a circulant matrix, hence its eigenvalues

can be computed as the p2-points discrete Fourier transform (DFT) on its first

column c = ((p+ 1)p−1, p−1, . . . , p−1) [175] (§2.4.8). Writing c as

c = (1, 0, . . . , 0) + p−1 · (1, 1, . . . , 1),

we obtain,

DFT{c} = (1, 1, . . . , 1) + p · (1, 0, 0, . . . , 0) = (p+ 1, 1, 1, . . . , 1)
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where the DFT is computed for the Dirac and constant signals.

Therefore the eigenvalues of C are p+ 1 and 1, the latter with multiplicity

of p2 − 1. As a result, the tightest (normalized) frame bounds for FRAT as

A = 1 and B = p+ 1. 2

For reconstruction, the FBP defined in (5.11) can be represented by a left

multiplication with matrix p−1/2B, where B(i,j), (k,l) equals to 1 if (k, l) ∈ Pi,j

and 0 otherwise. From the definition of Pi,j , we have

R(k,l), (i,j) = B(i,j), (k,l), ∀i, j, k, l.

So the transform matrices for the operators FRAT and FBP are transposed

of each other. Let Z̄2p denotes the subspace of zero-mean images defined on Z2p .

Since the FBP is an inverse of the FRAT for zero-mean images, we have the

following result.

Proposition 5.2 On the subspace of zero-mean images Z̄2p , the FRAT is a

normalized tight frame with A = B = 1, which means

f =

p∑
k=0

p−1∑
l=0

〈f, ϕk,l〉ϕk,l, ∀f ∈ Z̄2p . (5.25)

Remark 5.1 It is worthwhile to note that constant images on Z2p are eigenvec-

tors of C = FTF with the eigenvalue p+ 1. Taking constant images out leaves

a system with all unity eigenvalues, or a tight frame on the remaining subspace.

Thus, another interpretation of FRAT is that it is a normalized tight frame for

zero-mean images.

By subtracting the mean from the image before applying the FRAT, we

change the frame bound ratio from p+1 to 1 and obtain a tight frame. Conse-

quently, this makes the reconstruction more robust against noise on the FRAT

coefficients due to thresholding and/or quantization. This follows from the re-

sult in [72] that with the additive white noise model for the coefficients, the

tight frame is optimal among normalized frames in minimizing mean-squared

error.

5.4 Orthonormal Finite Ridgelet Transform

With an invertible FRAT and applying (5.6), we can obtain an invertible discrete

ridgelet transform by taking the discrete wavelet transform (DWT) on each

FRAT projection sequence, (rk[0], rk[1], . . . , rk[p− 1]), where the direction k is

fixed. We call the overall result the finite ridgelet transform (FRIT). Figure 5.8

depicts these steps.

Typically p is not dyadic, therefore a special border handling is required.

Appendix 5.A details one possible way of computing the DWT for prime length
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Figure 5.8: Diagram for the FRIT. After taking the FRAT, a DWT is applied on

each of the FRAT slices or projections where k is fixed.

signals. Due to the periodicity property of the FRAT coefficients for each di-

rection, periodic wavelet transforms are chosen and assumed in this section.

Recall that the FRAT is redundant and not orthogonal. Next we will show

that by taking the 1-D DWT on the projections of the FRAT in a special way,

we can remove this redundancy and obtain an orthonormal transform.

Assume that the DWT is implemented by an orthogonal tree-structured filter

bank with J levels, where G0 and G1 are low and high pass synthesis filters,

respectively. Then the family of functions:{
g
(J)
0 [· − 2Jm], g

(j)
1 [· − 2

jm] : j = 1, . . . , J ; m ∈ Z
}

is the orthogonal basis of the discrete-time wavelet series [175]. Here G(j) de-

notes the equivalent synthesis filters at level j, or more specifically

G
(J)
0 (z) =

J−1∏
k=0

G0(z
2k),

G
(j)
1 (z) = G1(z

2j−1)

j−2∏
k=0

G0(z
2k), j = 1, . . . , J.

The basis functions from G
(J)
0 are called the scaling functions, while all the

others functions in the wavelet basis are called wavelet functions. Typically,

the filter G1 is designed to satisfy the high pass condition, G1(z)|z=1 = 0 so

that the corresponding wavelet has at least one vanishing moment. Therefore,

G
(j)
1 (z)|z=1 = 0, ∀j = 1, . . . , J , which means all wavelet basis functions have

zero mean.

For a more general setting, let us assume that we have a collection of (p +

1) 1-D orthonormal transforms on Rp (which can be the same), one for each

projection k of FRAT, that have bases as{
w(k)m : m ∈ Zp

}
, k = 0, 1, . . . , p.

The only condition that we require for each of these bases can be expressed

equivalently by the following lemma.
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Lemma 5.1 (Condition Z) Suppose that {wm : m ∈ Zp} is an orthogonal ba-

sis for the finite-dimensional space Rp, then the following are equivalent:

1. This basis contains a constant function, say w0, i.e. w0[l] = const, ∀l ∈

Zp.

2. All other basis functions, wm, m = 1, . . . , p− 1, have zero mean.

Proof: Denote 1 = (1, 1, . . . , 1) ∈ Rp. If w0 = c1, c �= 0 then from the

orthogonality assumption that 〈w0,wm〉 = 0, we obtain
∑

l wm[l] = 0, ∀m =

1, . . . , p − 1.

Conversely, assume that each basis function wm, 1 ≤ m ≤ p − 1, has zero

mean. Denote S the subspace that is spanned by these functions and S⊥ is

its orthogonal complement subspace in Rp. It is clear that S⊥ has dimension

1 with w0 as its basis. Consider the subspace S0 = {c1 : c ∈ R}. We have

〈c1,wm〉 = c
∑

l wm[l] = 0, ∀m = 1, . . . , p − 1, thus S0 ⊂ S⊥. On the other

hand, dim(S0) = dim(S⊥) = 1, therefore S⊥ = S0. This means w0 is a

constant function. 2

As shown before, the Condition Z is satisfied for all wavelet bases, or in fact

any general tree-structured filter banks where the all-lowpass branch is carried

to the maximum number of stages (i.e. when only one scaling coefficient is left).

By definition, the FRIT can be written as

FRITf [k,m] = 〈FRATf [k, ·], w
(k)
m [·]〉

=
∑
l∈Zp

w(k)m [l]〈f, ϕk,l〉

= 〈f,
∑
l∈Zp

w(k)m [l] ϕk,l〉. (5.26)

Here {ϕk,l} is the FRAT frame which is defined in (5.23). Hence we can

write the basis functions for the FRIT as follows:

ρk,m =
∑
l∈Zp

w(k)m [l] ϕk,l. (5.27)

We can next prove the result on the orthogonality of a modified FRIT.

Theorem 5.2 Given p+1 orthonormal bases in l2(Zp) (which can be the same):{
w
(k)
m : m ∈ Zp

}
, 0 ≤ k ≤ p, that satisfy the Condition Z then

{ρk,m : k = 0, 1, . . . , p; m = 1, 2, . . . , p− 1} ∪ {ρ0}

is an orthonormal basis in l2(Z2p), where ρk,m are defined in (5.27) and ρ0 is

the constant function, ρ0[i, j] = 1/p, ∀(i, j) ∈ Z2p .
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Proof: Let us consider the inner products between any two FRIT basis functions

〈ρk,m, ρk′,m′〉 =
∑

l,l′∈Zp

w(k)m [l] w
(k′)
m′ [l

′] 〈ϕk,l, ϕk′,l′〉.

Using (5.24), when the two FRIT basis functions have the same direction,

k = k′, then

〈ρk,m, ρk,m′〉 =
∑
l∈Zp

w(k)m [l] w
(k)
m′ [l] = δ[m−m′].

So the orthogonality of these FRIT basis functions comes from the orthog-

onality of the basis
{
w(k) : m ∈ Zp

}
. In particular, we see that ρk,m have unit

norm. Next, for the case when the two FRIT basis functions have different

directions, k �= k′, again by using (5.24) we obtain

〈ρk,m, ρk′,m′〉 =
1

p

∑
l,l′∈Zp

w(k)m [l] w
(k′)
m′ [l

′] =
1

p


∑

l∈Zp

w(k)m [l]




∑

l′∈Zp

w
(k′)
m′ [l

′]


 .

In this case, if either m or m′ is non-zero, e.g. m �= 0, then using the

Condition Z of these bases,
∑

l∈Zp
w
(k)
m [l] = 0, it implies 〈ρk,m, ρk′,m′〉 = 0.

Finally, note that
⋃

l Lk(l) = Z2p , for all directions k (see (5.10)). So,

together with the assumption that w
(k)
0 are constant functions, we see that all

of the FRIT basis functions ρk,0, (k = 0, 1, . . . , p) correspond to the mean of

the input image so we only need to keep one of them (in any direction), which

is denoted as ρ0. The proof is now complete. 2

Remark 5.2 1. An intuition behind the above result is that at each level

of the DWT decomposition applied on the FRAT projections, all of the

non-orthogonality and redundancy of the FRAT is pushed into the scaling

coefficients. When the DWT’s are taken to the maximum number of levels

then all of the remaining scaling coefficients at different projections are the

same, hence we can drop all but one of them. The result is an orthonormal

FRIT.

2. We prove the above result for the general setting where different transforms

can be applied on different FRAT projections. The choice of transforms

can be either adaptive, depending on the image, or pre-defined. For ex-

ample, one could employ an adaptive wavelet packet scheme independently

on each projection. The orthogonality holds as long as the “all lowpass”

branch of the general tree-structured filter bank is decomposed to a single

coefficient. All other branches would contain at least one highpass filter

thus leading to zero-mean basis functions.

3. Furthermore, due to the “wrap around” effect of the FRAT, some of its

projections could contain strong periodic components so that a Fourier-

type transform like the DCT might be more efficient. Also note that from
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Theorem 5.1, if we apply the 1-D Fourier transform on all of the FRAT

projections then we obtain the 2-D Fourier transform. For convenience,

we still use the term FRIT to refer to the cases where other transforms

than the DWT might be applied to some of the FRAT projections.

To gain more insight into the construction for the orthogonal FRIT basis,

Figure 5.9 illustrates a simple example of the transform on a 2 × 2 block using

the Haar wavelet. In this case, the FRIT basis is the same as the 2-D Haar

wavelet basis, as well as the 2-D discrete Fourier basis.
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Figure 5.9: Illustration on the contraction of orthogonal FRIT basis for a 2 × 2

block using the Haar wavelet. Upper: Basis images for the FRAT. Lower: Basis

images for the orthogonal FRIT. These images are obtained by taking the (scaled)

Haar transform for each pair (corresponding to one projection) of the FRAT basis

images. The constant image results from all projections and thus we can drop all

but one of them.

5.5 Variations on the Theme

5.5.1 Folded FRAT and FRIT

The FRAT in the previous sections is defined with a periodic basis over Z2p . This

is equivalent to applying the transform to a periodization of the input image f .

Therefore relatively large amplitude FRAT coefficients could result due to the

possible discontinuities across the image borders. To overcome this problem,

we employ a similar strategy as in the block cosine transform by extending the

image symmetrically about its borders [103].

Given that p is a prime number and p > 2, then p is odd and can be written

as p = 2n − 1. Consider an n × n input image f [i, j], 0 ≤ i, j < n. Fold this

image with respect to the lines i = 0 and j = 0 to produce a p× p image f̌ [i, j],

in which (also see Figure 5.10)

f̌ [i, j] = f [|i|, |j|], −n < i, j < n. (5.28)

The periodization of f̌ [i, j] is symmetric and continuous across the borders

of the original image, thus eliminating the jump discontinuity that would have

resulted from the periodic extension of f [i, j]. Applying the FRAT to the f̌ [i, j]

results in p(p + 1) transform coefficients. Notice the new range for the pixel
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n p = 2n-1

Figure 5.10: Extending the image symmetrically about its borders in order to

reduce the discontinuities across the image borders due to the periodization.

indices of the image f̌ [i, j]. We will show that the FRAT coefficients of f̌ [i, j]

exhibit certain symmetry properties so that the original image can be perfectly

reconstructed by keeping exactly n2 coefficients.

Consider the 2-D DFT of f̌ [i, j]

F̌ [u, v] =
1

p

∑
−n<i,j<n

f̌ [i, j]Wui+vj
p .

Using the symmetry property of f̌ [i, j] in (5.28), we obtain

F̌ [u, v] = F̌ [|u|, |v|].

Theorem 5.1 shows that the FRAT řa,b[t], (−n < t < n) of f̌ [i, j] can be

computed from the inverse 1-D DFT as

řa,b[t] =
1
√
p

∑
−n<w<n

Řa,b[w]W
−wt
p ,

where Řa,b[w] = F̌ [aw, bw]. The symmetry of F̌ [u, v] thus yields

Řa,b[w] = Řa,b[|w|] and (5.29)

Řa,b[w] = Ř|a|,|b|[w]. (5.30)

From (5.29) we have řa,b[t] = řa,b[|t|] or each projection řa,b[t] is symmetric

about t = 0, and (5.30) reveals the duplications among those projections. In

fact, with the set of optimal normal vectors in (5.21), except for two projections

indexed by (1, 0) and (0, 1) (the vertical and horizontal projections, respectively)

all other projections have an identical twin. By removing those duplications we

are left with 2 + (p − 2)/2 = n + 1 projections. For example, we can select

the set of n+ 1 independent projections as the ones with normal vectors in the

first quadrant (refer to Figure 5.7). Furthermore, as in (5.10), the redundancy

among the projections of the folded FRAT can be written as

řa�k,b�k [0] + 2
n−1∑
t=1

řa�k,b�k [t] =
1
√
p

∑
−n<i,j<n

f̌ [i, j]. (5.31)

The next proposition summarizes the above results.
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Proposition 5.3 The image f [i, j] can be perfectly reconstructed from the fol-

lowing n2 − 1 coefficients:

řa�
k
,b�
k
[t] such that Cp(a

1
k) ≥ 0 and 0 < t < n, (5.32)

and the mean of the image f̌ [i, j].

To gain better energy compaction, the mean should be subtracted from the

image f̌ [i, j] previous to taking the FRAT. The set of independent coefficients

in (5.32) is referred as the folded FRAT of the image f [i, j].

However, orthogonality might be lost in the folded FRIT (resulting from

applying 1-D DWT on n + 1 projections of the folded FRAT), since the basis

functions from a same direction of the folded FRAT could overlap. Nevertheless,

if we loosen up the orthogonality constraint, then by construction, the folded

FRAT projections (řa�
k
,b�
k
[t] : 0 < t < n) are symmetric with respect to t = 0 and

t = n − 1/2. This allows the use of folded wavelet transform with biorthogonal

symmetric wavelets [17] or orthogonal symmetric IIR wavelets [78].

5.5.2 Multilevel FRIT’s

In the FRIT schemes described previously, multiscale comes from the 1-D DWT.

As a result, at each scale, there is a large number of directions, which is about

the size of the input image. Moreover, the basis images of the FRIT have long

support, which extend over the whole image.

Here we describe a different scheme where the number of directions can be

controlled, and the basis functions have smaller support. Assume that the input

image has the size n×n, where n = p1p2 . . . pJq and pi are prime numbers. First,

we apply the orthonormal FRIT to n1 × n1 non-overlapping subimages of size

p1×p1, where n1 = p2 . . . pJq. Each sub-image is transformed into p
2
1−1 “detail”

FRIT coefficients plus a mean value. These mean values form an n1×n1 coarse

approximate image of the original one. Then the process can be iterated on the

coarse version up to J levels. The result is called as multilevel FRIT (MFRIT).

At each level, the basis functions for the “detail” MFRIT coefficients are

obviously orthogonal within each block, and also with other blocks since they

do not overlap. Furthermore, these basis functions are orthogonal with the

constant function on their block, and thus orthogonality holds across levels as

well. Consequently, the MFRIT is an orthonormal transform.

By collecting the MFRIT coefficients into groups depending on their scales

and directions, we obtain a subband-like decomposition with J scales, where

level i has pi directions. When pi = 2, the orthonormal FRIT using the Haar

DWT is the same as the 2×2 Haar DWT (see Figure 5.9). Therefore the MFRIT

scheme includes the multilevel 2-D Haar DWT. In general, when pi > 2, the

MFRIT offers more directions than the 2-D DWT.
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5.6 Numerical Experiments

5.6.1 Non-linear Approximation

Following the study of the efficiency of the ridgelet transform in the con-

tinuous domain on the truncated Gaussian functions [21], we first perform

numerical comparison on a 256 × 256 image of the function: f(x1, x2) =

1{x2<2x1+0.5}e
−x21−x

2
2 , using four 2-D transforms: DCT, DWT, FRAT and

FRIT. For the FRAT and FRIT, we extend the image size to the next prime

number, 257, by replicating the last pixel in each row and column. The wavelet

used in both the DWT and FRIT is the “least asymmetric” orthogonal wavelet

with 8-taps filters [42].

Our initial experiments indicate that in order to achieve good results, it is

necessary to apply the DCT instead of the DWT to capture some strong periodic

FRAT projections due to the “wrap around” effect (we refer to the remarks at

the end of Section 5.4). Without resorting to adaptive methods, we employ a

simple, pre-defined scheme where the least “wrap around” FRAT projections –

the ones with ‖(a1k, b
1
k)‖ ≤ D – use DWT, while all the others use DCT. We set

D = 3 in our experiments, which means in the FRIT, only 16 FRAT projections

are represented by the DWT.

The comparison is evaluated in terms of the non-linear approximation power,

i.e. the ability of reconstructing the original image, measured by signal-to-

noise ratios (SNR’s), using the N largest magnitude transform coefficients. Fig-

ure 5.11 shows the results. We omit the FRAT since its performance is much

worse than the others. Clearly the FRIT achieves the best result, as expected

from the continuous theory. Furthermore, the new ordering of the FRAT coef-

ficients is crucial for the FRIT in obtaining good performance.

Our next test is an “object” image of size 256 × 256 with straight edges.

Figure 5.12 shows the images obtained from non-linear approximation using the

DWT and FRIT. As can be seen, the FRIT correctly picks up the edges using

the first few significant coefficients and produces visually better approximated

images.

To gain an insight into the FRIT, Figure 5.13(a) shows the top five FRAT

projections for the “object” image that contain most of the energy, measured in

the l2-norm. Those projections correspond to the directions that have discon-

tinuities across, plus the horizontal and vertical directions. Therefore, we see

that at first the FRAT compacts most of the energy of the image into a few pro-

jections (see Figure 5.13(b)), where the linear discontinuities create “jumps”.

Next, taking the 1-D DWT on those projections, which are mainly smooth,

compacts the energy further into a few FRIT coefficients.

5.6.2 Image Denoising

The motivation for the FRIT-based image denoising method is that in the FRIT

domain, linear singularities of the image are represented by a few large coeffi-

cients, whereas randomly located noisy singularities are unlikely to produce
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Figure 5.11: (a) Test image: a truncated Gaussian image of size 256× 256 that

represents the function f(x1, x2) = 1{x2<2x1+0.5}e
−x21−x

2
2 . (b) Comparison of non-

linear approximations using four different 2-D transforms: DCT, DWT, FRIT with

usual ordering and FRIT with optimal ordering.

significant coefficients. By contrast, in the DWT domain, both image edges and

noisy pixels produce similar amplitude coefficients. Therefore, a simple thresh-

olding scheme for FRIT coefficients can be very effective in denoising images

that are piecewise smooth away from singularities along straight edges.

We consider a simple case where the original image is contaminated by an

additive zero-mean Gaussian white noise of variance σ2. With an orthogonal

FRIT, the noise in the transform domain is also Gaussian white of the same

variance. Therefore it is appropriate to apply the thresholding estimators that

were proposed in [61] to the FRIT coefficients. More specifically, our denoising

algorithm consists of the following steps:

Step 1: Applying FRIT to the noisy image.

Step 2: Hard-thresholding of FRIT coefficients with the universal threshold T =

σ
√
2logN where N = p2 pixels.

Step 3: Inverse FRIT of the thresholded coefficients.

For an image which is smooth away from linear singularities, edges are

visually well restored after Step 3. However due to the periodic property

of the FRIT, strong edges sometimes create “wrap around” effects which

are visible in the smooth regions of the image. In order to overcome this

problem, we optionally employ a 2-D adaptive filtering step.
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(a) Using DWT

(b) Using FRIT

Figure 5.12: From left to right, reconstructed images from the 32, 64, 128 and

256 most significant coefficients of the DWT and FRIT, out of 65536 coefficients.

Step 4: (Optional) Adaptive Wiener filtering to reduce the “wrap around” effect.

In some cases, this can enhances the visual appearance of the restored

image.

The above FRIT denoising algorithm is compared with the wavelet hard-

thresholding method using the same threshold value. Figure 5.14 shows the

denoising results on the real image. The FRIT is clearly shown to be more

effective than the DWT in recovering straight edges, as well as in term of SNR’s.

5.7 Conclusion and Discussion

We presented a new family of discrete orthonormal transforms for images based

on the ridgelet idea. Owning to orthonormality, the proposed ridgelet transform

is self-inverting – the inverse transform uses the same algorithm as the forward

transform – and has excellent numerical stability. Experimental results indicate

that the FRIT offers an efficient representation for images that are smooth away

from line discontinuities or straight edges.

However, it is important to emphasize that the ridgelet transform is only

suited for discontinuities along straight lines. For complex images, where edges

are mainly along bended curves and there are texture regions (which generate

point discontinuities), the ridgelet transform is not optimal. Therefore, a more
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Figure 5.13: (a) Top five FRAT projections of the “object” image that contain

most of the energy. (b) Distribution of total input image energy among FRAT

projections. Only the top 30 projections are shown in the descending order.

(a) Using DWT;

SNR = 19.78 dB.

(b) Using FRIT;

SNR = 19.67 dB

(c) Using FRIT

and Wiener filter;

SNR = 21.07 dB.

Figure 5.14: Comparison of denoising on the “object” image.

practical scheme in employing the ridgelet transform is to first utilize a quad-

tree division of images into suitable blocks where edges look straight and then

apply the discrete ridgelet transform to each block. Another scheme is to use

the ridgelet transform as the building block in a more localized construction

such as the curvelet transform [20].
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Appendix 5.A Orthogonal Wavelet Transform for

Non Dyadic Length Signals

In the construction of the orthonormal FRIT, we need wavelet bases for signals

of prime length p. In addition, those bases have to satisfy the Condition Z in

Lemma 5.1. Let n = 2J be the nearest dyadic number to p that is smaller

than or equal to p. Suppose that p− n is small, then one simple way of taking

the wavelet transform on a sequence of p samples is to apply the usual wavelet

transform on the first n samples and then extend it to cover the remaining p−n

samples.

Let {vm : m ∈ Zn} to be the basis vectors of an orthonormal wavelet trans-

form of length n with J decomposition levels. We assume periodic extension is

used to handle the boundary. Suppose that v0 corresponds to the single scaling

coefficient or the mean value, then all other vectors must have zero mean (see

Lemma 5.1). Denote c{k} be the vector with k entries, all equal to c. Consider

the following p vectors defined in Rp

w0 = (1{p}) / s0

w1 = (1{p−1},−p+ 1) / s1

w2 = (1{p−2},−p+ 2, 0) / s2

. . .

wp−n = (1{p−n},−p+ n, 0{n−1}) / sp−n

wp−n+1 = (v1, 0
{p−n})

. . .

wp−1 = (vn−1, 0
{p−n}).

Here sk is the scale factor such that ‖wk‖ = 1. The orthogonality of the new
set {wk : k ∈ Zp} can be easily verified given the fact that {vm : 1 ≤ m < n}

are orthonormal vectors with zero mean. Therefore, {wk : k ∈ Zp} is an or-
thonormal basis for Rp that satisfies the Condition Z. For a length p input vec-

tor x = (x0, x1, . . . , xp−1), the transform coefficients correspond to wk, where

p − n ≤ k ≤ p − 1, can be computed efficiently using the usual DWT with J

levels on the first n samples x′ = (x0, x1, . . . , xn−1). The last scaling coefficient

is then replaced by p − n + 1 coefficients corresponding to the basis vectors

wk, k = 0, . . . , p − n. Thus the new basis in Rp also has fast transforms.
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Texture Retrieval using

Directional Multiresolution

Representations

6.1 Introduction

6.1.1 Motivation

Digital image libraries are becoming more widely used as more visual informa-

tion is put in digital form as well as on-line. To improve human access, however,

there must be an effective and precise method for users to search, browse, and

interact with these collections and to do so in a timely manner. As a result,

content-based image retrieval (CBIR) from unannotated image databases has

been a fast growing research area recently: see [155] for a recent extensive review

on the subject.

We consider a simple architecture of a typical CBIR system (Figure 6.1),

where there are two major tasks. The first one is Feature Extraction (FE), where

a set of features, called image signatures, is generated to accurately represent

the content of each image in the database. A signature is much smaller in

size than the original image, typically on the order of hundreds of elements

(rather than millions). The second task is Similarity Measurement (SM), where

a distance between the query image and each image in the database using their

signatures is computed so that the top N “closest” images can be retrieved.

Typically, the features used in CBIR systems are low-level image features such

as color, texture, shape and layout. In this work, we focus on the use of texture

information for image retrieval.

Some of the most popular texture extraction methods for retrieval are based

on filtering or wavelet-like approaches [95, 24, 156, 167, 107, 179, 135]. Essen-

0This chapter includes research conducted jointly with Martin Vetterli and Aurélie C.

Lozano [60, 53, 50, 59].
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Feature
extraction

Feature
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Images

Query
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Signatures

N best matched images

Figure 6.1: Image retrieval system architecture, where there are two major tasks:

Feature Extraction and Similarity Measurement.

tially, these methods measure energy (possibly weighted) at the output of filter

banks as extracted features for texture discrimination. The basic assumption of

these approaches is that the energy distribution in the frequency domain iden-

tifies a texture. Besides providing acceptable retrieval performance from large

texture databases, those approaches are partly supported by physiological stud-

ies of the visual cortex [82, 44]. Furthermore, as wavelets are a core technology

in the next generation of still image coding format, JPEG-2000 [36], the choice

of wavelet features enables the implementation of retrieval systems that can

work directly in the compressed domain. Other possible transforms are wavelet

packets, wavelet frames and Gabor wavelet transforms.

Finding good similarity measures between images based on some feature set

is a challenging task. On the one hand, the ultimate goal is to define similarity

functions that match with human perception, but how humans judge the sim-

ilarity between images is a topic of ongoing research [158]. Perceptual studies

[162, 136] identified texture dimensions by conducting experiments that asked

observers to group textures according to perceived similarity. The detected per-

ceptual criteria and rules for similarity judgment from this type of subjective

experiments can be used in building image retrieval system [114]. On the other

hand, many current retrieval systems take a simple approach by using typically

norm-based distances (e.g. Euclidean distance) on the extracted feature set as a

similarity function [155]. The main premise behind these CBIR systems is that

given a “good set” of features extracted from the images in the database (the

ones that significantly capture the content of images) then for two images to be

“similar” their extracted features have to be “close” to each other. Therefore,

any reasonable similarity functions defined on the features space should perform

well. Sometimes, weighting factors are necessary to normalize extracted features

over the entire database to comparable ranges so that they have approximately

the same influence on the overall distance.

Note that this “global” normalization process is different with the one often
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used in classification problems where the normalized factors are computed using

a training set of feature vectors from each class. Furthermore, the commonly

used inverse variance weighted Euclidean distance as in CBIR [69] is question-

able in the case of a feature component that has small global variance, thus

leading to a large weight in the overall distance. By contrast, it can be argued

that a small variation component should have little discrimination power and

should thus carry a small weight in the overall distance.

6.1.2 Our Approach and Related Works

In this work we consider jointly the problems of FE and SM in texture re-

trieval using a statistical approach. Our point is that, given only a low-level

representation, statistical modeling provides a natural mean to formulate the

retrieval problem, as is typically done in pattern recognition. Considering the

two related retrieval tasks FE and SM as estimation and detection problems,

respectively, provides us with a justified way of defining similarity functions on

the feature space. The implication of this approach is twofold. First, it pro-

vides a confidence on the optimality of the defined similarity function under

some explicit assumptions. Secondly, as we will see, this approach provides a

common ground for many existing similarity functions by simply modifying the

underlying assumptions.

Statistical modeling has been used in CBIR systems before. Perhaps the

most well-known examples are the use of histograms to capture the distribution

of image features such as color [161]. Wouwer et al. [179] employed generalized

Gaussian density functions to represent texture images in the wavelet domain.

The model parameters are estimated using a method of moment matching, and

the similarity function is again defined as weighted Euclidean distances on ex-

tracted model parameters. Independently of our work, Vasconcelos and Lipp-

man [171] recently took a similar approach where they introduced a probabilistic

formulation of the CBIR problem as a common ground for several currently used

similarity functions.

As an important case of CBIR, we demonstrate in this work the application

of the statistical framework in the wavelet-based texture retrieval problem. The

statistical approach fits nicely into this case, since a texture image is often

regarded as a realization of an underlying stochastic process. In the end, we

will briefly discuss how such approach can be applied to other features and

integrated into more general image retrieval systems.

The outline of this chapter is as follows. In the next section, we set up the

CBIR problem in a general statistical framework. In Section 6.3, we apply this

framework to the wavelet-based texture retrieval application where wavelet co-

efficients in each subband are independently modeled by a generalized Gaussian

distribution (GGD). Section 6.4 presents experimental results on a large tex-

ture image database, which indicate a significant improvement in the retrieval

rate using the new approach. While having low complexity, the independent

distribution model ignore the dependency of wavelet descriptors across scales
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and orientations. Section 6.5 presents a coherent texture model based on the

wavelet-domain hidden Markov models (HMM’s) [38] that captures both wavelet

subband marginal distributions and inter-subband dependencies, while being

rotation invariant. Experiments with the wavelet-domain HMM’s are given in

Section 6.6. Finally, Section 6.7 concludes with some discussions.

6.2 Content-based Image Retrieval in a Statistical

Framework

6.2.1 General Setting

The problem of searching for the top N images similar to a given query image

from a database of total M images (N ( M) can be formulated as a multi-

ple hypotheses problem.1 The query image Iq is represented by its data set

x = (x1, x2, . . . , xL), which is typically obtained after a pre-processing stage.

Each candidate image in the database Ii : i = 1, 2, . . . ,M is assigned with a

hypothesis Hi. The goal is to select among the M possible hypotheses the N

best ones (with a ranking order) that describe the data x from the query image.

To select the N top matches from those M hypotheses we can use the mul-

tiple hypotheses testing argument recursively. That is, we first choose the best

one among the M possible hypotheses {H1,H2, . . . ,HM}, and then we choose

the next best one among the remain (M−1) hypotheses, and keep doing so forN
times. Under the common assumption that all prior probabilities of the hypothe-

ses are equal, it can be shown [130] that, for each recursive step the optimum

rule (with the minimum probability of error criterion) is to choose the hypoth-

esis with the highest likelihood among the possible ones. Thus for CBIR, it is

optimal to select N hypotheses with highest likelihood, i.e. Hk1 ,Hk2 , . . . ,HkN

where

p(x|Hk1) ≥ p(x|Hk2) ≥ . . . ≥ p(x|HkN ) ≥ p(x|Hi)

i �= kj (j = 1, 2, . . . , N). (6.1)

This is referred to as the maximum likelihood (ML) selection rule. The

problem with (6.1) is that it requires M computational steps with a typically

large data set x. This turns out to be impractical in CBIR applications since

this operation has to be done on-line in the interactive mode. Therefore, we

need to find an approximation with much less computational cost.

In the parametric approach, the conditional probability density p(X|Hi) is

modeled by a member of a family of probability density functions (PDF’s),

denoted by p(X;θi) where θi is a set of model parameters. With this setting,

the extracted features for the image Ii is the estimated model parameter θ̂i,

1However the term “hypotheses” is used here in a loose sense. Since in CBIR applications,

the search is not for the exact match but rather for most similar ones, hence we can allow for

more than one hypothesis to be valid.
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which is computed in the FE step. We denote the space of model parameters

as Θ.

Consider the query data x = (x1, x2, . . . , xL) as an independent and identi-

cally distributed (i.i.d.) sequence from the model p(X;θq) of the query image.

Then for large L, using the weak law of large number, the ML selection rule

(6.1) is equivalent to maximizing

1

L
log p(x;θi) =

1

L

L∑
j=1

log p(xj ;θi)

L→∞
−→ Eθq [log p(X;θi)] in probability (i.p.)

=

∫
p(x;θq) log p(x;θi)dx.

This can be seen as equivalent to minimizing the Kullback-Leibler distance

(KLD) or the relative entropy [37] between the two PDF’s p(x;θq) and p(x;θi)

D(p(X;θq)||p(X;θi)) =

∫
p(x;θq) log

p(x;θq)

p(x;θi)
dx (6.2)

Under the same asymptotic condition (L is large), if the FE step uses a

consistent estimator, which ensures the estimated parameter θ̂ converges to the

true parameter θ, then the distance (6.2) can be computed using the estimated

model parameters θ̂q and θ̂i. For such consistent estimator, we could employ

the ML estimator [88], which means that for the query image, it computes

θ̂q = arg max
θ∈Θ

log p(x;θ). (6.3)

In summary, by combining FE and SM into a joint modeling and classifica-

tion scheme, the optimum ML selection rule can be asymptotically realized (as

the data sets for each image become large) by:

Feature Extraction: Given the data from each image, extracting features as

estimated model parameters using a consistent estimator such as the ML

estimator.

Similarity Measurement: To select the topN matches to a query, the images

in the database are ranked based on the KLD’s between the estimated

model for the query and estimated models for each image.

The advantage of this scheme is that the SM step can be computed entirely

on the estimated model parameters, which are typically small size, so that it can

meet the timing constraint of the CBIR application. The method is generic as

it allows the use of any feature data and statistical models for indexed images.

Such image models can incorporate the knowledge from perceptual studies to

closely match human judgment.

We point out that the Kullback-Leibler distance has been used in compar-

ing images (e.g. in [26, 16]) but, to our knowledge, its use has not yet been
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sufficiently justified in the context of the image retrieval problem by jointly

considering the two related tasks FE and SM.

To combine the KLD’s from multiple data sets, such as from different chan-

nels or feature sets, we can use the chain rule [37] which states that the KLD

between two joint PDF’s p(X,Y ) and q(X,Y ) is

D(p(X,Y )||q(X,Y )) = D(p(X)||q(X)) +D(p(Y |X)||q(Y |X)). (6.4)

Especially, when data is considered to be independent between combined

sets then the joint KLD is simply the sum of KLD’s from each set. Finally, the

convexity property of KLD permits it to be used in an efficient search scheme

using multiscale representations [26].

6.2.2 Relation to Histogram Methods

Histograms have been used since the early days of image retrieval, especially

for representing color features [161], as well as for texture or local geometric

properties [155]. In this section, we demonstrate that the histogram method

can be interpreted through our statistical approach by using an appropriate

model setup.

Let us partition the range of image data into R disjoint intervals of equal

length, {S1, S2, . . . , SR}. Now consider the family of piecewise constant densi-

ties, defined as

p(x; θ) = pi for x ∈ Si, i = 1, . . . , R. (6.5)

Here the set of model parameters is θ := (p1, . . . , pR), where pi ≥ 0 (i =

1, . . . , R) and
∑R

i=1 pi = 1.

Given a sequence of i.i.d. data samples from an image, x = (x1, . . . , xL),

using the ML estimator in our statistical retrieval the FE step amounts to

computing the feature vector θ̂ where,

θ̂ = arg max
θ∈Θ

L∑
i=1

log p(xi;θ)

= arg max∑R
k=1 pk=1, pk≥0

R∑
k=1

nk log pk. (6.6)

Here we denote nk the number of data samples in (x1, . . . , xL) that belong

to the region Sk. Solving (6.6) using the Lagrange multiplier gives,

θ̂ := p with pk = nk/L, k = 1, . . . , R. (6.7)

So the extracted feature vector p is in fact the normalized histogram of the

image data x. When searching for similar images given the query data x(q)

and its features p(q), the following (discrete) KLD between the query image and
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each candidate image Ii can be used to rank the images in the database

D(p(q)||p(i)) =
R∑

k=1

p
(q)
k log

p
(q)
k

p
(i)
k

=
R∑

k=1

p
(q)
k log p

(q)
k −

R∑
k=1

p
(q)
k log p

(i)
k . (6.8)

Whereas the ML selection rule is based on the following log-likelihoods

log p(x(q)|Hi) =
L∑

j=1

log[p(x
(q)
j ;p(i))]

=
R∑

k=1

n
(q)
k log p

(i)
k

= L(q)
R∑

k=1

p
(q)
k log p

(i)
k . (6.9)

Comparing (6.8) with (6.9) indicates that in this case, the ranking based on the

KLD is exactly (rather than asymptotically) the same with the optimum ML

selection rule.

A drawback of the histogram method is that it requires a large number of ex-

tracted features, typical several hundreds histogram bins, to capture accurately

image information. Thus it leads to impractical complexity in both storage of

image indices and retrieval timing. In the next section, we employ the wavelet

transform and the generalized Gaussian density to efficiently solve the texture

retrieval problem within our statistical framework.

6.3 Wavelet Coefficients Modeled using General-

ized Gaussian Density

6.3.1 Wavelet Representation

Statistical modeling is much easier if some preprocessing is carried out on the

input images. Typical preprocessing is done via transformation of image pixel

values into a suitable space where simple models with a small number of pa-

rameters can describe the data. Wavelets have recently emerged as an effective

tool to analyze texture information as they provide a natural partition of the

image spectrum into multiscale and oriented subbands via efficient transforms

[95, 24, 156, 167, 107, 179, 135]. Furthermore, since wavelets are used in major

future image compression standards [36] and are also shown to be prominent

in searching for images based on color and shape [83, 48], a wavelet-based tex-

ture retrieval system can be used effectively in conjunction with a compression

system and retrieval systems using other image features (see Figure 6.2).

Using the assumption that the energy distribution in frequency domain iden-

tifies texture, traditional approaches computed energies of wavelet subband as
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Figure 6.2: Block diagram of the wavelet-based texture retrieval system in conjunc-

tion with a compression system. Feature extraction tasks could be done concurrently

and efficiently either when an image is compressed and inserted into the database

or when an input compressed image is decoded.

texture features. Commonly, L1 and L2 norms are used as measures.2 More

specifically, given the wavelet coefficients xi,1, xi,2, . . . , xi,L at the i-th subband,

typically the following two values are used as features:

f
(1)
i =

1

L

L∑
j=1

|xi,j |, and (6.10)

f
(2)
i =


 1

L

L∑
j=1

x2i,j


1/2 . (6.11)

On the other hand, statistical approaches treat texture analysis as a prob-

ability inference problem (e.g. see [181]). A natural extension of the energy

method is to model a texture by the marginal densities of wavelet subband co-

efficients. This is justified by recent psychological research on human texture

perception which suggests that two homogeneous textures are often difficult to

discriminate if they produce similar marginal distributions of responses from

2This is an abuse of terminology since strictly speaking L1 norm is not an energy function.

Sometimes it is chosen due to its simplicity. Results from several studies indicate no general

conclusion in favor of a particular measure.
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a bank of filters [11]. In fact, Heeger and Bergen [77] successfully synthesized

many natural looking texture images by matching the histograms of filter re-

sponses from a wavelet-liked transform. More accurate texture models can be

obtained via a fusion of marginal distributions using minimax entropy princi-

ples [181] or by taking into account the joint statistics of wavelet coefficients

across subbands [153]. However, considering complexity as a major constraint

in the image retrieval application, in this work we simply characterize texture

images via marginal distributions of their wavelet subband coefficients. Still,

this representation of texture is more precise than the ones that use wavelet

subband energies alone. But more importantly, the statistical modeling leads

to a more justifiable way of defining similarity functions between images.

6.3.2 Generalized Gaussian Density Modeling of Wavelet Co-
efficients

Experiments show that a good PDF approximation for the marginal density of

coefficients at a particular subband produced by various type of wavelet trans-

forms may be achieved by adaptively varying two parameters of the generalized

Gaussian density (GGD) [102, 148, 179, 115], which is defined as:

p(x;α, β) =
β

2αΓ(1/β)
e−(|x|/α)

β

, (6.12)

where Γ(.) is the Gamma function, i.e. Γ(z) =
∫∞
0 e−ttz−1dt, z > 0.

Here α models the width of the PDF peak (standard deviation), while β

is inversely proportional to the decreasing rate of the peak. Sometimes, α is

referred to as the scale parameter while β is called the shape parameter. The

GGD model contains the Gaussian and Laplacian PDF’s as special cases, using

β = 2 and β = 1, respectively.

Within a CBIR statistical framework, the desired estimator in our case is

the maximum-likelihood (ML) estimator. Furthermore, in [170] evaluation of

accuracy of estimates for both large and small samples for GGD models among

classic statistical methods shows that the ML estimator is significantly superior

for heavy-tailed distribution (which is often the case for subband coefficients).

We now describe the ML estimator for GGD.

Let us define the likelihood function of the sample x = (x1, . . . , xL) having

independent component as

L(x;α, β) = log
L∏
i=1

p(xi;α, β),

where α and β are parameters to be estimated. It was shown in [170] that in

this case the following likelihood equations have a unique root in probability,
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which is indeed the maximum-likelihood estimator

∂L(x;α, β)

∂α
= −

L

α
+

L∑
i=1

β |xi|
β
α−β

α
= 0 (6.13)

∂L(x;α, β)

∂β
=

L

β
+

LΨ(1/β)

β2

−
L∑
i=1

(
|xi|

α

)β

log

(
|xi|

α

)
= 0, (6.14)

here Ψ(.) is the digamma function [1], i.e. Ψ(z) = Γ′(z)/Γ(z).

Fix β > 0 then (6.13) has a unique, real, and positive solution as:

α̂ =

(
β

L

L∑
i=1

|xi|
β

)1/β
. (6.15)

Substitute this into (6.14), the shape parameter β is the solution of the

following transcendental equation:

1 +
Ψ(1/β̂)

β̂
−

∑L
i=1 |xi|

β̂ log |xi|∑
|xi|

β̂
+
log

(
β̂
L

∑L
i=1 |xi|

β̂
)

β̂
= 0, (6.16)

which can be solved numerically. We propose an effective determination of β̂ us-

ing the Newton-Raphson iterative procedure [88] with the initial guess from the

moment method described in [148]. This algorithm is detailed in Appendix 6.A.

Experiments show that typically only around three iteration steps are required

to obtain solutions with an accuracy of the order of 10−6.

Figure 6.3 shows a typical example of a histogram of wavelet subband coef-

ficients together with a plot of the fitted GGD using the ML estimator. The fits

are generally quite good. As a result, with only two parameters for the GGD,

we can accurately capture the marginal distribution of wavelet coefficients in

a subband that otherwise would require hundreds of parameters by using his-

togram. This significantly reduces the storage of the image features, as well as

the computational complexity in similarity measurement.

6.3.3 Similarity Measurement between GGD’s

Given the GGD model, the PDF of wavelet coefficients in each subband can be

completely defined via two parameters α and β. Substitute (6.12) into (6.2) and

after some manipulations we obtain the following closed form for the Kullback-

Leibler distance (KLD) between two GGD’s as:

D(p(.;α1, β1)||p(.;α2, β2)) = log

(
β1α2Γ(1/β2)

β2α1Γ(1/β1)

)

+

(
α1

α2

)β2 Γ((β2 + 1)/β1)

Γ(1/β1)
−
1

β1
. (6.17)
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Figure 6.3: Wavelet subband coefficient histogram fitted with a generalized Gaus-

sian density. Example for the Fabric15 subimage of size 128 × 128 at the highest

horizontal frequency scale. The estimated parameters are: α = 0.46 and β = 1.52.

Therefore, the similarity measurement between two wavelet subbands can

be computed very effectively using the model parameters. Furthermore, apply-

ing (6.4) with the reasonable assumption that wavelet coefficients in different

subbands are independent, the overall similarity distance between two images is

precisely the sum of KLD’s given in (6.17) between corresponding pairs of sub-

bands. That is, if we denote α
(j)
i and β

(j)
i as the extracted texture features from

the wavelet subband j of the image Ii then the overall distance between two

images I1 and I2 (where I1 is the query image) is the sum of all the distances

across all wavelet subbands:

D(I1, I2) =
B∑
j=1

D(p(.;α
(j)
1 , β

(j)
1 )||p(.;α

(j)
2 , β

(j)
2 )), (6.18)

where B is the number of analyzed subbands. Thus the KLD theory provides

us with a justified way of combining distances into an overall similarity mea-

surement, and no normalization on the extracted features is needed.

The distance function defined in (6.17) is a function of three variables: the

ratio of two scales α1/α2 and two shape parameters β1 and β2. Figure 6.4

plots the distance function when the two distributions have the same shape

parameter and when they have the same scale parameter. The chosen ranges

for the ratio α1/α2 as [0.25, 4] comes from the fact that we are only interested

in the two relatively close distributions when searching for most similar images.

The selected range for β as [0.7, 2.0] is based on the experimental results (refer

to Section 6.4.3)
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Figure 6.4: Kullback-Leibler distance between two generalized Gaussian densities

given in (6.17).

6.3.4 A Special Case of GGD

To gain more insight on the similarity function (6.17), let us consider the special

case of a GGD where the shape parameter β is fixed. That means we model the

wavelet coefficients using the following single parameter α distribution family.{
pβ(.;α), α ∈ R+ : pβ(x;α) =

β

2αΓ(1/β)
e−(|x|/α)

β

}
. (6.19)

This simplified model is often used in practical image processing problems

like denoising [115]. From the sample data sequence x = {x1, x2, . . . , xL}, the
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extracted feature is just the estimated parameter α as given in (6.15)

α̂x =

(
β

L

L∑
i=1

|xi|
β

)1/β
. (6.20)

The KLD between two PDF’s from the family given in (6.19) is:

D(pβ(.;α1)||pβ(.;α2)) = log

(
α2

α1

)
+

(
α1

α2

)β
1

β
−
1

β
. (6.21)

Next, consider again the optimum ML selection rule. At a particular wavelet

subband, denote x = {x1, x2, . . . , xL} the wavelet coefficients of the query image
and pβ(x;αk), k = 1, 2, . . . ,M as the estimated marginal distributions for each

candidate images in the database. The ranking procedure should be based on

the following normalized log-likelihood values, which can be simplified as

lk(x) =
1

L

L∑
i=1

log pβ(xi;αk)

= log β − log 2− logαk − log Γ(1/β)−

∑L
i=1 |xi|

β

Lαβ
k

= − logαk −

(
α̂x

αk

)β
1

β
+ Cβ ,

where α̂x is the extracted feature from the query data given in (6.20) and Cβ

is a constant only dependent on β.

The KLD’s between the query model parameter and a candidate image model

parameter is

dk(x) = D (pβ(.|α̂x)||pβ(.|αk))

= logαk +

(
α̂x

αk

)β
1

β
− log α̂x −

1

β
.

So we can see that, with a given query data x, in searching for the best

matches, maximizing the log-likelihood lk(x) for k = 1, 2, . . . ,M is exactly

the same as minimizing the KLD’s dk(x) for k = 1, 2, . . . ,M . Thus in this

simplified case, the retrieval process using the KLD’s provides the same result

as the optimum ML selection rule that uses direct data from the query image.

Note that in the general case, this is only true asymptotically when the size of

data L → ∞. Here, however, it is true for every L.

6.3.5 Relation to Energy-based Methods in the Laplacian Case

Furthermore, consider the case when the parameter β is fixed and equal 1. That

is we are modeling the wavelet coefficients using the Laplacian distribution. The

extracted feature from wavelet coefficients x of a particular subband is:

α̂x =

∑L
i=1 |xi|

L
. (6.22)
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This is precisely the L1-norm feature of wavelet coefficients as in (6.10).

From (6.21), the KLD between two Laplacian distribution is

D(p1(.;α1)||p1(.;α2)) = log

(
α2

α1

)
+

α1

α2
− 1.

This is a convex function of α2/α1 and is minimum when α2/α1 = 1. There-

fore in term of selecting the most similar images, we are only interested in the

situation when the ratio α2/α1 is in the vicinity of 1. Using first-order Taylor

approximation of logx around 1, logx ≈ x− 1 when x ≈ 1, we have

D(p1(.;α1)||p1(.;α2)) ≈
α2

α1
− 1 +

α1

α2
− 1

=
(α2 − α1)

2

α1α2
.

Substitute this into (6.18), the overall similarity measurement between two

images I1 and I2 becomes

D(I1, I2) ≈
B∑
j=1

(α
(j)
2 − α

(j)
1 )

2

α
(j)
2 α

(j)
1

. (6.23)

This distance is essentially the same as the popular weighted Euclidean

distance between extracted features α
(j)
i where “global” normalization factors

w(j) = var{α(j)i : i = 1, 2, . . . ,M} are replaced by “local” normalization factors

w
(j)
1,2 = α

(j)
2 α

(j)
1 .

Therefore, we demonstrated that our statistical method with a GGD model

on the wavelet coefficients can be particularized to closely resemble and thus

provide a justification for the weighted Euclidean distance between L1-norms of

wavelet subbands. This is an interesting fact since the two approaches are based

on totally different assumptions. The former relies on an underlying stochastic

process of the texture image while the later is based on the energy distribution

in the frequency domain.

6.3.6 Summary of Different Forms of KLD

Let us summarize the different forms of KLD that we have seen so far. In

Section 6.3.3 we introduced the general formula (6.17) for the KLD between

GGD’s for two wavelet subbands together with the overall similarity measure-

ment between two images (6.18) as the sum of all the distances across wavelet

subbands. Section 6.3.4 and 6.3.5 considered special cases to gain more insight

of the technique as well as providing explanation for existing methods. For

practical applications, as well as for the following experiments, the general form

of KLD’s in Section 6.3.3 are used.

6.4 Experiments with the Wavelet GGD Model

We used 40 textures obtained from the MIT Vision Texture (VisTex) database

[113] and displayed them in Figure 6.5. These are real world 512 × 512 images
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from different natural scenes. Only gray-scale levels of the images (computed

from the luminance component) were used in the experiments. Since we define

similar textures as subimages from a single original one, we selected texture

images whose visual properties do not change too much over the image.

Each of the 512 × 512 images was divided into sixteen 128 × 128 non-

overlapping subimages, thus creating a test database of 640 texture images.

Furthermore, to eliminate the effect of common range in the gray level of subim-

ages from a same original image and to make the retrieval task less biased, each

subimage was individually normalized to zero mean and unit variance before

the processing.
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Figure 6.5: Texture images from the VisTex collection that are used in the exper-

iments; from left to right and top to bottom: Bark0, Bark6, Bark8, Bark9, Brick1,

Brick4, Brick5, Buildings9, Fabric0, Fabric4, Fabric7, Fabric9, Fabric11, Fabric14,

Fabric15, Fabric17, Fabric18, Flowers5, Food0, Food5, Food8, Grass1, Leaves8,

Leaves10, Leaves11, Leaves12, Leaves16, Metal0, Metal2, Misc2, Sand0, Stone1,

Stone4, Terrain10, Tile1, Tile4, Tile7, Water5, Wood1, Wood2.
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6.4.1 Testing the Texture Discrimination Power of the GGD
Model

The accuracy of GGD’s in modeling wavelet coefficients from texture images

has been shown in [179] by fitting the estimated PDF curve with the actual

histogram of the coefficients. In this section we explore another way of testing

the GGD models in terms of comparing synthesized textures visually. This allow

us to visualize the capability of the GGD models not only in capturing texture

information but also in discriminating textures.

In this experiment, we employed the conventional pyramid wavelet decom-

position with three levels using the Daubechies’ maximally flat orthogonal filters

of length 8 (D4 filters) [42]. From a single image in the database (of size 128

× 128), two GGD parameters were estimated from each of 9 wavelet subbands

(except for the lowest band or scale coefficients which corresponds to the ap-

proximation of the image) using the ML estimator described in the previous

section. Our hypothesis is that those 18 (2× 9) model parameters capture im-
portant texture-specific features and have discrimination power among texture

classes.

To show that, wavelet coefficients at each wavelet subband are generated as

i.i.d. sample sequence from the GGD with parameters estimated from the true

coefficients. Using those generated wavelet coefficients and the scale coefficients

from the original image, the synthesis texture image is obtained by the inverse

wavelet transform. Figure 6.6 shows the example results for two images of size

128×128 from different texture classes in our database. The comparison is also

made with the reconstructed images using the scale coefficients only (referred

to as coarse approximation images).

We emphasize that the goal here is not texture synthesis but rather texture

discrimination. In this regard, it can be seen from Figure 6.6 that the extracted

18 GGD model parameters in fact capture some of the main texture-specific

information of the indexed images. The synthetic images from two different

images using additive GGD models are clearly more distinguishable than the

ones using scaling coefficients only.

6.4.2 Computational Complexity

The proposed texture retrieval system has been implemented in a Matlab envi-

ronment. The Feature Extraction (FE) step involves talking a wavelet transform

of the input image and estimating the GGD model parameters at each subband

using ML estimator. It was found that roughly the same amount of time is spent

on wavelet transformation and parameter estimation, giving a total of less than

1 second of CPU time on a Sun’s Ultra 5 workstation for extracting features

from one image.

We applied three levels of wavelet decomposition (which generates 9 wavelet

subbands). Therefore, to represent each texture image using the GGD model

we need only 18 numbers as an extracted feature set. Thanks to the closed

form of distance in (6.17), the Similarity Measurement (SM) between two im-
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(a) Fabric15 subimage.
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(b) Metal0 subimage.

Figure 6.6: Texture synthesis examples using generalized Gaussian density for

wavelet coefficients on images of size 128 × 128.

ages involves simple computation using a small number of model parameters.

Optimized implementation using lookup tables yield comparable computation

time as normalized Euclidean distance.
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6.4.3 Range of β in GGD Models

It is of interest to know the common range for the values of β in GGD’s for

texture images. For typical natural images which are dominated by smooth

regions, the values for β are found to be between 0.5 and 1 [102]. Figure 6.7

shows the histogram of the estimated values of β from our database of 640

texture images using the method described in Section 6.3.2. The discrete wavelet

transform of three levels using D4 filters was used. As can be seen from the

figure, the 5-th and 95-th percentile values of the estimated β values for our

texture database are around 0.7 and 2.0, respectively.
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Figure 6.7: Histogram of estimated values for β from 640 texture images of size

128 × 128.

6.4.4 Retrieval Effectiveness

In retrieval experiments, a simulated query image is any one of 640 images in

our database. The relevant images for each query are defined as the other 15

subimages from the same original VisTex image. Following [107] we evaluated

the performance in terms of the average rate of retrieving relevant images as a

function of the number of top retrieved images. The new approach is compared

with the traditional methods using the energy-based features in the wavelet

domain given in (6.10-6.11) together with normalized Euclidean distance as the

similarity measurement.

Evaluation of all possible wavelet transform schemes is beyond the scope of

the experiments. Thus we restricted our attention to the Daubechies family

of orthogonal wavelets [42]. This family is indexed by the number of zeros at

ω = π of the lowpass filter. Wavelet Dn uses an orthogonal filter bank with

length 2n lowpass and highpass filters.

For the number of decomposition levels, our experiments agree with [24]

that the size of the smallest subimages should not be less than 16 × 16 so the
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estimated energy values or model parameters would be robust. Hence for the

input image size 128 × 128, a maximum of 3 levels of decomposition is chosen.

Filters Methods

L1 L2 L1 + L2 GGD & KLD GGD & ED

D2 55.50 53.37 56.89 68.36 58.73

D4 55.02 51.37 55.47 66.36 57.47

D6 55.39 53.49 56.15 65.60 56.41

D8 55.80 54.37 56.54 65.37 56.45

D10 55.04 52.71 54.97 64.22 56.10

(a) One-level decomposition.

Filters Methods

L1 L2 L1 + L2 GGD & KLD GGD & ED

D2 61.29 57.54 61.43 74.10 64.63

D4 62.97 59.68 62.82 73.35 65.87

D6 61.88 59.57 61.65 72.72 64.89

D8 62.83 61.25 62.99 72.65 65.15

D10 62.21 60.62 62.11 71.61 63.45

(b) Two-level decomposition.

Filters Methods

L1 L2 L1 + L2 GGD & KLD GGD & ED

D2 62.72 61.76 64.48 76.93 62.22

D4 63.89 62.54 64.83 76.57 61.18

D6 65.07 63.03 65.11 75.51 60.35

D8 65.60 63.64 65.48 75.63 61.73

D10 65.90 64.25 65.81 74.66 59.73

(c) Three-level decomposition.

Table 6.1: Average retrieval rate (%) in the top 15 matches using pyramid wavelet

transform with different filters and decomposition levels.

In a first series of experiments, the wavelet pyramid transform (DWT) with

different filters and decomposition levels were employed. Table 6.1 shows the

comparison in performance in average percentages of retrieving relevant images

in the top 15 matches. Here L1 and L2 denote the methods which use texture

features computed as in (6.10) and (6.11), respectively; while L1+L2 uses both

set of features. Note that the L1+L2 feature set is essentially equivalent to the

one composed of means and standard deviations of the magnitude of the wavelet

coefficients that was used in [107]. It also yields the same number of features per
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images as the statistical method using GGD’s (2 features per wavelet subband).

The proposed method use the combination of GGD & KLD. We also report the

results when the normalized Euclidean distance (ED) was used on GGD’s model

parameters, which is similar to the method used in [179]. Therefore, except

GGD & KLD, all other listed methods use normalized Euclidean distance as

the similarity measurement. Following are the main points that we observed:

1. First, the statistical approach (GGD & KLD) always outperforms the

traditional methods. This is consistent with our expectation since the

GGD parameters are more expressive in characterizing textures than the

energy-based ones. Furthermore, the inferior results of the GGD & ED

method (where the same features with the statistical method were used

but with the normalized Euclidean distance) shows that good performance

in retrieval comes not just from a good set of extracted features but also

together with a suitable similarity measurement. Hence this supports our

approach of considering the two problems FE and SM jointly.

2. Secondly, the length of the filter has little effect in performance in all

methods.

3. Finally, in our database, most of the texture discrimination information

live in the first two scales of wavelet decomposition since there is little

improvement in retrieval rates when we increased from 2 to three levels of

decomposition.

Figure 6.8 details the comparison between the L1 + L2 and GGD & KLD

methods on each texture class using 3 levels of wavelet decomposition with the

D4 filters. Again we can see that the new method consistently gives superior

performance for almost all texture classes, especially for the ones that have

structural patterns. Note that those two methods extract the same number of

features, 18 (= 2 × 9), from each indexed image.

Figure 6.9 shows a graph illustrating this comparison in retrieval perfor-

mances as functions of number of top matches considered. As can be seen,

almost the double number of retrieved images is required in the traditional

method compared to the new method in order to retrieve the same number of

relevant images.

A second series of experiments was conducted for the non-subsampled dis-

crete wavelet frames (DWF). The results of retrieval rates are summarized in

Table 6.2. We also listed the results for the wavelet pyramids (DWT) for com-

parison. As expected, the full rate filterbanks improve the performance over

the critical-sampled filterbanks on both the old and new methods. However

this improvement is marginal compared to the one achieved when replacing the

traditional approach by our proposed method.

6.4.5 Image Retrieval Examples

Qualitative evaluation of our method was carried out by visually examining

the images of retrieval results. However, this can only be based on a subjective
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Figure 6.8: Average retrieval rates for individual texture class using wavelet pyramid

transform with Daubechies’ D4 filters and three decomposition levels.

Type of decomposition Methods

L1 + L2 GGD & KLD GGD & ED

1 scale (6 features)

DWT 55.47 66.36 57.47

DWF 56.92 67.09 61.34

2 scales (12 features)

DWT 62.82 73.35 65.87

DWF 63.32 74.01 69.78

3 scales (18 features)

DWT 64.83 76.57 61.18

DWF 68.48 78.12 71.13

Table 6.2: Average retrieval rate (%) in the top 15 matches using pyramid wavelet

transform (DWT) and wavelet frames (DWF) with D4 filters.
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Figure 6.9: Retrieval performance according to the number of top matches con-

sidered.

perceptual similarity since there exists no “correct” ordering that is agreed upon

by all people [100].

Figure 6.10 shows some examples of retrieval results to demonstrate the

capability of our method. In Figure 6.10(a), the query image is “leaves”. The

system almost perfectly retrieves all images of the same leaves and also images

of other types of leaves. In Figure 6.10(b), the query is a fabric patch. In this

case, all relevant images are correctly ranked as the top matches following by

images of similar textures.
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(a)

(b)

Figure 6.10: Examples of retrieval results from 640 texture images based on the

VisTex collection. In each case, the query image is on the top left corner; all other

images are ranked in the order of similarity with the query image from left to right,

top to bottom.
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6.5 Wavelet-domain Hidden Markov Models

6.5.1 Overview

While having low complexity, the marginal distribution model ignores some im-

portant texture-specific information, notably the dependency of wavelet descrip-

tors across scales and orientations. Furthermore like most other wavelet-based

texture analysis methods, the extracted features are sensitive to the orientation

of the analyzed image. This is a drawback in the retrieval applications since a

same texture can appear at different orientations in the image database.

In this section, we address these problems by using a coherent statistical

model that captures both wavelet subband marginal distributions and inter-

band dependencies while being rotation invariant. The proposed model uses a

wavelet domain hidden Markov tree [38] and steerable pyramids [152]. Rotation

invariance is achieved via a diagonalization of the covariance matrices in the

model.

First, this work enhances the recent technique on wavelet-domain hidden

Markov models (WD-HMM) [38] for better dealing with images by incorpo-

rating the dependency of wavelet coefficients across orientations. Second, by

replacing the standard wavelet transform with an overcomplete representation

via steerable pyramids [151], we obtain a steerable statistical model that can

facilitate rotation invariant applications. Finally, although WD-HMM’s have

been applied in the texture segmentation problem [28], only a small number of

texture classes (typically a few regions) were classified. Our experiments with

WD-HMM’s in the image retrieval application provide a large scale evaluation

of their capacity in discriminating among many different texture classes.

Several authors have developed rotation invariant texture features, mostly

for the classification problem – where the classes are defined a priori. Chen and

Kundu [25] modeled the features of wavelet subbands as a hidden Markov model

(HMM). These models are trained using texture samples with different orien-

tations that are treated as being in the same class. Greenspan et. al. [74] and

Haley and Manjunath [76] used the magnitude of a discrete Fourier transform

in the rotation dimension of features obtained from a multiresolution filtering.

Wu and Wei [180] achieved rotation invariance by first converting 2-D texture

images to 1-D signal via spiral sampling, and then a subband decomposition is

applied to the 1-D signal and followed by an HMM on the subband features.

6.5.2 Scalar Model

Recently, Crouse et. al. [38] proposed a new framework for statistical signal

processing based on wavelet-domain hidden Markov models (WD-HMM’s). It

provides an attractive approach to model both the non-Gaussian statistics and

the persistence across scale property of wavelet coefficients that are often found

in real-world signals. The concept ofWD-HMM is briefly reviewed in this section

together with the introduction of the notations.
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In a WD-HMM, to each wavelet coefficient Wi there is an associated dis-

crete hidden state Si with the probability mass function P (Si = m) = pmi ; m =

1, . . . ,M . Conditioning on Si = m, Wi follows a Gaussian density with the

mean µi,m and the variance σ2i,m. Since the wavelet coefficients are resulted

from convolutions with filters that have zero sum (the wavelet high-pass filters),

they can be considered to have zero mean. Furthermore, to reduce the number

of parameters in the models, wavelet coefficients at the same subband are tied

together to share the same statistics. If we take M = 2, the marginal distri-

bution wavelets coefficients at the j-th subband can be written as a mixture of

two Gaussian densities

fj(w) = p1jg(w;σj,1) + p2jg(w;σj,2), (6.24)

where p1j + p2j = 1 and g(w;σ) denotes the zero-mean Gaussian density with

variance σ2, i.e. g(w;σ) = (2πσ2)−1/2 exp(−w2/2σ2).

In this model, p1j and p2j have physical interpretation as the probability that

a wavelet coefficient W at the level j is in the state of being small and large,

respectively. Small coefficients can be considered as outcomes of a small variance

probability density function, whereas large ones can be considered as outcomes

of a large variance density.

There is an inter-scale dependency, most notably between a wavelet coeffi-

cient at a coarse level (parent) to the four coefficients at the next intermediate

level that correspond to the same location (children) in the image (see Fig-

ure 6.12(a)). In order to capture this persistence across scales, there are state

transition probability matrices for the parent → child link between the hidden

states

Aj =

[
p1→1j p1→2j

p2→1j p2→2j

]
, j = 2, 3, . . . , J. (6.25)

Here pm→m′

j is the probability that a child coefficient at the level j will be

in state m′ given its parent coefficient is in state m. It is clear that Aj has row

sums equal to 1.

By denoting ρ(i) the parent of the node i in the wavelet coefficient tree, we

have

P (Si = m) =
∑
m′

P (Sρ(i) = m′) P (Si = m|Sρ(i) = m′).

For a tied WD-HMM (where all the nodes at the same level j share the same

statistics) we have

pmj =
∑
m′

pm
′

j−1p
m′→m
j , j = 2, 3, . . . , J. (6.26)

If we denote pj = [p
1
j , p
2
j ], then (6.26) is equivalent to pj = pj−1Aj . Hence,

we have

pj = p1A2A3 . . .Aj , ∀j = 2, . . . , J. (6.27)
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Therefore, the WD-HMM for a tree of wavelet coefficients (also called hidden

Markov tree model) is completely defined by a set of model parameters:

Θ = {p1,A2, . . . ,AJ ; σj,1, σj,2 (j = 1, . . . , J)} (6.28)

Here J is the number of wavelet tree levels. The result is a statistical model that

effectively captures both the marginal and the joint parent-child distributions of

wavelet coefficients. Moreover there exists an efficient Expectation Maximiza-

tion (EM) algorithm for fitting a WD-HMM to observed signal data using the

ML criterion [38].

Originally developed for 1-D signals, the WD-HMM has been generalized

for images in segmentation [28] and denoising [138] applications. For images,

the wavelet transform leads to a decomposition with three orientations, often

called horizontal (H), vertical (V) and diagonal (D). The authors in [28, 138]

took a simple approach by considering these three orientations separately, thus

requiring training three WD-HMM’s to characterize an image, one for each

orientation. We refer to those models as scalar WD-HMM’s.

Figure 6.11 shows a typical example of the histogram of the wavelet coeffi-

cients from an image subband, together with the plot of the subband marginal

density function obtained from the trained WD-HMM. By construction, the

estimated marginal density is a mixture of two Gaussian densities as given in

(6.24). For comparison we also show the fitted GGD using the ML estimator

[60]. As can be seen from the figure, the WD-HMM provides a close match to

the GGD in terms of modeling the marginal distribution from a wavelet sub-

band. However, the WD-HMM is more expressive than the GGD model by

adding the dependencies between parent-child coefficients across scales.
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(a) WD-HMM.
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(b) GGD.

Figure 6.11: Example of wavelet subband coefficient histogram fitted with the

marginal distribution curves by WD-HMM and GGD model.
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6.5.3 Vector Model

The underlying assumption for the scalar WD-HMM approach is that wavelet

coefficients at different orientations are independent. However, experiments in

[153] show the importance of the cross-correlation of each subband with other

orientations at the same scale in characterizing texture images.

To enhance the capacity of WD-HMM in capturing the cross-orientation

dependency of wavelet coefficient, we propose to group coefficients at the same

location and scale into vectors and then model them by a single multidimensional

WD-HMM (see Figure 6.12(b)). The result is one vector WD-HMM for the

whole input image.

WH
J

WV
J WD

J

WH
J−1

(a) Scalar WD-HMM.

WH
J

WV
J WD

J

WH
J−1

(b) Vector WD-HMM.

Figure 6.12: Tree structures on the WD-HMM’s. In the scalar WD-HMM there

are three scalar models whereas in the vector WD-HMM there is one vector model.

(a) Scalar model. (b) Vector model.

More specifically, denote the wavelet coefficients at the orientation d (d =

1, 2, 3 for H, V, D respectively), scale j and location k as wd
j,k. The grouping

operation will produce vectors of coefficients w
j,k = [w1

j,k
, w2

j,k
, w3

j,k
]T . Note

that w
j,k can be seen as the result of the inner products between the input

image x with the three (local) directional wavelet basis functions ψd

j,k
at scale

j and location k [103],

wd

j,k = 〈x, ψd

j,k〉, d = 1, 2, 3.

The marginal distribution function of the wavelet coefficient vectors at the

level j in the vector WD-HMM (with tying) is expressed as

fj(w) = p1jg(w;Cj,1) + p2jg(w;Cj,2). (6.29)

Here g(w;C) denotes the zero-mean multivariate Gaussian density with co-
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variance matrix C, i.e.

g(w;C) =
1√

(2π)n|det(C)|
exp(−wTC−1w), (6.30)

where n = 3 is the number of orientations.

The wavelet coefficient vectors are then organized into the same quad-tree

structure that connects each vector to its four children at the next intermedi-

ate level of the same location (see Figure 6.12(b)). The parent → child link

relationships of these vectors are captured in the same way as in (6.25) for the

scalar WD-HMM. Thus, an image is modeled by one vector WD-HMM with a

set of parameters:

Θ = {p1,A2, . . . ,AJ ; Cj,1,Cj,2 (j = 1, . . . , J)}. (6.31)

Thus in a vector WD-HMM, wavelet coefficients at the same scale and lo-

cation but different orientations are tied up to have same hidden state. The

justification for this is that around edges in an image, wavelet coefficients at all

orientations have high probability of being significant; whereas in smooth re-

gions, all wavelet coefficients are small. Additionally, in the vector WD-HMM,

the across orientation dependencies are captured via the non-diagonal entries in

the covariance matrices of the multivariate Gaussian densities (6.30).

Since any marginal density from a multivariate Gaussian density is also a

Gaussian density, from (6.29), the marginal density for each wavelet subband

in a vector WD-HMM is also a mixture of two zero-mean Gaussian densities.

Thus, one can expect that the vector WD-HMM also captures well the subband

dependent marginal probability distributions of wavelet coefficients as the scalar

WD-HMM.

6.5.4 Relations Between Models

In this section we draw the connections between the generalized Gaussian den-

sity (GGD) model and the scalar and vector WD-HMM’s. As already discussed,

all of these models capture very well the subband-dependent marginal proba-

bility density function. This is a crucial point since psychological research on

human texture perception suggests that two homogeneous textures are often dif-

ficult to discriminate if they produce similar marginal distributions of responses

from a bank of filters [11].

In [53] by simply modeling those PDF’s by GGD’s, we have already ob-

tained very good retrieval results, compared to the traditional subband energy

approach. The scalar WD-HMM adds on an extra texture-specific information

by capturing the inter-scale dependencies (via the Aj matrices). The vector

WD-HMM furthermore adds on the inter-orientation dependencies information

(via the non-diagonal entries in the covariance matrices) in characterizing tex-

tures.

Table 6.3 shows the number of free parameters needed to describe each

image using different models, assuming the wavelet transform is decomposed
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with J levels. Note that due to the row sums property, each Aj has only 2 free

parameters. The covariance matrices C are symmetric, thus they contain 6 free

parameters each.

GGD scalar WD-HMM vector WD-HMM

Hidden states – 3× (2J − 1) 2J − 1
Densities 3× J × 2 3× J × 2 J × 2× 6

Total 6J 12J − 3 14J − 1

Table 6.3: Number of free parameters needed to specify different models for an

image when the wavelet transform is taken to J levels.

6.5.5 Steerable WD-HMM

Both the scalar and the vector WD-HMM’s described above have drawbacks

in that they are sensitive to the orientation of the input image. This problem

has roots in the standard wavelet transform. If the image is rotated then in

the wavelet domain the wavelet coefficients change completely (except for the

rotations of kπ/2, k ∈ Z). In fact, the wavelet coefficients of the rotated image

will not just be simply rotated, but also will be modified.

One way to remedy this situation is to replace the standard wavelet decom-

position with a steerable pyramid [152, 151]. The steerable pyramid is a linear

multi-scale, multi-orientation image decomposition where the basis functions

are directional derivative operators. This transform satisfies the shiftability in

orientation condition which states that at a fixed location and scale, one can

compute responses at any orientation via a linear combination of coefficients

corresponding to the oriented basis functions at that location and scale. As a

bonus, the steerable pyramid representation is also translation-invariant.

Denote w and wφ as the vectors of steerable pyramid coefficients at fixed

scale j and location k for an input image and its rotated copy by φ respectively,

then we have

wφ = Rφw. (6.32)

The columns of Rφ are a set of interpolation functions that depend only

on the rotation angle φ and the steerable basis functions. Furthermore, ori-

entation shiftability ensures the orientation invariance of response power [152],

i.e. ||wφ||2 = ||w||2 for any w. This is equivalent [80] to saying that Rφ is an

orthogonal matrix, i.e. R−1φ = RT
φ .

The following proposition shows that for the vector WD-HMM on a steerable

pyramid, if the input image is rotated then the new model can be obtained by

a simple transformation of the original WD-HMM.

Proposition 6.1 Suppose that Θ = {p1,A2, . . . ,AJ ; Cj,i (j = 1, . . . , J ; i =

1, 2)} is the vector WD-HMM on a steerable pyramid for a given homogeneous
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texture class. Then the corresponding model for the rotated version of that

texture by φ is Θφ = {p1,A2, . . . ,AJ ; Cφ
j,i (j = 1, . . . , J ; i = 1, 2)}. The only

change are the covariance matrices

Cφ
j,i = RφCj,iR

T
φ , j = 1, . . . , J ; i = 1, 2. (6.33)

Proof: The marginal distribution function of the coefficient vectors wφ at the

level j of the rotated texture can be written as

fφ
j (w

φ) =
1

J(wφ,w)
f(R−1φ w

φ)

= p1jg(R
−1
φ w

φ;Cj,1) + p2jg(R
−1
φ w

φ;Cj,2),

since the Jacobian J(wφ,w) = |det(Rφ)| = 1. Using the fact that Rφ is an

orthogonal matrix again, by manipulating (6.30) we have

g(R−1φ w
φ;C) = g(wφ;RφCR

T
φ ).

Thus fφ
j (w

φ) is also a mixture of two zero-mean multivariate Gaussian

densities which has the same probability mass function pmj for the hidden state

as in fj(w) whereas the covariance matrices are related by Equation (6.33).

Combining this across scales we obtain the desired result. 2

As a result, the vector WD-HMM on a steerable pyramid is a steerable model.

In other words, one can train a WD-HMM for a single orientation of a texture

and then steer this model to describe that texture at any other orientation.

6.5.6 Rotation Invariance using Steerable WD-HMM

Using the steerableWD-HMM above, we now develop a rotation-invariant model

for texture retrieval. Recall that the only difference between the steerable WD-

HMM’s Θ and Θφ of a given texture and its rotated version are among the

covariance matrices. These covariance matrices are related by (6.33), or Cj,i

and Cφ
j,i are said to be orthogonally equivalent [80].

Using the Takagi’s factorization [80], we factor each covariance matrix in the

steerable WD-HMM into a product

Cj,i = Uj,iΛj,iU
T
j,i, j = 1, . . . , J ; i = 1, 2, (6.34)

where Uj,i is the orthogonal matrix whose columns are the normalized eigen-

vectors of Cj,i and Λj,i is the diagonal matrix containing the real, nonnegative

eigenvalues of Cj,i in descending order. This factorization is always possible

since all covariance matrices are symmetric and positive semidefinite.

Let λ be an eigenvalue of Cφ
j,i. That means there exists a vector v satisfies

Cφ
j,iv = λv. Using (6.33) we have

RφCj,iR
T
φv = λv or Cj,iR

T
φv = λRT

φv.
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So if we let v′ = RT
φv then Cj,iv

′ = λv′ hence λ is also an eigenvalue of Cj,i.

Thus the diagonalization operation on the rotated model Θφ leads to

Λφ
j,i = Λj,i, ∀j = 1, . . . , J ; i = 1, 2.

In summary, given a steerable WD-HMM, if we factorize the covariance

matrices into the form (6.34) then the Uj,i matrices are responsible for the

orientation of the input image while the Λj,i matrices contain rotation-invariant

texture information. Thus we have the following result.

Proposition 6.2 The diagonalized steerable WD-HMM

Θ̄ = {p1,A2, . . . ,AJ ; Λj,i (j = 1, . . . , J ; i = 1, 2)} (6.35)

is a rotation-invariant model.

Remark 6.1 In practice one estimates a WD-HMM for an input image via the

EM algorithm using the ML criterion. So the rotation invariant property of the

estimated model relies on the assumption that the ML solution of the WD-HMM

is unique and the EM training algorithm is able to find it.

6.6 Experiments with Wavelet-domain HMM’s

6.6.1 Databases

We use two texture databases in our experiments. In a first series of exper-

iments, we evaluate the retrieval effectiveness of both scalar and vector WD-

HMM against the GGD method in a large database. For this, we employed the

same test database of 640 texture images obtained from the VisTex collection

that has been used in Section 6.4.

The second image collection is used to test the rotation-invariant property of

WD-HMM’s. It consists of thirteen 512 × 512 Brodatz texture images that were

rotated to various degrees before being digitized [164]. Figure 6.13 displays the

original textures at the 0 degree or non-rotated position. From these images, we

first construct the non-rotated image set by dividing each of the original 0 degree

image into sixteen 128 × 128 non-overlapping subimages. Next, we construct

the rotated image set by taking four non-overlapping 128 × 128 subimages each

from the original images at 0, 30, 60, and 120 degrees. Both databases contain

208 images that come from 13 texture classes. The non-rotated set serves as

the ideal case, where all images in a same class have same orientation, for the

rotated set.

As before, in our retrieval experiments, each image in the database is sim-

ulated as a query. The relevant images for each query are defined as the other

15 subimages from the same original 512 × 512 image. The retrieval perfor-

mance is evaluated in term of the percentage of relevant images among the top

15 retrieved images.
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Figure 6.13: Texture images from the rotate collection that are used in the exper-

iments. The images are at 0◦ degree. From left to right and top to bottom are:

Bark, Brick, Bubbles, Grass, Leather, Pigskin, Raffia, Sand, Straw, Water, Weave,

Wood, and Wool.

6.6.2 Kullback-Leibler Distance between WD-HMM’s

The statistical framework in Section 6.2 suggests that the Kullback-Leibler dis-

tance (KLD) should be used to compute the dissimilarity between WD-HMM’s.

An additional advantage of using the KLD is that since it is defined directly on

the extracted model’s parameters, then with rotation-invariant models it leads

to a rotation-invariant image retrieval system. However, there is no closed form

expression the KLD between hidden Markov models.

A simple solution is to resort to a Monte-Carlo method for computing the

integral in the KLD. More specifically, from the query model we randomly gener-

ate data as trees of wavelet coefficients, and then compute its likelihood against

each candidate models. Figure 6.14 shows the computed KLD’s between two

models using Monte-Carlo method according to the number of randomly gen-

erated trees used to compute the distance. The KLD converges rapidly and

the variance decreases as the number of used random trees increases. In our

experiments we noticed that beyond 64 randomly generated trees, the results

did not vary much any longer.

In [49], we develop a fast algorithm to approximate of the KLD for depen-

dence tree and hidden Markov models. The computational cost of this algorithm

is equal to the Monte-Carlo method that uses only one randomly generated tree.

The detail of the algorithm is described in Appendix 6.B
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Figure 6.14: Average estimations of the KLD between “Leather” and “Raffia” using

the Monte-Carlo method. The error bars are computed as the standard deviation.

6.6.3 Effectiveness of WD-HMM’s

For this series of experiments, we used the standard discrete wavelet transform

(DWT) with Haar filters and three decomposition levels. We chose three levels

of decomposition for our experiments since most of the texture information of

our database is concentrated in those three levels.

Figure 6.15 details the retrieval performance on the database of 640 textures

images from the VisTex collection by using GGD, scalar WD-HMM and vector

WD-HMM to characterize wavelet coefficients. We notice that the scalar WD-

HMMmethod gives compatible result with the GGDmethod, whereas the vector

WD-HMM method significantly improves the retrieval rates in many texture

classes, as well on average (Table 6.4). If we focus on the WD-HMM methods,

we can see that the vector model almost always outperforms the scalar one.

This is consistent with the argument in Section 6.5.3: the vector parameters are

more precise in characterizing textures since they include the inter-orientation

dependency information.

GGD scalar WD-HMM vector WD-HMM

75.73 76.51 80.05

Table 6.4: Average retrieval rates over the whole database for different methods

in Figure 6.15.

The fact that the scalar WD-HMM does not provide significant improvement

over the GGD as the vector WD-HMM could be explained as follows. First, for

most of our test textures, the inter-orientation dependency is more important

that the inter-scale dependency across wavelet subbands. Second, the inter-

scale dependency captured by a WD-HMM implicitly via hidden states is not

expressive enough.
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Figure 6.15: Average retrieval rates for individual texture class using standard

wavelet transform with Haar filters and 3 decomposition levels.

6.6.4 Effectiveness of Rotation Invariance

In the last series of experiments, we test the rotation invariant property of the

steerable WD-HMM as described in Section 6.5.6. We use steerable pyramid

having two directions and three levels of decomposition.

Figure 6.16 shows comparison of the performances in average percentages of

retrieving relevant images for the non-rotated set, the rotated setwithout using

rotation invariant model, and the rotated set with rotation invariant model.

First, we compare the retrieval results obtained for the non-rotated set

against for the rotated set without using rotation invariance. We see that

textures which have similar results for both sets (Bark, Bubbles, Grass, Weave)

are the ones that have no strong direction, as those textures are not affected by

rotation. Moreover they all have very distinct texture patterns. Textures which

are most seriously affected by rotation (Brick, Leather, Pigskin, Raffia, Straw,

Water, Wood, Wool) are the ones that are strongly directional.
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By contrast, the retrieval results obtained for the rotated set with rotation

invariance are almost the same as those from the non-rotated set. Thus, the

rotation invariant model is indeed insensitive to the orientation of the analyzed

image. The results obtained by exploiting the rotation invariance are very con-

clusive. The average retrieval rate for the rotated set improves by 36.68% when

the rotation invariance is effective. The improvement is more striking for the

strong directional textures.

However, it is worthwhile to note some details. For the textures Bark and

Weave, we notice that the results obtained for the rotated image without rotation

invariance are better than those of the non-rotated set. The reason for this is

that the original images for those textures are non-homogeneous. Therefore,

when the images are divided into subimages, it can happen that those subimages

have different directions. This can be easily observed by looking at Straw texture

for instance. In this case, the rotated setwith rotation invariance does not suffer

from those differences in direction, therefore the results are better.
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Figure 6.16: Average retrieval rates for individual texture class using order one

steerable filters and 3 decomposition levels for non-rotated set, rotated set without

rotation invariance and rotated set with rotation invariance.

6.7 Conclusion and Discussion

We have introduced a statistical framework for texture retrieval in CBIR appli-

cations by jointly considering the two problems of FE and SM while keeping in

mind the complexity constraint of such applications. In our approach, the FE

step becomes an ML estimator for the model parameters of image data and the

SM step amounts to computing the Kullback-Leibler distances between model

parameters. For large data sets, this achieves the same optimality as the ML

selection rule.

The statistical framework has been applied successfully in a wavelet-based

texture retrieval application, where wavelet coefficients in each subband are in-

dependently modeled by a generalized Gaussian density (GGD). This results
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in a new texture similarity measurement in wavelet domain which has a sound

theoretical justification with no need for normalization steps. Furthermore, by

restricting to simpler models, the new similarity distance becomes closely related

to the popular variance-normalized Euclidean distance. Hence, the statistical

approach can be used as a common framework for other existing methods. Ex-

perimental results on 640 texture images of 40 classes from the VisTex collection

indicated that the new method significantly improves retrieval rates, e.g. from

65% to 77%, over the traditional approaches, using both the pyramid wavelet

transform and wavelet frames, while requiring comparable computational time.

We then considered more complex texture models that aggregate wavelet

descriptors across subbands using hidden Markov models. These models are

shown to capture well both the subband marginal distributions and the depen-

dencies of wavelet coefficients across scales and orientations. Furthermore, we

propose a new model that can be diagonalized to be rotation invariant. This is

a useful property not just for the image retrieval application but also for many

other applications. Experimental results indicate that the wavelet-domain hid-

den Markov models lead to better texture retrieval performance than the inde-

pendent subband model. On the other hand, it possesses higher computational

cost. The rotation invariant property was also tested and results consistent with

the theory were obtained.

We want to emphasize that our methods are specially designed for the re-

trieval problem where the classes are not defined a priori. If one considers a

pure classification problem, better results might be obtained by taking into ac-

count the distribution (e.g. covariances) of the feature vector itself from each

predefined class and then employing the optimal Bayesian classifier [165]. Of

course, this requires an additional training step which one cannot usually afford

in the general retrieval problem.

The proposed statistical framework can be applied to more general retrieval

methods. The GGD was used effectively here for modeling the coefficients from

the wavelet transforms and wavelet frames and can be applied to other similar

filtering schemes such as wavelet packets and Gabor transforms. Furthermore,

we can extend the statistical model for texture using the Wold theory which

closely matches human texture perception [100]. As shown in Section 6.2.2, the

popular histogram method fits into our scheme. Thus besides texture, color

and local shape features can also be captured. Finally, assuming that different

feature sets (color, texture, shape) to be independent, the chain rule of the

KLD suggests that the overall similarity measurement is simply the sum of

KLD’s from each feature.

Appendix 6.A Maximum Likelihood Estimator for

Generalized Gaussian Density

The MLE for GGD amounts to solve the highly nonlinear equation (6.16). We

thus have to resort to iterative root finding procedures like the Newton-Raphson
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method.

Define the left hand side of (6.16) as a function of β̂, g(β̂). The Newton-

Raphson iteration finds the new guess for the root of g(β), βk+1, based on the

previous one, βk, using

βk+1 = βk −
g(βk)

g′(βk)
(6.36)

We have,

g′(β) = −
Ψ(1/β)

β2
−
Ψ′(1/β)

β3
−

∑L
i=1 |xi|

β
(log |xi|)

2∑L
i=1 |xi|

β
+

(∑L
i=1 |xi|

β
log |xi|

)2
(∑L

i=1 |xi|
β
)2

+
1

β2
+

∑L
i=1 |xi|

β
log |xi|

β
∑n

i=1 |xi|
β

−
log

(
β
L

∑L
i=1 |xi|

β
)

β2
(6.37)

where Ψ′(z) is known as the first polygamma or trigamma function [1]. Note

the fact that g(β) and g′(β) share many common terms which can be used for

saving computation at each iteration step in (6.36).

A good initial guess for the root of g(β) can be found based on the matching

moments of the data set with those of the assumed distribution [148]. For a

GGD, it can be shown that the ratio of mean absolute value to stand deviation

is a steadily increasing function of the β:

FM(β) =
Γ(2/β)√

Γ(1/β)Γ(3/β)
(6.38)

Hence if let m1 = (1/L)
∑L

i=1 |xi| and m2 = (1/L)
∑L

i=1 x
2
i be the estimate

of the mean absolute value and the estimate of the variance of the sample data

set, respectively, then β is estimated by solving

β̄ = F−1M

(
m1
√
m2

)
(6.39)

In a practical implementation, the solution of (6.39) can be found quickly

using interpolation and a look-up table whose entries are the corresponding

values of m1/
√
m2 and β̄.

Finally, the initial guess β0 = β̄ of the ML estimator β̂ can be “polished up”

with a few number steps of Newton-Raphson (experiments showed that only

around 3 steps are adequate).

Appendix 6.B Fast Approximation of Kullback-

Leibler Distance for Dependence Trees and

Hidden Markov Models

Hidden Markov models (HMM) and their generalized versions on dependence

tree structure [140], such as hidden Markov trees (HMT), have become powerful



6.B. Fast Approximation of KLD for HMM’s 155

tools in speech recognition [132] and signal processing [38]. Their successes based

on their effectiveness in capturing a large classes of natural measurements using

a small set of parameters. Furthermore, there are fast algorithms to evaluate

and train the models for given data set.

For certain problems, one would like to measure the distances between two

statistical models. This measurement is useful in evaluating the training algo-

rithm or classifying the estimated models [85]. The Kullback-Leibler distance

(KLD) or the relative entropy arises in many contexts as an appropriate mea-

surement of the distance between two models. The KLD between the two prob-

ability density functions f and f̃ is defined as [37]:

D(f‖f̃) =

∫
f log

f

f̃
. (6.40)

Since for HMM and HMT, the probability function is very complex which can

be viewed as a mixture of large number of densities, it can be practically com-

puted via an iterated a recursive procedure (the forward-backward or upward-

downward algorithms [132, 140]), and there is no simple closed form expression

for the KLD. Typically, the Monte-Carlo method is used to numerically estimate

integral in (6.40). This is done by rewriting (6.40) as

D(f‖f̃) = Ef [log f(X)− log f̃(X)].

Thus one can randomly generate a sequence of data 〈x1, x2, . . . , xT 〉 based

on the model density f(X) and then approximate the KLD by:

D(f‖f̃) ≈
1

T

T∑
n=1

[log f(xn)− log f̃(xn)] (6.41)

Obviously, for an accurate approximation of D(f‖f̃), T has to be large,

which can be overly expensive in some applications. Furthermore, due to the

“randomness” nature of the Monte-Carlo method, the approximations of the

distance could vary in different computations. In this section, we present a fast

algorithm to approximate the KLD between two dependent tree models or two

hidden Markov models. In fact, the algorithm computes an upper bound for the

KLD. The complexity of the proposed algorithm is the same as computing one

log-likelihood in (6.41), thus it is much faster compared with the Monte-Carlo

method.

6.B.1 KLD between Dependence Tree Models

Denote D(w‖w̃) as the KLD between two probability mass functions w = (wi)i
and w̃ = (w̃i)i:

D(w‖w̃) =
∑
i

wi log
wi

w̃i
. (6.42)

Our results based on the following key lemma which was proved for mixture

of Gaussians in [154].
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Lemma 6.1 The KLD between two mixture densities
∑

i wifi and
∑

i w̃if̃i is

upper bounded by

D

(∑
i

wifi‖
∑
i

w̃if̃i

)
≤ D(w‖w̃) +

∑
i

wiD(fi‖f̃i), (6.43)

with equality if and only if wifi
w̃if̃i

= const.

Proof:

D

(∑
i

wifi‖
∑
i

w̃if̃i

)
=

∫ (∑
i

wifi

)
log

∑
i wifi∑
i w̃if̃i

≤

∫ ∑
i

wifi log
wifi

w̃if̃i

=
∑
i

wi log
wi

w̃i
+
∑
i

wi

∫
fi log

fi

f̃i

= D(w‖w̃) +
∑
i

wiD(fi‖f̃i),

where the inequality comes from the log sum inequality [37]. 2

Consider a statistical dependence tree T where at each node n in the tree

there is an (hidden) state variable Sn and an observation variable On which can

be either scalar or vector (Figure 6.17). Denote ρ(n) the parent of the node n

and C(n) is the set of children nodes of the node n. Furthermore, denote Tn
be the subtree of all nodes with root at n and OTn is the set of all observation

variables attached to these nodes. For convenience, node 1 is assigned to the

root of T , thus T1 = T .

state

observation 1

ρ(i)

i

Ti

Figure 6.17: A hidden Markov tree model.
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The state variables have discrete value in the set {1, 2, . . . , J} and follow a
Markov model where the state transition probability is defined on the edges of

T as

P (S1 = i) = πi

P (Sn = j|Sρ(n) = i) = a
(n)
ij . (6.44)

The observation variables have emission probabilities conditioned only on

the state of the same node

P (On = o|Sn = i) = b
(n)
i (o), (6.45)

where b
(n)
i (.) can be either a probability mass function (pmf) for the discrete

models or a parameterized probability density function (pdf), typically a mix-

ture of Gaussians, for the continuous models. Therefore the set of parameters

θ =
{
πi, a

(n)
ij , b

(n)
i (.)

}
1≤i,j≤J, n∈T

completely specifies a hidden Markov tree

model.

At each node n, define β
(n)
i to be the conditional probability density of the

subtree observation data which has root at the node n given its state is i, that

is

β
(n)
i (oTn) = P (OTn = oTn |Sn = i, θ), i = 1, . . . , J. (6.46)

For a leaf node n, we have

β
(n)
i (on) = b

(n)
i (on). (6.47)

For an intermediate node n, from the definition of HMT model it follows

that given the state Sn = i, the observation On and its subtrees OTm for each

m ∈ C(n) are independent (refer to Figure 6.17). This leads to the following

key induction relation

β
(n)
i (oTn) = b

(n)
i (on)

∏
m∈C(n)

J∑
j=1

a
(m)
ij β

(m)
j (oTm) (6.48)

This equation is the heart of the “upward algorithm” [140] in which the

probabilities β’s are computed iteratively up the tree to the root where the

probability of the whole observation tree is defined as

P (OT = oT |θ) =
J∑

j=1

πjβ
(1)
j (oT ). (6.49)

We next describe an efficient algorithm to approximate the KLD between

two HMT models θ and θ̃.

1. Initialization: At each each leaf node n of T , using (6.47) we have

D(β
(n)
i ‖β̃(n)i ) = D(b

(n)
i ‖b̃(n)i ). (6.50)
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For discrete models, D(b
(n)
i ‖b̃(n)i ) can be computed directly as shown in

(6.42) for the KLD between two pmf’s. For continuous models, where b
(n)
i

and b̃
(n)
i are mixtures of Gaussians then we can upper bound their KLD

using Lemma 6.1 and the following closed form expression for the KLD

between two d-dimensional Gaussians [154]:

D(N (.;µ,C)‖N (.; µ̃, C̃)) =
1

2
[log

|C̃|

|C|
− d+ trace(C̃−1C)

+ (µ− µ̃)T C̃−1(µ− µ̃)]. (6.51)

2. Induction: Applying the chain rule of KLD for independent data set

{On, OTm : m ∈ C(n)} and Lemma 6.1 to (6.48) we obtain

D(β
(n)
i ‖β̃(n)i ) = D(b

(n)
i ‖b̃(n)i ) +

∑
m∈C(n)

D


 J∑

j=1

a
(m)
ij β

(m)
j ‖

J∑
j=1

ã
(m)
ij β̃

(m)
j




≤ D(b
(n)
i ‖b̃(n)i ) +

∑
m∈C(n)


D(a

(m)
i ‖ã(m)i ) +

J∑
j=1

a
(m)
ij D(β

(m)
j ‖β̃(m)j )


(6.52)

with equality if and only if a
(m)
ij β

(m)
j = C(m)ã

(m)
ij β̃

(m)
j for all j, where C(m)

is a constant at node m. Here we denote a
(m)
i = (a

(m)
i1 , . . . , a

(m)
iJ ), which

is the pmf for the state of child note Sm given its parent state Sn = i.

3. Termination: Finally, applying Lemma 6.1 to (6.49)

D(θ‖θ̃) ≤ D(π‖π̃) +
J∑

j=1

πjD(β
(1)
j ‖β̃

(1)
j ) (6.53)

with equality if and only if πjβ
(1)
j = C(1)π̃j β̃

(1)
j for all j.

In effect, we have a fast algorithm to compute an upper bound for the KLD

between two HMT models. This algorithm has the same complexity as the

upward algorithm.

6.B.2 KLD between Hidden Markov Models

A special case of HMT models is the hidden Markov model (HMM) which was

shown to be useful in many applications, especially speech recognition [132]. In

a HMM, the dependence tree T becomes a chain, that is except the last one,

each node has exactly one child. Furthermore, all the nodes share the same

statistics: a
(n)
ij = aij , b

(n)
i = bi, for all n. Number the nodes in the dependence

chain in the obvious way: start from 1 and end at N for the last node. The

inductive relation (6.52) becomes

D(β
(n)
i ‖β̃(n)i ) ≤ D(bi‖b̃i) +D(ai‖ãi) +

J∑
j=1

aijD(β
(n+1)
j ‖β̃(n+1)j ). (6.54)
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Denote di = D(ai‖ãi) +D(bi‖b̃i), D
(n)
i = D(β

(n)
i ‖β̃(n)i ), d = (d1, . . . , dJ)

T ,

D(n) = (D
(n)
1 , . . . , D

(n)
J )T , and A = {aij} be the state-transition probability

matrix. Then (6.54) can be written in a more compact form as

D(n) ≤ d+ AD(n+1). (6.55)

With the obvious same notation, the initialization step (6.50) becomes

D(N) = (D(b1‖b̃1), . . . , D(bJ‖b̃J))
T def= e.

And the termination step (6.53) becomes

D(θ‖θ̃) ≤ D(π‖π̃) + πTD(1).

By applying (6.55) iteratively we finally obtain

D(θ‖θ̃) ≤ D(π‖π̃) + πT
(

N−1∑
n=1

An−1d+ AN−1e

)
. (6.56)

Note that the KLD between two HMM’s depends on the length of the obser-

vation sequence. To overcome this problem, by invoking ergodicity, Juang and

Rabiner suggested the use of the following “normalized” KLD:

D̄(θ‖θ̃) = lim
N→∞

1

N
D(θ‖θ̃) (6.57)

If we assume that the model θ is stationary, that is there exists a stationary

distribution vector s such that sTA = sT and

lim
n→∞

πTAn = sT ,

then by substituting (6.56) into (6.57) and taking the limit we obtain the fol-

lowing simple upper bound for the “normalized” KLD between two HMM’s

D̄(θ‖θ̃) ≤ sTd =
J∑

j=1

sj

(
D(aj‖ãj) +D(bj‖b̃j)

)
. (6.58)
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Conclusion

7.1 Summary

In the introduction, we explained the importance of having an efficient or sparse

representation of visual information in many image processing tasks. The effi-

ciency of a representation can be obtained and measured by a non-linear ap-

proximation, namely by keeping the M -best components in the expansion.

In the case of one-dimensional piecewise smooth signals, which is often en-

countered in practice (for example, one scan line of a typical image), wavelets

provide the right transform. However, images are not simply stacks of one-

dimensional piecewise smooth scan lines: discontinuity points or edges are typ-

ically positioned along geometrical smooth boundaries. As the result of a sepa-

rable transform, two-dimensional wavelets impose some isotropy on the approx-

imation process, and thus fail to capture the geometrical regularity presented

in images. Still, the wavelets framework that allow signals to be successively

approximated by localized basis elements is the foundation for building new

systems.

A recent breakthrough in harmonic analysis came with the construction of

the ridgelet and curvelet transforms by Candès and Donoho [21, 20]. Curvelets

is a fixed transform that provides the optimal approximation rate for two-

dimensional functions composed of piecewise smooth regions, and separated by

smooth curves. The two key additional features of curvelets compared to sep-

arable wavelets are directionality and anisotropy. The curvelet transform was

initially intended for functions defined on the continuum plane R2. Due to the

directionality property, development of discrete versions of the curvelet trans-

form that would lead to algorithmic implementations is a challenging problem.

In particular, in certain applications, it is desirable to have invertible transform

that is critically sampled or oversampled by a small factor.

Motivated by the success of wavelets and filter banks, we investigated a pos-

sibility to implement the discrete curvelet transform by using perfect recon-

struction filter banks. The filter banks for curvelet are necessary non-separable

and can provide a multiscale and directional decomposition for images. The

161
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key is to use a multiscale decomposition to capture the edge points in the same

way as wavelets, followed by a directional decomposition to link edge points into

contour segments.

The Laplacian pyramid (LP) [18] is well-suited for the multiscale decom-

position for the curvelet transform since it generates one subband image for

each level that does not have the “frequency scrambling”. Since the LP is an

overcomplete representation it must be treated as a frame operator. For direc-

tional decomposition, we employed a directional filter bank originally proposed

by Bamberger and Smith [9].

Inspired by the elegant multiresolution analysis framework that connects

wavelet transform in harmonic analysis and filter banks in discrete signal pro-

cessing, we investigated a similar connection between curvelets and filter banks.

The key question is to obtain a correct joint sampling of scale, space and direc-

tion.

The ridgelet transform suggests a an alternative method to construct direc-

tional bases using the Radon transform followed by the wavelet transform. Our

aim was to develop a discrete ridgelet transform that achieves both invertibility

and non-redundancy.

Finally, we investigated the image retrieval application, in particular wavelet-

based texture retrieval. The goal was to find a compact set of features that

accurately represents the content of a texture image and obtain a good similarity

measure between images using the feature sets.

The main contributions of the thesis are summarized below.

Framing Laplacian pyramid and new reconstruction

We proved that the Laplacian pyramid with orthogonal filters is a tight frame

and proposed a new reconstruction method for the LP based on the dual frame

operator. The new method presents an efficient filter bank, that leads to a

proved improvement over the usual method for reconstruction in the presence of

noise. Setting up the LP as an oversampled filter bank offers a parameterization

of all synthesis filter banks that provides perfect reconstruction for the LP. This

also leads to a connection between the iterated LP and a wavelet frame in the

continuous domain.

Local directional bases from directional filter banks

We presented an in-depth study of the local directional bases generated by iter-

ated directional filter banks (DFB). This was facilitated by an explicit formulas

of equivalent filters and overall sampling matrices for each channel of the DFB.

We examined in detail the “sinc” case, where the basis functions are assumed to

have ideal frequency response. This leads to a connection between the iterated

DFB and a local Radon transform in the continuous domain.
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Pyramidal directional filter bank

We proposed a double filter bank structure, the pyramidal directional filter bank

(PDFB), by combining the Laplacian pyramid with the directional filter bank,

which provides a flexible multiscale and directional representation for images.

The PDFB can be designed to be a tight frame that satisfies the anisotropy

scaling relation for curves, and thus leads to an efficient implementation of the

discrete curvelet transform for images. That originally designed to offer a sparse

representation for two-dimensional piecewise smooth signals, the PDFB is also

useful for image analysis and feature detection.

Directional multiresolution analysis

We defined a new directional multiresolution analysis where successive refine-

ment happens at both spatial and directional resolution, using nested subspaces

for each domain. This relates the constructed PDFB with the frames in the

continuous domain and makes the connection with curvelets precise.

Orthonormal finite ridgelet transform

We developed a ridgelet implementation for finite-size images that is invertible,

non-redundant and computed via fast algorithms. Furthermore, this construc-

tion leads to a new family of block directional bases for images, including adap-

tive schemes. Numerical results show that the new transform is more effective

than the wavelet transform in approximating and denoising images with straight

edges.

Statistical framework for image retrieval

We introduced a statistical framework for image retrieval by jointly considering

the two problems of feature extraction and similarity measurement into a joint

modeling and classification scheme, while taking into account the complexity

constraint for such applications. The framework is asymptotically optimal in

terms of retrieval error probability. Moreover, it can be applied to a general

class of feature sets, leading to new similarity measurements and providing

justification for existing methods

New methods for wavelet-based texture modeling and retrieval

We applied successfully the statistical framework in the wavelet-based texture

retrieval application. The first method uses the generalized Gaussian density to

model accurately the marginal distribution of wavelet coefficients. The second

method uses the wavelet-domain hidden Markov model [38] to capture both

the marginal distributions and the inter scales and orientations dependencies of

wavelet coefficients, while being rotation invariant. Experimental results indi-

cate that the new methods significantly improve retrieval rate over the tradi-
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tional approach (which uses wavelet energy features and normalized Euclidean

distance), while requiring comparable computational time.

7.2 Future Research

The development of new representation tools for images that can both capture

geometrical regularity and be implemented by fast algorithms, is one of the most

active research areas in the image processing community. The multi-dimensional

filter bank approach in this thesis is very promising and leads to a variety of

possible extensions. In the following, we give an overview of ongoing and future

research directions.

Extending the Laplacian pyramid

In the standard structure of the LP, we can only design the pair of lowpass

filters (H and G). The oversampled FB representation of the LP prompts us to

extend it so that we have the freedom in designing all pairs of highpass filters

(Ki and Fi), as well. This extension allows us to design the highpass filters

with smaller supports while providing the same accuracy number and number

of vanishing moments for the LP as in the standard structure. Moreover, the

highpass filters can be designed to be (approximately) shifted versions of one

filter so that the resulting difference signal in the LP is (nearly) shift invariant.

The analysis and design of oversampled FB’s for wavelet frames is currently

an area of active research [128, 43, 29, 146]. Several results can lead to 1-D

LP with the above properties. However, they are specific for the 1-D case and

can not be extended to the LP in higher dimensions by the separable method.

Therefore, we have to look for new non-separable designs.

Regularity of the directional filter banks

Regularity for non-separable filter banks is a very challenging problem [96, 33].

For directional filter banks, the problem is even more complicated since itera-

tions are carried out in all branches. We have shown that the “sinc” case leads

to regularity functions in all directions. We expect that this is also possible with

compactly supported filters.

New filter designs for the directional filter banks

Given the regularity conditions, the next step is to design filters that satisfy

these criteria, as well as perfect reconstruction and vanishing moments. The

experimental results presented in the thesis use long filters to simulate the “sinc”

case, thus they are limited in spatial localization. We expect the performance

of the PDFB to improve significantly once better filters are found.
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Multiscale and directional bases

Since the PDFB is a redundant transform, an obvious question is can we modify

it to be a basis? The redundancy of the PDFB is due to the LP and can be fixed,

for example, by replacing the LP with a quincunx filter bank for the multiscale

decomposition. However, this approach creates “frequency scrambling” where

frequency is not correctly partitioned and thus could be problematic in the

applications. Nevertheless, it is still worthwhile to investigate the property of

resulting bases. An alternative approach is to search for a different multiscale

and directional sampling scheme.

Exploring tree data structures for image coding

The success of a representation in coding application is not just depending on

good approximation properties but also on the existence of effective data struc-

ture for indexing significant coefficients [32]. The good performance of wavelets

in the state-of-the-art image compression algorithms relies on the use of embed-

ded trees that effectively point to (in)significant coefficients in the transform

domain [147, 143]. The PDFB has a pyramid structure so that resolution in-

creases in both spatial and direction domain when going from coarse to fine

scale. Moreover, as smooth edges have their tangents varying slowly, significant

coefficients in PDFB are also localized in both position and direction. Therefore,

tree data structures for the PDFB coefficients that allow algorithms successively

locate the position and direction of image edges seem to be very promising in

coding and other applications.
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