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In this paper, a method to characterize texture images based on discrete Tchebichef moments is presented.
A global signature vector is derived from the moment matrix by taking into account both the magnitudes of
the moments and their order. The performance of our method in several texture classification problems was com-
pared with that achieved through other standard approaches. These include Haralick’s gray-level co-occurrence
matrices, Gabor filters, and local binary patterns. An extensive texture classification study was carried out by
selecting images with different contents from the Brodatz, Outex, and VisTex databases. The results show that
the proposed method is able to capture the essential information about texture, showing comparable or even
higher performance than conventional procedures. Thus, it can be considered as an effective and competitive
technique for texture characterization. © 2013 Optical Society of America
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1. INTRODUCTION
Texture has been a subject of study for the image processing
community during the last decades. However, there is no
consensus about its definition. Tuceryan and Jain [1] compiled
the definitions provided by different researchers. According
to them, texture is a property related to the roughness of a
surface and is characterized by the variation of pixel intensity
in the spatial domain. Texture can be found in images of differ-
ent nature: for instance, a specific body tissue, an area of
terrain, the surface of an object, or the skin of a person or
an animal. Thus, an accurate characterization of texture prop-
erties is required in different real-world applications involving
image processing. Specifically, texture plays a relevant role in
tasks such as medical diagnosis [2], remote sensing [3], or
biometric identification [4].

Mainly, texture analysis deals with four types of tasks:
texture classification, texture edge identification, texture
synthesis, and the shape-from-texture problem [1]. The former
is addressed in the present study. Texture classification aims
to automatically identify image regions characterized by
different texture properties. Thus, the attributes that differen-
tiate each texture from the other ones must be captured.
Several methods have been proposed in the literature to per-
form texture classification. They are conventionally grouped
into four categories [1]: (1) statistical methods, (2) geometrical
(structural) approaches, (3) model-based techniques, and
(4) signal processing methods based on spatial- and
frequency-domain filtering. The latter represent a traditional
approach to texture characterization [5]. Experimental results
suggest that the human brain identifies textures by means of
space-frequency analysis of the input image [6]. As a result,
this behavior has been simulated through signal processing
techniques based on image filtering. Indeed, a number of stud-
ies focused on texture classification propose frequency-based

and spatial frequency-based analysis of the image. For in-
stance, filter banks [7], wavelets [8], and Gabor filters [9,10]
have proven to be valid techniques for automatic texture iden-
tification, showing high classification performance.

Closely related to signal processing techniques, image mo-
ments have been widely used for pattern recognition tasks,
and they suitably adapt to texture analysis [11]. It is worth not-
ing the pioneering work on the construction of moment invar-
iants performed by Hu [12] in the 1960s. Moments are scalar
quantities used to characterize a function (image), reflecting
significant attributes of it. Mathematically, the moment Tpq of
an image f �x; y�, where p and q are nonnegative integers and
s � p� q denotes its order, is computed from the projection
of the image onto a polynomial basis rpq�x; y� defined on a
region D: Tpq � ∬Drpq�x; y�f �x; y�dxdy [11]. Thus, the value
of Tpq measures the correlation between the image f �x; y�
and the corresponding polynomial function rpq�x; y�. Several
moment families have been defined in the literature by using
different polynomial bases. They can be grouped as nonor-
thogonal and orthogonal depending on the behavior of the ba-
sis functions. The former include geometric and complex
moments, which represent a conventional approach for image
analysis [11]. Indeed, these moments were previously used for
feature extraction from texture images [13,14]. However, as
the basis set used to compute geometric and complex
moments is nonorthogonal, a redundant representation of
the information contained in the image is obtained [15].
Additionally, nonorthogonality causes the problem of image
recovery from these moments to be strongly ill-posed and
computationally expensive [16]. Continuous orthogonal
moments such as Legendre and Zernike families were intro-
duced to overcome these drawbacks [2,17,18]. Nevertheless,
practical implementations of continuous moments lead to two
main sources of error. First, their exact definition involves the
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calculation of integrals that are approximated by summations
in the discrete domain. Second, Legendre and Zernike polyno-
mials are defined in a specific region of the space. It is given
by the interval between −1 and 1 for Legendre polynomials,
while Zernike functions are defined in the unit circle. Thus,
the image coordinate space must be transformed for their
computation [15,19].

Discrete orthogonal moments avoid these limitations and
hold most of the useful properties of continuous orthogonal
moments. This is achieved by defining a set of orthogonal
polynomials in the image space. As a result, the discretization
error inherent to continuous moments is prevented while
enabling accurate image reconstruction [19]. Commonly,
discrete Tchebichef [15] and Krawtchouk [20] polynomials
are used to compute discrete orthogonal moments. For a dig-
ital image f �x; y� with 0 ≤ x, y ≤ N − 1, a total of N2 moments
can be extracted. The entire moment set is required for a com-
plete description of the image, that is, to ensure perfect image
reconstruction. Nevertheless, computation of high-order
moments is affected by numerical instabilities motivated by
the recurrence equations used to obtain polynomial coeffi-
cients [11]. As a result, numerical errors are propagated
and accumulated with increasing moment order and image
size [19]. To avoid this problem, Mukundan [21] defined scaled
Tchebichef polynomials. They are obtained by normalizing
Tchebichef polynomials by a factor that depends on their
order. The computational approach suggested by Mukundan
allows the complete set of discrete Tchebichef moments
(DTM) characterizing an image to be computed.

In this study, a novel method based on DTM is proposed to
characterize digitized texture images. DTM can yield relevant
texture features since they represent the outputs from the fil-
ters implemented by Tchebichef kernels [22]. The oscillating
shape of these functions reflects the correspondence between
frequency and moment order, with higher-frequency compo-
nents being linked to higher-order moments [22,23]. In our
method, only the magnitude of the moments was considered
to perform texture feature extraction. It provides information
about the similarity of the input image and the polynomial ker-
nel. Hence, higher magnitude is expected for those moments
derived from kernel functions showing fluctuating patterns
similar to the texture. We propose a signature vector M�s�
to capture texture attributes by assessing the total magnitude
of the moments of order s. As shown in our study, s-order
Tchebichef kernels are characterized by the same oscillating
pattern along different directions. Thus, the value of M�s� re-
flects the occurrence of this pattern in the underlying texture.
The dependence of the proposed feature on the moment order
enables the interpretation of texture properties. For instance,
for a high-order s, an increased value of M�s� indicates that
texture contains rapidly varying patterns. The plot ofM�s� ver-
sus s can be used for a qualitative evaluation of the texture. In
addition, M�s� enables a notable reduction of dimensionality
[24]. Given a N × N image, the initial moment set composed of
N2 coefficients is mapped onto a vector of dimension 2N − 1.

Previously, DTM have been applied to problems such as im-
age quality assessment [22,25], digital watermarking [26], im-
age autofocus [23], or image compression [27]. To our
knowledge, only a reduced number of studies have been
focused on the use of DTM to describe texture features.
These were basically devoted to texture analysis in medical

applications. In particular, low-order DTM were suggested
to characterize color texture features in gastrointestinal-tract
images from endoscopy [28]. In a different vein, a combination
of several moment families, including DTM, was proposed
to represent texture regions in CT liver images [29]. Moments
up to order four were considered for regions of size
21 × 21 pixels. On the other hand, discrete cosine transform
(DCT) coefficients, which are computed from a polynomial
basis similar to that of DTM [30], have been used for texture
characterization [31]. DCT-based analysis was conceived as
an effective approach for processing JPEG compressed
images. For this purpose, image processing is carried out
on 8 × 8 blocks as defined by the standard [31].

The aim of this study is to assess the utility of the proposed
DTM-based method for automatic identification of texture
images. A supervised classification approach is used to model
this task. Thus, given a texture image, the goal is to determine
its category from a finite number of possible choices. Regular-
izeddiscriminant analysis (RDA) [32] is proposed to implement
the classification stage. Texture images from several public
databases including Brodatz [33], Outex [34], and VisTex
[35] have been used to validate our methodology. An exhaus-
tive evaluation of the method is presented, analyzing the
influence of the image size and rotation on classification per-
formance. For a fair validation, several well-known techniques
for texture analysis, such as Haralick’s gray-level co-
occurrence matrices (GLCM) [36], Gabor filters (GF) [37,38],
and local binary patterns (LBP) [39] were used as a reference.
A comparative analysis of the results achieved by these meth-
ods and the approach presented in this study is provided.

2. METHODS
Texture classification involves two main tasks: feature extrac-
tion and classification [36]. The present study is focused on
the former. A novel feature is proposed to represent texture
properties. In order to assess its utility, it was compared with
other methods that have been proven to be effective in texture
feature extraction: GLCM, GF, and LBP. For a fair compari-
son, the same classification approach was used to process
the feature vectors derived from each of these methods.
RDA developed by Friedman [32] was selected for this
purpose since it suitably adapts to both high- and low-
dimensional input feature spaces. A detailed description of
the DTM-based method for texture analysis is presented in
this section.

A. Texture Signature Based on DTM
DTM were introduced by Mukundan et al. [15] in order to
overcome the limitations of conventional orthogonal mo-
ments based on Legendre and Zernike polynomials. DTM
are computed by projecting the original image f �x; y� (x,
y � 0; 1;…; N − 1) onto a set of Tchebichef polynomial
kernels, which include basis functions of the DCT as a special
case [30]. The moment Tpq (p, q � 0; 1;…; N − 1) of order s �
p� q is defined as [15]

Tpq �
1

~ρ�p;N�~ρ�q;N�
XN−1

x�0

XN−1

y�0

~tp�x�~tq�y�f �x; y�; (1)

where ~tn�x;N� is the scaled Tchebichef polynomial of degree
n and ~ρ�n;N� is its squared norm. The polynomial ~tn�x;N� is a
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modified version of the discrete Tchebichef polynomial
tn�x;N� by including a scale factor β�n;N�:

~tn�x;N� � tn�x;N�∕β�n;N�: (2)

Mukundan [21] proposed a computational procedure to
ensure numerical stability of DTM even in the case of large
values of the polynomial degree n and/or the image dimension
N × N . It requires using the following value for the scale factor:

β�n;N� �
�
N�N2 − 1��N2 − 22� � � � �N2 − n2�

2n� 1

�1∕2
; (3)

which results in an orthonormal basis of scaled Tchebichef
polynomials ~tn�x;N�, that is, ~ρ�n;N� � 1. The orthogonality
property of the obtained basis ensures exact image
reconstruction from the set of moments Tpq:

f �x; y� �
XN−1

p�0

XN−1

q�0

Tpq
~tp�x�~tq�y�: (4)

According to Eq. (1), the value of Tpq can be interpreted as
the correlation between the image f �x; y� and the kernel func-
tion rpq�x; y� built from discrete Tchebichef polynomials,
which is given by

rpq�x; y� �
1

~ρ�p;N�~ρ�q; N�
~tp�x�~tq�y�: (5)

These kernel functions are characterized by an oscillating
behavior, showing a sine-like profile. Figure 1 shows the
set of Tchebichef kernels for N � 8 in both spatial and
frequency domains. As can be observed, as the order of the
kernel increases, the energy of the kernel function tends to
be concentrated in higher frequencies [22].

The kernel rpq�x; y� acts as a filter for the computation of
Tpq. The magnitude of Tpq will be higher for images oscillating
at a similar rate to rpq�x; y� along both directions. This is an
interesting characteristic for texture analysis since texture
involves the spatial repetition of intensity patterns [1]. Thus,
a description of texture properties can be obtained by assess-
ing the dependence of the moment magnitude on the order s,
which is related to the frequency content of the kernels.
For this purpose, the following feature vector M�s�
(s � 0; 1;…; 2N − 2) is proposed:

M�s� �
X

p�q�s

jTpqj: (6)

The featureM�s� provides information about the properties of
the texture and can be viewed as a texture signature. To evalu-
ate the specific attributes captured by M�s�, the behavior of
Tchebichef kernels in both spatial and frequency domains is
studied.

1. Spatial Analysis of Tchebichef Moments
The magnitude of the moment Tpq with order s � p� q

quantifies the correlation between the signal f �x; y� and
the Tchebichef kernel rpq�x; y�. As described before, Tpq

is obtained by projecting f �x; y� onto rpq�x; y�, which is
characterized by a sinusoidal profile. This process involves

sampling f �x; y� by means of the two-dimensional grid defined
by rpq�x; y� [22]. Hence, if the rate and direction of variation of
the original signal f �x; y� are similar to those of rpq�x; y�, the
magnitude of Tpq will be larger.

Each Tchebichef kernel rpq�x; y� defines a sampling grid for
the computation of Tpq. However, for a given order s, the grids
derived from the corresponding Tchebichef kernels are closely
related. These kernels sample the image according to the same
pattern of positive and negative pulses. Nevertheless, the ori-
entation of this pattern varies from one kernel to another.
Hence, s-order Tchebichef kernels rpq�x; y� represent rotated
versions of the same sampling grid, capturing the same pattern
of variation in the image at different orientations.

To illustrate this, Fig. 2 depicts three different Tchebichef
kernels of order s � 4: r0;4�x; y�, r1;3�x; y�, and r2;2�x; y�. For
each of them, the first picture corresponds to the kernel
amplitude. In the second one, local maxima (white) and

Fig. 1. Complete set of Tchebichef kernels (N � 8) in both (a) spatial
and (b) frequency domains.
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minima (black) of the kernel are highlighted in order to iden-
tify the orientation (α) of the sampling grid. Finally, the third
image depicts the profile of the kernel along the direction in-
dicated by α. For this analysis, the orientation of r0;4�x; y� will
be taken as reference (α � 0 rad). The orientation of a kernel
(grid) is given by the arrangement of positive and negative
pulses, so that α is normal to the segment connecting consecu-
tive pulses of the same sign. Thus, the kernel r0;4�x; y� detects
the varying pattern given by its profile at α � 0 rad. As can be
observed, the kernel r1;3�x; y� implements a rotated version
(α > 0) of the sampling grid defined by r0;4�x; y�. As a result,
the kernel r1;3�x; y� seeks to identify the same pattern of
variation as r0;4�x; y� at a distinct orientation. This behavior
is reflected by the profile of r1;3�x; y� along α, which varies
as that of r0;4�x; y�. According to the alignment of positive
and negative pulses in the r1;3�x; y� polynomial, its orientation
(α) is between 0 and π∕4 rad. Furthermore, it is worth noting
that the directions represented by α� π, −α, and −�α� π� are
also explored. The same phenomenon can be observed for the
kernel r2;2�x; y�, which implements the target pattern of
variation at the direction given by α � π∕4 rad. Additionally,
similar conclusions are extracted from the analysis of the
other two kernels of order s � 4 not included in the figure:
r3;1�x; y�, for which α is between π∕4 and π∕2 rad, and
r4;0�x; y�, which corresponds to α � π∕2 rad.

It must be appreciated that, for s > N − 1, the patterns
implemented by the corresponding kernel functions are
searched in other directions than kπ∕2 rad, where k is any in-
teger. The reason is that these angles determine the shortest
image sections and, thus, the varying patterns associated with
these kernels cannot occur along them (i.e., there are no
sufficient image samples along these directions to capture
the patterns). Therefore, the search is performed at other di-
rections for which the length of the image section is large
enough. For instance, for the maximum order s � 2N − 2,

the corresponding varying pattern can only be found along
the longest section of the image, which corresponds to an ori-
entation of α � π∕4 rad.

From this analysis, themagnitudeofTpq evaluates theoccur-
rence of a determined spatially varying pattern, which is speci-
fied by the order s � p� q. The direction at which this pattern
is observed depends on p and q. If p < q, directions in the range
�−π∕4; π∕4�∪ �3π∕4; 5π∕4� rad are explored. For p > q, these
are in the limits given by �π∕4; 3π∕4�∪ �5π∕4; 7π∕4� rad.
Finally, in the special case p � q, the kernel is oriented at
�2k − 1�π∕4 rad, where k is any integer. Hence, the feature
M�s� quantifies the occurrence of the pattern given by s in
the underlying image. The oscillating profile of the patterns
implemented by Tchebichef kernels makesM�s� a useful mea-
sure to characterize texture.

2. Spectral Analysis of Tchebichef Moments
Spectral properties of Tchebichef kernels also provide useful
information for the interpretation of the featureM�s�. For this
purpose, the starting point is considering each kernel rpq�x; y�
as a filter. Hence, the signal gpq�x; y� results from filtering the
original image f �x; y� using rpq�x; y�:

gpq�x; y� � f �x; y� � rpq�x; y�

�
XN−1

i�0

XN−1

j�0

f �i; j�rpq�x − i; y − j�: (7)

According to symmetric properties of discrete Tchebichef
polynomials described in [21], the kernel rpq�x; y�will be even
symmetric if its order s � p� q is even while it will be odd
symmetric when the order is odd. Therefore, gpq�x; y� can
be expressed in terms of the correlation between f �x; y�
and rpq�x; y�:

gpq�x; y� � �−1�p�qf �x; y�∘rpq�x; y�

� �−1�p�q
XN−1

i�0

XN−1

j�0

f �i; j�rpq�i� x; j � y�: (8)

The moment Tpq is then formulated as a function of
gpq�x; y� evaluated at the origin:

Tpq � �−1�p�qgpq�0; 0�: (9)

Additionally, using the convolution theorem, gpq�x; y� can
be written in terms of F�u; v� and Rpq�u; v�, which denotes
the discrete Fourier transform (DFT) of f �x; y� and
rpq�x; y�, respectively. The following result is obtained:

gpq�x; y� � DFT−1fGpq�u; v�g

� K
XN−1

u�0

XN−1

v�0

F�u; v�Rpq�u; v� exp
�
−j2π

�
ux� vy

N

��
;

(10)

where Gpq�u; v� is the DFT of the signal gpq�x; y� and K

represents a constant value. By using this expression in the
definition of the moment Tpq given in Eq. (9), the dependence
of Tpq on F�u; v� and Rpq�u; v� is obtained:

Fig. 2. Spatial analysis of Tchebichef kernels of order s � 4:
(a) r0;4�x; y�, (b) r1;3�x; y�, and (c) r2;2�x; y�.
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Tpq � �−1�p�qK
XN−1

u�0

XN−1

v�0

Gpq�u; v�

� �−1�p�qK
XN−1

u�0

XN−1

v�0

F�u; v�Rpq�u; v�: (11)

Functions F�u; v� and Rpq�u; v� can be separated into mag-
nitude and phase components to appreciate their effect on
Tpq. Hence, the moment can be equivalently expressed as

Tpq � �−1�p�qK
XN−1

u�0

XN−1

v�0

jGpq�u; v�j cos�ϕGpq
�u; v��; (12)

where jGpq�u; v�j �jF�u; v�jjRpq�u; v�j and ϕGpq
�u; v� �

ϕF �u; v� � ϕRpq
�u; v�. Imaginary parts are canceled due to sym-

metric properties of jGpq�u; v�j and ϕGpq
�u; v�. From Eq. (12),

the magnitude of Tpq is influenced by two conditions. Initially,
a larger magnitude is expected if the energy of f �x; y� is con-
centrated in similar frequency components to rpq�x; y�. In ad-
dition, increased magnitude will be obtained if ϕGpq

�u; v� is
either 0, ϕF �u; v� � −ϕRpq

�u; v�, or π, ϕF �u; v� � π − ϕRpq
�u; v�,

for each point �u; v� in the frequency plane. If the sign of
cos�ϕGpq

�u; v�� recurrently changes, the termsof the summation
tend to cancel eachother, resulting in a lowermagnitudeofTpq.
Thus, its value is expected to be larger if cos�ϕGpq

�u; v�� tends to
preserve its signs, namely ϕGpq

�u; v� is either between
�−π∕2; π∕2� or between �π∕2; 3π∕2� rad.

As expressed in Eq. (12), the spectrum of rpq�x; y� deter-
mines those frequency components of f �x; y� that influence
the value of Tpq. Figure 1 reflects that kernels with the same
order are concentrated in similar frequencies occurring at dif-
ferent orientations. This result is consistent with the conclu-
sions drawn from spatial analysis, which revealed that, for a
given order, all the kernels are characterized by the same
varying pattern along distinct directions. The value of M�s�
is then computed from a subset of the frequency components
of f �x; y�, which is defined by the set of kernels rpq�x; y� such
that s � p� q. Therefore, grouping s-order Tchebichef
kernels results in a specific frequency band for the computa-
tion of M�s�. Figure 3 depicts this band (black color identifies
components with a higher magnitude of the spectrum) for
s � 0, N∕2, N − 1, 3N∕2, and 2N − 2 (N � 128). As can be
observed, the combination of kernels with the same order
has the effect of a bandpass filter. The filter moves from the
origin (s � 0) toward the maximum frequency (s � 2N − 2) as
s is increased, showing the relationship between moment or-
der and frequency. The whole range of values for s defines a
filter bank that entirely covers the frequency plane. Thus, the
feature M�s� quantifies the response of the original image to
each of the bandpass filters in this bank.

The shape of the resulting bandpass filters indicates that
the frequency components of s-order kernels are not exactly
equal (a ring centered around the origin would reflect the
same frequency content for any orientation). For example,
the frequencies associated with kernels oriented at α � 0
or α � π∕2 rad are higher than those corresponding to kernels
oriented at any other α between these two values. This result
is in agreement with the observation of the kernels in the
spatial domain. For α � kπ∕2, where k is any integer and
the order is assumed to be s ≤ N − 1, a specific pattern of
variation occurs along the shortest spatial lengths in the

image. However, for other orientations, the same pattern is
found along longer image sections, resulting in lower rates
of variation. Specifically, if α � kπ∕4, the target pattern is
found along the longest possible image section. As the same
pattern occurs along a different spatial length, distinct
frequencies are associated with each kernel of order s, leading
to the observed bandpass filters.

3. Application to Texture Characterization
The analysis of Tchebichef polynomials reveals that the value
of M�s� assesses the occurrence of patterns similar to those
associated with kernels of order s. The profile of these
kernels, characterized by an oscillating behavior, suitably
adapts to texture analysis. Texture images are composed of
characteristic elements that are repeated in the space [1]. Thus,
the texture surface is expected to show recurrent patterns of
variation along space coordinates. Due to this repetitive behav-
ior, these patterns can be captured through the correlation of
the image with the set of Tchebichef kernels. The featureM�s�
measures this correlation taking into account different
directions in the image. In other words, M�s� encodes those
patterns characterizing the texture and, thus, different M�s�
signatures are expected for distinct texture types.

It is worth noting that the number of kernels that contribute
to M�s� depends on s. This number is given by s� 1, if
0 ≤ s ≤ N − 1, or 2N − 1 − s, if N − 1 < s ≤ 2N − 2. However,
there is no bias in the computation of the feature M�s�.
The number of s-order kernels is such that it is sufficient
to capture the fluctuating pattern specified by s at any orien-
tation. This is reflected by the interpretation of M�s� in the
frequency domain. As s increases from 0 to N − 1, a higher
number of kernels is required to cover the entire range of
orientations at which the target pattern may occur, i.e.,
additional filters (kernels) are needed to cover the region
of the frequency plane that corresponds to s. For s > N − 1,
the target pattern cannot appear at all the possible orienta-
tions in the image. Therefore, a smaller number of kernels
is required to capture its occurrence (see Figs. 1 and 3).

Fig. 3. Bandpass filters resulting from the combination of s-order
Tchebichef kernels (highlighted bands correspond to frequency
components with higher energy content).
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On the other hand, the proposedM�s� feature is not strictly
invariant to rotation. This result is drawn from the bandpass
filters defined by the set of s-order kernels. In order to be in-
sensitive to rotation, ring-shaped filters centered on the origin
should be obtained. This is not the case for the set of bandpass
filters from which M�s� is computed. As a result, a different
M�s� will be expected for rotated versions of the same image.
For example, a fluctuating pattern oriented at 0 rad and
exhibiting a profile similar to that of the a-order kernel
r0a�x; y� will be reflected by a higher value of M�s� at s � a.
If the original image is rotated α rad, with 0 < α < π∕2 rad, the
pattern will be aligned along the orientation given by α. From
our previous analysis, this pattern will be captured by kernels
with order s � a0�a0 > a�. The reason is that the pattern will
preserve its frequency content, that is, its rate of variation,
while the a-order kernel rpq�x; y�, a � p� q, oriented at α,
is characterized by smaller frequencies than the a-order
kernel r0a�x; y� at 0 rad. Therefore, for the rotated image,
the influence of this pattern will be reflected by M 0�s� at
s � a0�a0 > a�. After rotation, the pattern will be correlated
with the a0-order kernel rp0q0 �x; y�, a0 � p0 � q0, with a rate
of variation higher than that of rpq�x; y� along the direction
specified by α. However, small differences between signatures
M�s� and M 0�s� are expected if the patterns that compose the
texture are not aligned at a specific orientation. If there are
patterns randomly oriented between 0 and π rad, these will
tend to be rearranged at closely oriented directions after
rotating the image. Therefore, for textures characterized by
patterns without a marked orientation, the proposed feature
will be less influenced by rotation, achieving robustness to
this transformation. As will be shown, our experimental
results confirmed this effect.

B. Conventional Methods for Texture Analysis
Three conventional methods for texture analysis were consid-
ered for comparison purposes with the presented DTM-based
procedure. These include Haralick’s GLCM, GF, and LBP.
These methods have proven to be successful for texture
classification and are widely recognized by the scientific
community in the field [1,39]. A detailed explanation of the
basis for GLCM, GF, and LBP can be found in [36], [37,38],
and [39], respectively. Here, we provide a brief description
of the texture features derived from each of these methods.

1. Haralick’s GLCM
The GLCM was computed for a quantization level Lg � 8 [5].
Four different matrices were obtained by varying the configu-
ration of the displacement vector, which is specified by the
distance (d) and the angle (θ). The value of d was set to 1
while angles 0, 45, 90, and 135 deg were assessed [3]. As sug-
gested in [3], 10 statistical features were computed from each
of the four co‐occurrence matrices: energy, contrast, correla-
tion, homogeneity, entropy, autocorrelation, dissimilarity,
cluster shade, cluster prominence, and maximum probability.
Thus, a total of 40 descriptors (10 statistical features for each
of the four orientations) were obtained from the texture.

2. GF
The results reported by Bianconi and Fernández [40] were
considered for the design of the GF bank. Hence, a total of
24 filters, four different central frequencies and six

orientations, were used. The maximum value for the central
frequency of a filter was set to 0.327 Hz and a ratio between
consecutive frequencies of half-octave was applied. The stan-
dard deviation of the Gaussian filter along both radial and an-
gular directions was set to 0.5. As suggested in [40], mean and
standard deviation from the magnitude of the filtered images
were used as texture features. As a result, a feature vector
composed of 48 elements (two features per filter and a total
of 24 filters) was used to describe the texture.

3. LBP
The rotation-invariant uniform operator (LBPriu2

P;R ) was consid-
ered to obtain the LBP code of an image. As suggested by
Ojala et al. [39], the number of neighbors (P) around a central
pixel and the radius of the circumference on which they are
distributed were set to 24 and 3, respectively. Thus, every
pixel in the original image was then assigned one of P � 2 pos-
sible values. Each of them represents a different structuring
element. A histogram representing the relative frequency of
occurrence for each of the P � 2 structures was used as
the texture feature vector. The number of bins, P � 2, deter-
mines the dimension of this vector.

C. RDA
A multivariate feature vector z � �z1;…; zl� is obtained from
the analysis of an image using one of the described methods:
DTM, GLCM, GF, and LBP. This vector summarizes the infor-
mation in the texture according to the properties exhibited by
the corresponding method. Multivariate analysis is required to
classify it into one of several categories. In this study, super-
vised classification is proposed using RDA [32].

RDA generalizes the concept of discriminant analysis (DA),
including quadratic DA (QDA) and linear DA (LDA) as special
cases. It addresses the problem of covariance matrix estima-
tion in high dimensional spaces. Covariance matrix estimates
(Σk) become highly variable when the number of samples in
each category is small compared with the dimension of the
input feature space. As a result, the output of the DA classifier
may be biased by the smallest eigenvalues. Friedman sug-
gested a method to prevent this problem based on regulariza-
tion techniques [32]. The idea is to improve the estimates of
the covariance matrices by reducing the variance associated
with the sample-based estimate while increasing the bias.
This adjustment is determined by two parameters λ and
μ �0 ≤ λ; μ ≤ 1� as expressed by the following equation:

Σ
k
�λ; μ� � �1 − μ�Σ

k
�λ� � μ

l
trace

h
Σ
k
�λ�

i
I; (13)

where l is the dimension of the input feature space, I denotes
the identity matrix, and

Σ
k
�λ� � �1 − λ�Sk � λS

�1 − λ�Nk � λNT

: (14)

The terms S and Sk are, respectively, given by S � PNC

k�1 Sk
and Sk �

PNk

j�1�zj − z̄k��zj − z̄k�T , where NC is the number of
categories, Nk is the number of samples in the kth category
such thatNT � PNC

k�1 Nk, and z̄k is the mean vector of the sam-
ples in that category.

The parameter λ controls the choice between QDA (λ � 0)
and LDA (λ � 1). On the other hand, μ controls the effect of
decreasing larger eigenvalues while increasing smaller ones.
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As a result, the bias derived from the sample-based estimation
of the covariance matrix (represented by Sk) is removed [32].
There is no previous knowledge about the most appropriate
value for these regularization parameters. Thus, a wide set of
combinations of λ and μ were evaluated by varying them from
0 to 1 with steps of 0.1. The configuration with the highest
performance was retained as the optimum.

3. DATA AND EXPERIMENTAL RESULTS
Texture images from Brodatz [33], Outex [34], and VisTex [35]
databases were employed for a comparative analysis between
the proposed DTM-based method and the three conventional
techniques used as reference: GLCM, GF, and LBP. Different
experiments were conducted from the selected texture im-
ages. A description of the proposed experiments and the
achieved results is provided in this section.

A. Public Databases
1. Brodatz Database
Thirteen textures from the Brodatz album included in the im-
age database of the Signal and Image Processing Institute at
the University of Southern California [33] were processed in
our experiments: bark (D12), brick (D94), bubbles (D112),
grass (D9), leather (D24), pigskin (D92), raffia (D84), sand
(D29), straw (D15), water (D38), weave (D16), wood (D68),
and wool (D19). The number in parenthesis indicates the page
number of the Brodatz texture book where the original image
can be found. A set of seven grayscale images are available for
each of these textures depending on their orientation: 0, 30,
60, 90, 120, 150, and 200 deg. Each of them has a size of
512 × 512 pixels (8 bits per pixel).

2. Outex Database
The Outex database [34] contains 320 color texture images.
Each of them was captured using six spatial resolutions
(100, 120, 300, 360, 500, and 600 dpi) and nine rotation angles
(0, 5, 10, 15, 30, 45, 60, 75, and 90 deg). Images are stored inRGB
formatwith a resolution of 24 bits and a size of 538 × 746pixels.
In our study, 29 textures (the first one in each category)
were selected from the Outex database: barleyrice001,
canvas001, cardboard001, carpet001, chips001, crushed-
stone001, flakes001, four001, foam001, fur001, granite001,
granular001, gravel001, groats001, leather001, mineral001, pa-
per001, pasta001, pellet001, plastic001, quartz001, rubber001,
sand001, sandpaper001, seeds001, tile001, wallpaper001,
wood001, and wool001. The luminance channel was extracted
to obtain gray-scale images with a resolution of 8 bits per pixel.
Imageswith a spatial resolution of 100 dpi and horizon sunlight
illumination were selected from the database for our experi-
ments. Nine different images were extracted for each texture
by including all the available orientations.

3. VisTex Database
The VisTex database [35] provides a set of texture images that
are representative of real-world scenarios. In our study, im-
ages labeled as “reference textures” in the VisTex database
were considered. These textures are grouped depending on
the object represented in the image: bark, grass, water, brick,
clouds, etc. They are stored in RGB format with a resolution of
24 bits. In our study, color information was discarded, con-
verting them to gray-scale texture images. A subset of

20 images of size 512 × 512 from this database was evaluated
in our experiments: bark0006, brick0000, brick0004,
clouds0001, fabric0013, fabric0017, flowers0006, food0000,
food0001, grass0001, leaves0012, metal0002, metal0004,
misc0001, misc0002, sand0000, sand0002, tile0008, water0005,
and wood0002. It is worth remarking that the same subset was
used by other researchers for the evaluation of other texture
analysis techniques [8].

B. Results
Several experiments were conducted using texture images
from Brodatz, Outex, and VisTex datasets. A commonmethod-
ologywas adopted for a fair comparison betweenDTM, GLCM,
GF, andLBP. It consists in feature extraction using oneof these
methods and classification of the resulting feature vector
by means of RDA. In our experiments, the influence of the
evaluated dataset, the image size, and the orientation of the
texture on classification performance was assessed.

1. Classification of Nonrotated Textures
The first set of experiments involves textures with a fixed ori-
entation. Brodatz and Outex datasets contain texture samples
captured at different angles. Thus, those textures with a rota-
tion of 0 deg were selected. In the case of the VisTex dataset,
all the available textures were included in this set of experi-
ments as they each have a unique orientation. As a result,
three different datasets were used in the first phase of the ex-
periments: 13 Brodatz textures (512 × 512), 29 Outex textures
(746 × 538), and 20 VisText textures (512 × 512). For the three
datasets, one texture image was available per each category.
The utility of the proposed feature extraction methods was
separately evaluated on these datasets. For each of them, four
different classification tasks were defined depending on
the size of the patch to be processed: 128 × 128, 64 × 64,
32 × 32, and 16 × 16 pixels.

The holdout approach was used to estimate the perfor-
mance of DTM, GLCM, GF, and LBP [24]. Independent training
and test sets were generated by dividing the original texture
image in each category into two nonoverlapping subimages of
size 256 × 512, 373 × 538, and 256 × 512 pixels for textures
from Brodatz, Outex, and VisTex datasets, respectively.
One of these subimages was used to extract training samples
while the other was allocated for testing. Overlapped texture
regions were extracted from each of them to obtain suffi-
ciently large training and test sets. For all the image sizes con-
sidered in the experiments, the training set was composed of
texture patches defined by a sliding window with an overlap-
ping of 75% on the training subimage. Overlapping was mini-
mized to obtain patches in the test set in order to prevent bias
in classification results. Thus, 50% overlapping was used to
generate test patches of size 128 × 128 and 64 × 64 pixels while
25% and 0% overlapping was used for extracting texture
patches of size 32 × 32 and 16 × 16 pixels, respectively.

For each classification task, a RDA classifier was imple-
mented from data in the training set. Subsequently, the
accuracy achieved on the test set was computed. It was
estimated as the ratio between the number of texture patches
correctly classified and the total number of samples. The high-
est classification accuracy from all the evaluated pairs of
parameters λ and μ was retained. Table 1 summarizes the
experimental setup and the classification accuracy achieved
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by the evaluated methods. As can be observed, the most ef-
fective method depends on the dataset and the patch size.
GLCM and GF achieved the highest performance on Brodatz
textures while the proposed DTM-based method outper-
formed the others when images from the Outex dataset were
processed. On the other hand, smaller differences are appre-
ciated on VisTex textures. This dataset showed to be the least
difficult as DTM, GLCM, and GF provided high accuracy even
for reduced texture size.

For all the methods assessed in the study, accuracy de-
creased as the size of the texture patch was reduced. This
was an expected behavior as textures are characterized by
the repetition of patterns in the spatial domain [1]. Thus, small
patches may not capture a sufficient number of these patterns,
i.e., low frequency resolution is obtained. The performance
decrease due to this effect was specially marked for LBP. This
is motivated by the estimation of the histogram representing
the relative frequency for each structure identified by the
uniform LBP patterns. The number of LBP pattern samples
is limited by the dimension N × N of the texture under
analysis. As this dimension is reduced, a smaller number of

samples is available to compute the histogram, resulting in
a poor estimation of the statistical behavior of these patterns
and, thus, of the texture.

The method based on DTM has been demonstrated to
provide useful information about texture since high classifica-
tion accuracy was achieved on the proposed problems. An
index of separability (SI) was computed for each element of
M�s� to determine the range of s at which textures show higher
differences. This index was obtained as the ratio between
interclass (σ2B) and intraclass variabilities (σ2W ) [41]. For a
one-dimensional variable z, the SI is computed as follows:

SI � σ2B
σ2W

�
PNC

k�1 Nk�z̄k − z̄�2PNC

k�1

P
i∈Ck

�zi − z̄k�2
; (15)

where Ck (k � 1;…; NC) denotes the kth category, Nk is the
number of samples in Ck, z̄k is the mean value of z in Ck,
and z̄ is the global mean value of z in the available sample
set. Thus, higher SI indicates that classes can be more easily
separated using linear boundaries.

Table 1. Classification of Nonrotated Texturesa

Dataset Brodatz

Ncat 13
N ipc 1 (512 × 512)

Size 128 × 128 64 × 64 32 × 32 16 × 16

Set Train Test Train Test Train Test Train Test
Ovp 75 50 75 50 75 25 75 0
Nsamp 65 21 377 105 1769 210 7625 512

DTM 99.27 89.74 80.84 66.87
GLCM 100 98.61 91.14 73.02
GF 100 98.68 89.56 67.08
LBP 98.17 89.96 63.77 32.89

Dataset Outex

Ncat 29
N ipc 1 (538 × 746)

Size 128 × 128 64 × 64 32 × 32 16 × 16

Set Train Test Train Test Train Test Train Test
Ovp 75 50 75 50 75 25 75 0
Nsamp 104 28 600 150 2752 330 11790 759

DTM 94.46 90.83 84.68 72.50
GLCM 78.33 69.33 56.50 44.17
GF 93.72 91.13 80.18 56.79
LBP 95.44 87.70 59.40 26.07

Dataset VisTex

Ncat 20
N ipc 1 (512 × 512)

Size 128 × 128 64 × 64 32 × 32 16 × 16

Set Train Test Train Test Train Test Train Test
Ovp 75 50 75 50 75 25 75 0
Nsamp 65 21 377 105 1769 210 7625 512

DTM 100 99.00 95.19 80.17
GLCM 99.76 97.62 95.29 81.82
GF 98.81 97.57 93.48 73.37
LBP 98.57 93.14 66.52 29.87
aNcat: number of distinct categories in the classification problem; N ipc: number of available images per category; Ovp: overlapping percentage between

adjacent samples; Nsamp: number of samples.
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Figure 4 depicts the dependence of SI on the moment order
s for Brodatz, Outex, and VisTex textures. As shown by clas-
sification accuracy, the discriminant power decreases as the
texture is smaller. In addition, the plot reflects that higher
separability between categories relies on the first half of
s values in the case of Outex textures while the curve is
approximately symmetric for Brodatz and VisTex images.
Thus, most of the information representing distinctive texture
attributes is contained at intermediate order values.

2. Classification of Rotated Textures
The robustness of the four feature extraction methods to tex-
ture rotation was evaluated in the second set of experiments.
These were carried out only from images in Brodatz and
Outex datasets since they provide originally rotated textures.
The former includes 13 different texture categories. Seven
original images are available per category, each of them cor-
responding to a different orientation. The latter is composed
of 29 texture categories and nine different orientations per
category. As in the previous experiments, textures from both
datasets were processed separately.

The original textures were divided into two nonoverlapping
subimages, which were respectively used to generate training
and test patches. As in the previous set of experiments, sub-
images from the Brodatz dataset have a size of 256 × 512
pixels while those from the Outex dataset are 373 × 538 pixels.
For the four patch sizes assessed in the experiments (i.e.,
128 × 128, 64 × 64, 32 × 32, and 16 × 16 pixels), training sam-
ples were generated using a sliding window with 50% overlap-
ping between adjacent regions. In these experiments, no
overlapping was used to extract texture patches in the test set.

Table 2 shows the details of the experiments conducted on
both Brodatz and Outex rotated textures. As in the previous

Fig. 4. Evolution of the SI of coefficients M�s� as a function of the
moment order for Brodatz, Outex, and VisTex datasets.

Table 2. Classification of Rotated Texturesa

Dataset Brodatz

Ncat 13
N ipc 7 (512 × 512)

Size 128 × 128 64 × 64 32 × 32 16 × 16

Set Train Test Train Test Train Test Train Test
Ovp 50 0 50 0 50 0 50 0
Nsamp 147 56 735 224 3255 896 13671 3584

DTM 96.29 90.01 77.34 60.79
GLCM 97.66 94.81 84.58 65.12
GF 98.90 92.58 77.66 52.28
LBP 99.59 92.48 64.43 32.91

Dataset Outex

Ncat 29
N ipc 9 (538 × 746)

Size 128 × 128 64 × 64 32 × 32 16 × 16

Set Train Test Train Test Train Test Train Test
Ovp 50 0 50 0 50 0 50 0
Nsamp 252 72 1350 360 6336 1584 26730 6831

DTM 91.57 91.72 83.96 68.04
GLCM 66.95 57.87 48.39 37.01
GF 92.96 88.11 73.43 49.53
LBP 95.45 86.63 58.57 24.70
aNcat: number of distinct categories in the classification problem; N ipc: number of available images per category; Ovp: overlapping percentage between

adjacent samples; Nsamp: number of samples.
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test, the results show a strong dependence of GLCM on the
dataset. Additionally, this second set of experiments reflects
that LBP provided the highest classification accuracy when
sufficiently large textures (128 × 128 pixels) were considered.
However, its performance notably decreased as the patch size
was reduced.

The comparison between the results on nonrotated and ro-
tated textures reveals that only LBP achieved similar perfor-
mance in both cases. In contrast, for the other methods,
classification accuracy decreased when rotated textures are
processed. This result reflects the rotation invariant property
of the evaluated LBP operator [39]. However, it is worth not-
ing that, even though this property is not shared by the other
methods, they are also capable of providing reasonable results
on rotated textures.

To analyze the robustness of the DTM method against
rotation, we evaluated the separability between M�s� vectors
from the same texture at different rotation angles. Each
texture of the Brodatz dataset has been assessed, taking into
account the dependence on the patch size. Thus, a function
SI�s� was obtained for each texture type and for a given size.
A small SI�s� indicates reduced differences between rotated
versions of the same texture; i.e., M�s� is not influenced by
rotation for the underlying texture. The mean value of the
SI�s� curve was computed. Figure 5 provides the obtained re-
sults, which lead to the two following observations. First, SI
decreased with the patch size since some information about
the texture is lost when a smaller region is observed. Smaller
patches tend to be more similar to others derived from the
same texture even for different orientations. Second, those
textures more influenced by rotation contain structures with
a clear orientation. From our results, the highest SI was
obtained from samples of the “wood” texture. As can be
observed, it is characterized by the repetition of elements with
a specific alignment. In contrast, “sand,” which contains
patterns occurring without a marked orientation, is the
texture that showed the highest robustness to rotation (i.e.,
the smallest SI).

4. DISCUSSION AND CONCLUSIONS
A novel method for texture characterization based on DTM
was presented. A feature vector M�s� is derived from the mo-
ment matrix. It represents the response of the texture image to
the set of filters implemented by the Tchebichef polynomials
of order s. To assess the utility of our method, several texture
classification problems have been proposed using images
from Brodatz, Outex, and VisTex datasets. A comparative
analysis was performed by evaluating other conventional ap-
proaches for texture analysis such as GLCM, GF, and LBP on
the same experiments. The results indicate that the proposed
M�s� feature captures essential information about texture,
showing its potential for effective texture identification.

Three main conclusions can be drawn from our experi-
ments. First, the method based on DTM represents a valid
approach for texture characterization. The performance
achieved by our method was comparable to that of GLCM,
GF, and LBP, which are recognized by the scientific commu-
nity in the field as effective approaches to texture analysis
[1,5,39]. Indeed, the proposed DTM-based method achieved
the highest average classification accuracy over all the experi-
ments with a value of 85.66% whereas it was 76.90%, 83.29%,
and 69.81% for GLCM, GF, and LBP, respectively. Second, the
DTM-based method has shown to be robust since it yielded
reasonable results regardless of the dataset or the texture
patch size. It was observed that the performance of other
methods highly depended on the image dataset under analy-
sis. Specifically, in the case of GLCM, it provided an average
accuracy of 88.12%, 57.32%, and 93.62% for experiments
involving Brodatz, Outex, and VisTex images, respectively.
These three average values were 82.64%, 84.72%, and
93.59% for the method based on DTM; 84.59%, 78.23%, and
90.81% for GF; and 71.78%, 66.75%, and 72.03% for LBP. These
methods were less influenced by the dataset than GLCM,
which markedly failed on Outex textures. This result is moti-
vated by the influence of the dynamic range of the texture on
the GLCM method, which is based on the discretization of the
original image. If a reduced number of quantization levels (Lg)
is used, different textures with a small dynamic range and a
similar distribution of their gray-level values will lead to iden-
tical GLCMmatrices; i.e., every pixel will be assigned the same
quantization level. This behavior was observed in some tex-
tures from the Outex dataset (fur001, leather001, and
rubber001) characterized by small fluctuations of the gray
level in a similar interval. On the other hand, for all the evalu-
ated methods, decreasing the size of the texture patch re-
sulted in reduced performance. This is a coherent result
since lower frequency resolution is obtained by reducing
the image size. However, the size had a less remarkable effect
on the DTM-based method. For the five classification prob-
lems analyzed in this study, the average reduction in the clas-
sification accuracy when considering a size N � 16 with
respect to N � 128 was of 27.66%, 33.32%, 38.39%, and
69.99% for DTM, GLCM, GF, and LBP, respectively. As can
be observed, the dependence on the texture patch size is more
pronounced in GLCM and GF than in our DTM-based method
while it is dramatic in the case of LBP. Third, satisfactory clas-
sification accuracy was achieved by means of DTM, GLCM,
and GF on rotated textures even though they are not rotation
invariant. For a given patch size, the average difference be-
tween the accuracy achieved on nonrotated and rotated

Fig. 5. Analysis of the SI betweenM�s� curves from the same texture
captured at different orientation angles. Results computed from
textures in the Brodatz dataset.
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textures was 2.72, 7.34, and 6.46 percentage points for DTM,
GLCM, and GF, respectively. These data were computed by
comparing the results achieved on nonrotated and rotated tex-
tures from Brodatz and Outex datasets. DTM, GLCM, and GF
reflected a higher dependence on this effect than LBP. The
latter showed similar performance on both nonrotated and ro-
tated textures (the average difference was 0.99 percentage
points) since it is the only method that is invariant to rotation.
However, for most of the textures, there is not a clear orien-
tation of the structures characterizing them. Therefore, rota-
tion does not have a marked effect on their attributes. This
suggests that the feature vectors extracted from rotated ver-
sions of the same image using DTM, GLCM, and GF tend to be
similar. In the case of DTM, this was observed by analyzing the
influence of rotation on theM�s� vector. It was concluded that
higher variability between vectors from the same texture at
different rotation angles is found when the texture is charac-
terized by structures with a dominant orientation.

Previous techniques for texture characterization based on
DTM, or on the closely related DCT, substantially differ from
the methodology described in the present study. Indeed, only
low-order moments were considered as texture features
[28,29]. Nevertheless, according to our results, a more accu-
rate description of texture properties can be obtained by an-
alyzing the whole range of moment orders. The full set of DTM
is required for exact image reconstruction, and thus it is
worthwhile to consider each moment for the complete de-
scription of texture. Moments of increased order capture
higher-frequency components characterizing the texture.
Therefore, these moments contain valuable information in
the case of textures distinguished by rapidly varying patterns.
The relevance of the moment order in a given classification
task was quantified by the SI, which reflected those compo-
nents of M�s� with higher discriminant capability. In particu-
lar, a higher SI was associated with intermediate values of s,
proving that moments with a certain order may be essential
for texture identification.

On the other hand, the methodology proposed for the com-
putation of the texture signature M�s� could be extended to
other bases sharing the properties exhibited by Tchebichef
kernels. Therefore, the value of M�s� would be derived from
the coefficients of the signal in a different transformed space.
The same interpretation of M�s� would be valid provided that
the new kernels show similar varying patterns to those of
Tchebichef polynomials. The DCT is a special case as its basis
functions can be derived from Tchebichef functions [30].
Nonetheless, further analysis is required to determine those
kernels that could replace DTM. Additionally, the influence
of the chosen kernel on the texture classification performance
should be studied.

Several limitations can be found in our methodology. As in-
dicated, the proposed M�s� signature provides a compact
global representation of texture properties. Nevertheless,
the dimension of the resulting pattern (2N − 1) may be too
large for adequate statistical modeling. For high values of
N , overfitting may arise when using complex classifiers, such
as neural networks [24]. The dimension ofM�s� is expected to
be higher than that of the feature vectors derived from GLCM,
GF, and LBP. It is worth noting that the dimension of M�s� is
given by the nature of the descriptor; that is, once the image
size (N) is fixed, there are no design issues that may influence

the dimension of the feature vector, as occurs in the other
evaluated methods. Higher performance might have been
achieved for GLCM, GF, and LBP by performing an
exhaustive search for their optimum design parameters. How-
ever, this optimization process is not the purpose of the
present research, and common configurations of these meth-
ods reported in previous studies were adopted for our experi-
ments [3,39,40]. It must be emphasized that several texture
databases were evaluated in our study to obtain a global
unbiased estimation of the performance of eachmethod. Addi-
tionally, RDA was selected as a simple classification approach
to prevent overfitting due to the curse of dimensionality [24].
As a result, no design decisions that may bias the conclusions
derived from our experiments were taken. On the other hand,
our method is not invariant to image transformations.
Although it achieved reasonable performance on rotated
textures, invariant properties must be addressed in further
developments of the method. They are a crucial issue in order
to deal with a wider variety of pattern recognition problems.
In this context, radial Tchebichef moments were proposed
to obtain rotation invariant descriptors from images [42].
Additionally, translation and scale invariants from DTM have
been defined [43].

In summary, we propose a new method for texture charac-
terization based on DTM. An exhaustive validation process
was carried out by comparing its performance in several tex-
ture classification problems with other standard methods for
texture analysis. From our experiments, it was demonstrated
that the DTM-based method captures essential information
about texture, showing comparable or even higher perfor-
mance than conventional procedures. Additionally, it is worth
noting that the proposed M�s� vector can be efficiently
obtained through computational strategies developed for
DTM [21]. Therefore, we conclude that our method can be
considered as an efficient tool to be used in image processing
problems involving texture classification.
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