2,451 research outputs found

    A Generalized Enhanced Quantum Fuzzy Approach for Efficient Data Clustering

    Full text link
    © 2013 IEEE. Data clustering is a challenging task to gain insights into data in various fields. In this paper, an Enhanced Quantum-Inspired Evolutionary Fuzzy C-Means (EQIE-FCM) algorithm is proposed for data clustering. In the EQIE-FCM, quantum computing concept is utilized in combination with the FCM algorithm to improve the clustering process by evolving the clustering parameters. The improvement in the clustering process leads to improvement in the quality of clustering results. To validate the quality of clustering results achieved by the proposed EQIE-FCM approach, its performance is compared with the other quantum-based fuzzy clustering approaches and also with other evolutionary clustering approaches. To evaluate the performance of these approaches, extensive experiments are being carried out on various benchmark datasets and on the protein database that comprises of four superfamilies. The results indicate that the proposed EQIE-FCM approach finds the optimal value of fitness function and the fuzzifier parameter for the reported datasets. In addition to this, the proposed EQIE-FCM approach also finds the optimal number of clusters and more accurate location of initial cluster centers for these benchmark datasets. Thus, it can be regarded as a more efficient approach for data clustering

    Metaheuristic design of feedforward neural networks: a review of two decades of research

    Get PDF
    Over the past two decades, the feedforward neural network (FNN) optimization has been a key interest among the researchers and practitioners of multiple disciplines. The FNN optimization is often viewed from the various perspectives: the optimization of weights, network architecture, activation nodes, learning parameters, learning environment, etc. Researchers adopted such different viewpoints mainly to improve the FNN's generalization ability. The gradient-descent algorithm such as backpropagation has been widely applied to optimize the FNNs. Its success is evident from the FNN's application to numerous real-world problems. However, due to the limitations of the gradient-based optimization methods, the metaheuristic algorithms including the evolutionary algorithms, swarm intelligence, etc., are still being widely explored by the researchers aiming to obtain generalized FNN for a given problem. This article attempts to summarize a broad spectrum of FNN optimization methodologies including conventional and metaheuristic approaches. This article also tries to connect various research directions emerged out of the FNN optimization practices, such as evolving neural network (NN), cooperative coevolution NN, complex-valued NN, deep learning, extreme learning machine, quantum NN, etc. Additionally, it provides interesting research challenges for future research to cope-up with the present information processing era

    Current Studies and Applications of Krill Herd and Gravitational Search Algorithms in Healthcare

    Full text link
    Nature-Inspired Computing or NIC for short is a relatively young field that tries to discover fresh methods of computing by researching how natural phenomena function to find solutions to complicated issues in many contexts. As a consequence of this, ground-breaking research has been conducted in a variety of domains, including synthetic immune functions, neural networks, the intelligence of swarm, as well as computing of evolutionary. In the domains of biology, physics, engineering, economics, and management, NIC techniques are used. In real-world classification, optimization, forecasting, and clustering, as well as engineering and science issues, meta-heuristics algorithms are successful, efficient, and resilient. There are two active NIC patterns: the gravitational search algorithm and the Krill herd algorithm. The study on using the Krill Herd Algorithm (KH) and the Gravitational Search Algorithm (GSA) in medicine and healthcare is given a worldwide and historical review in this publication. Comprehensive surveys have been conducted on some other nature-inspired algorithms, including KH and GSA. The various versions of the KH and GSA algorithms and their applications in healthcare are thoroughly reviewed in the present article. Nonetheless, no survey research on KH and GSA in the healthcare field has been undertaken. As a result, this work conducts a thorough review of KH and GSA to assist researchers in using them in diverse domains or hybridizing them with other popular algorithms. It also provides an in-depth examination of the KH and GSA in terms of application, modification, and hybridization. It is important to note that the goal of the study is to offer a viewpoint on GSA with KH, particularly for academics interested in investigating the capabilities and performance of the algorithm in the healthcare and medical domains.Comment: 35 page
    • …
    corecore