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This chapter follows the development of a class of neural networks called 

evolving connectionist systems (ECOS). ECOS combine the adaptive/evolving 

learning ability of neural networks and the approximate reasoning and 

linguistically meaningful explanation features of symbolic representation, such as 

fuzzy rules. This review paper includes principles and applications of hybrid expert 

systems, evolving neuro-fuzzy systems, evolving spiking neural networks, 

neurogenetic systems, and quantum inspired systems, all discussed from the point 

of few of their adaptability and model interpretability. The chapter covers both 

methods and their numerous applications for data modelling, predictive systems, 

data mining, pattern recognition, across application areas of engineering, medicine 

and health, neuroinformatics, bioinformatics, adaptive robotics, etc. 

 
 

9.1. Early Neuro-Fuzzy Hybrid Systems 

 

The human brain uniquely combines low level neuronal learning in the neurons and 

the connections between them and higher level abstraction leading to knowledge 

discovery. This is the ultimate inspiration for the development of the evolving 

connectionist systems described in this paper. 

In the past 50 years or so several seminal works in the areas of neural networks 

(Amari, 1967, 1990) and fuzzy systems (Zadeh, 1965, 1988) opened a new field of 

information science — the creation of new types of hybrid systems that combine 

the learning ability of neural networks, at a lower level of information processing, 

and the reasoning and explanation ability of fuzzy rule-based systems, at the higher 

level. Neural network (NN) models can learn from data and generalize on new data. 

Popular NN learning algorithm was the backpropagation learning for Multi-Layer 

Perceptrons (MLP), proposed independently by Rumelhart and Werbos. The 
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backpropagation supervised learning algorithm is used to change the connection 

weights in a feedforward MLP network through propagating backwards the error 

between calculated output and the desired one. The algorithm brough many applications 

and is used also in the contemporary deep neural networks.      

Other popular NN models are Hopfield pattern association model (Hopfield, 1995) 

and the Adaptive Resonance Theory (Carpenter and  Grossberg, 1991).    

Fuzzy logic, on the other hand, is a kind of symbolic knowledge representation. 

Combining the NN and fuzzy logic makes fuzzy rules to be learned from data and is a way 

to build more sophisticated application systems.  

An exemplar system is shown in Figure 9.1 where, at a lower level, a neural 

network (NN) module predicts the level of a stock index and, at a higher level, a 

fuzzy reasoning module combines the predicted values with some macro-economic 

variables, using the following types of fuzzy rules (Kasabov, 1996). 

IF < the predicted by the NN module stock value is increasing > 

AND < the economic situation is good > 

THEN < buy stock > (1) 

These fuzzy expert systems continued the development of the hybrid NN- rule- 

based expert systems that used crisp propositional and fuzzy rules (Hopfield, 1995; 

Izhikevich, 2004; Kasabov and Shishkov, 1993). 

The integration of neural networks and fuzzy systems into expert systems 

attracted many researchers to join this theme. The low-level integration of fuzzy rules 

into a single neuron model and larger neural network structures, tightly coupling 

learning and fuzzy reasoning rules into connectionists structures, was initiated by 

Professor Takeshi Yamakawa and other Japanese scientists and promoted at a 

series of IIZUKA conferences in Japan (Yamakawa et al., 1992; Zadeh, 1965). 

Many models of fuzzy neural networks were developed based on these principles 

(Furuhashi et al., 1993; Lin and Lee, 1996; Kasabov, 1996; 1998; Kasabov et al., 

1997; Angelov, 2002; Angelov et al., 2010)). 

The early hybrid neuro-fuzzy research had a significant impact on the further  

development in the areas of neural networks and fuzzy systems, especially in their 

integration. One of the examples are the framework of evolving connectionist 

systems presented in the next section.     

Fuzzified data 

 
 
 
 
 

Current price 

 
Yesterday's price 

(crisp values) 

 

   

 

 
 
 

Predicted price 

(crisp value) 

 
      Trading rules 

(fuzzy) 

 

 
Political situation 

 
Economic situation  
(fuzzy values) 

 

Figure 9.1: A hybrid NN-fuzzy rule-

based expert system for financial 

decision support (Kasabov, 1996). Fuzzy 

rule based 
decision 

Neural 

network 

Rules 

extraction 

module 

Neural 

network 



 

 

Decision 

(buy/sell/hold

) (fuzzy & 

crisp values) 



 

 

 

9.2. Evolving Connectionist Systems (ECOS) 

 

9.2.1 Principles of ECOS 

In ECOS, instead of training a fixed connectionist structure, the structure and its 

functionality are  evolving from incoming data, often in an on-line, one-pass 

learning mode (Kasabov 2001; Kasabov and Song, 2002; Angelov, 2002; 

Kasabov, 2003).  

ECOS are modular connectionist-based systems that evolve their structure and 

functionality in a continuous, self-organised, on-line, adaptive, interactive way 

from incoming information (Kasabov, 1998). They can process both data and 

knowledge in a supervised and/or unsupervised way. ECOS learn local models 

from data through clustering of the data and associating a local output function for 

each cluster represented in a connectionist structure. They can learn incrementally 

single data items or chunks of data and also incrementally change their input 

features (Kasabov, 2003, 2007). Elements of ECOS have been proposed as part of 

the classical NN models, such as SOM, RBF, FuzyARTMap, Growing neural gas, 

neuro- fuzzy systems, RAN (for a review see Kasabov, 2003). Other ECOS 

models, along with their applications, have been reported in (Watts, 2009; Futschik 

and Kasabov, 2002). 

The principle of ECOS is based on local learning — neurons are allocated as 

centers of data clusters and the system creates local models in these clusters. Fuzzy 

clustering, as a mean to create local knowledge-based systems, was stimulated by 

the pioneering work of Bezdek, Yager and Filev (Bezdek, 1987; Yager and Filev, 

1994). 

To summarize, the following are the main principles of ECOS as stated in 

Kasabov (1998): 

(1) Fast learning from large amount of data, e.g., using ‘one-pass’ training, 

starting with little prior knowledge. 

(2) Adaptation in a real time and in an on-line mode where new data is 

accommodated as it comes based on local learning. 

(3) ‘Open’, evolving structure, where new input variables (relevant to the task), 

new outputs (e.g., classes), new connections and neurons are added/evolved 

‘on the fly’. 

(4) Both data learning and knowledge representation is facilitated in a 

comprehensive and flexible way, e.g., supervised learning, unsupervised 

learning, evolving clustering, ‘sleep’ learning, forgetting/pruning, fuzzy rule 

insertion and extraction. 

(5) Active interaction with other ECOSs and with the environment in a multi-

modal fashion. 

(6) Representing both space and time in their different scales, e.g., clusters of data, 

short- and long-term memory, age of data, forgetting, etc. 

(7) System’s self-evaluation in terms of behavior, global error and success and 

related knowledge representation. 
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In 1998, Walter Freeman, who attended the ICONIP conference, commented 

on the proposed ECOS concepts: “... Through the ‘chemicals’ and let the system 

grow .. .”. 

The development of ECOS, as a trend in neural networks and computational 

intelligence that started in 1998 (Kasabov, 1998) continued as many improved or 

new computational methods that use the ECOS principles have been developed along 

many applications. 

 

9.2.2. Neuro-Fuzzy ECOS: EFuNN and DENFIS 

 

Here we will briefly illustrate the concepts of ECOS on two implementations: 

EFuNN (Kasabov, 2001) and DENFIS (Kasabov and Song, 2002). Examples of 

EFuNN and DENFIS are shown in Figures 9.2 and 9.3 respectively. In ECOS, 

clusters of data are created based on similarity between data samples either in the 

input space (this is the case in some of the ECOS models, e.g., the dynamic neuro- 

fuzzy inference system DENFIS), or in both the input and output space (this is the 

case e.g., in the EFuNN models). Samples (examples) that have a distance to an 

existing node (cluster center, rule node) less than a certain threshold are allocated 

to the same cluster. Samples that do not fit into existing clusters form new clusters. 

Cluster centers are continuously adjusted according to new data samples, and new 

clusters are created incrementally. ECOS learn from data and automatically create 

or update a local fuzzy model/function, e.g., 

 
IF < data is in a fuzzy cluster Ci > THEN < the model is Fi > (2) 

 

 

 

Figure 9.2: An example of EFuNN model. Source: Kasabov (2001). 



 

 

 

 

Figure 9.3: An example of DENFIS model. Source: Marshall et al., 2005; Kasabov 

(2002, 2003). 

 
where Fi can be a fuzzy value, a logistic or linear regression function (Figure 9.3) or 

a NN model (Kasabov and Song, 2002, Kasabov, 2003) 

A special development of ECOS is transductive reasoning and personalised 

modelling. Instead of building a set of local models (e.g., prototypes) to cover the 

whole problem space and then use these models to classify/predict any new input 

vector, in transductive modelling for every new input vector a new model is created 

based on selected nearest neighbor vectors from the available data (Vapnik, 1998). 

Such  models are NFI and TWNFI (Song and Kasabov, 2006). In TWNFI for every 

new input vector the neighborhood of closest data vectors is optimized using both 

the distance between the new vector and the neighboring ones and the weighted 

importance of the input variables, so that the error of the model is minimized in the 

neighborhood area. A method for personalized modelling was introduced in 

(Kasabov and Hu, 2010). 

 
9.2.3. Methods that Use Some ECOS Principles 

 

Among other methods that use or have been inspired by the ECOS principles 

are:  

— Evolving Self-organised Maps (ESOM) (Deng and Kasabov, 2003); 

— Evolving Clustering Methods (ECM and ECMC) (Song and Kasabov, 2002); 
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— Incremental feature learning in ECOS (Ozawa et al., 2010); 

— On-line ECOS optimization (Minku and Ludemir, 2005; Chan et al., 2004); 

— Evolving Takagi–Sugeno fuzzy model based on switching to neighboring models 

(Angelov and Filev, 2004); 

— Clustering and co-evolution to construct neural network ensembles (Minku 

and Ludermir, 2006); 

 

Other methods that use or have been inspired by the ECOS principles are listed below 

(publications are available from  www.ieeexplore.ieee.org; Google Scholar; Scopus). Some 

of the methods are referenced in the reference list and some of them are referenced here by 

the names of their authors: 

  

-  On-line ECOS optimisation, developed by Zeke Chan et al;  

- Assessment of EFuNN accuracy for pattern recognition using data with different statistical 

distributions, developed by Ronei Marcos de Moraes et al;  

-  Recursive clustering based on a Gustafson–Kessel algorithm, by D Dovžan and I. Škrjanc;  

 - Using a map-based encoding to evolve plastic neural networks, by P Tonelli and J Mouret;  

- Evolving Takagi–Sugeno fuzzy model based on switching to neighbouring models, by A 

Kalhor, BN Araabi and  C Lucas;  

- A soft computing based approach for modelling of chaotic time series, by J Vajpai and JB 

Arun;  

- Uni-norm based evolving neural networks and approximation capabilities, by F Bordignon 

and F Gomide;  

- Machine learning within an unbalanced distributed environment research notes, by HJ 

Prueller;  

- FLEXFIS: a robust incremental learning approach for evolving Takagi–Sugeno fuzzy 

models, ED Lughofer;  

- Evolving fuzzy classifiers using different model architectures, by P Angelov, E Lughofer, 

X Zhou (Angelov et al, 2010); 

- RSPOP: Rough Set–Based Pseudo Outer-Product Fuzzy Rule Identification Algorithm, 

by KK Ang and C Quek; 

- SOFMLS: online self-organizing fuzzy modified least-squares network, by J de Jesús 

Rubio; 

- Finding features for real-time premature ventricular contraction detection using a fuzzy 

neural network system, by JS Lim;  

- Evolving fuzzy rule-based classifiers, by P Angelov, X Zhou and F Klawonn;   

- A novel generic Hebbian ordering-based fuzzy rule base reduction approach to Mamdani 

neuro-fuzzy system, by F Liu, C Quek and GS Ng; 

- Implementation of fuzzy cognitive maps based on fuzzy neural network and application 

in prediction of time series, by H Song, C Miao, W Roel and Z Shen;  

- Development of an adaptive neuro-fuzzy classifier using linguistic hedges, by B Cetisli.   

-  A meta-cognitive sequential learning algorithm for neuro-fuzzy inference system, by K 

Subramanian and S Suresh;   

- Meta-cognitive RBF network and its projection based learning algorithm for classification 

problems, by GS Babu and S Suresh;  

- SaFIN: A self-adaptive fuzzy inference network, by SW Tung, C Quek and C Guan;  

- A sequential learning algorithm for meta-cognitive neuro-fuzzy inference system for 

classification problems, by S Suresh and K Subramanian; 

- Architecture for development of adaptive on-line prediction models, by P Kadlec and B 

Gabrys; 

- Clustering and co-evolution to construct neural network ensembles, by FL Minku and TB 
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Ludermir; 

- Algorithms for real-time clustering and generation of rules from data, by D Filev and P 

Angelov; 

- SAKM: Self-adaptive kernel machine - A kernel-based algorithm for online clustering, by 

H Amadou Boubacar, S Lecoeuche and  S Maouche.  

- A BCM theory of meta-plasticity for online self-reorganizing fuzzy-associative learning, 

by J Tan and C Quek; 

- Evolutionary strategies and genetic algorithms for dynamic parameter optimization of 

evolving fuzzy neural networks, by FL Minku and TB Ludemir; 

- Incremental leaning and model selection for radial basis function network through sleep 

learning, by K Yamauchi and J Hayami; 

- Interval-based evolving modeling, by DF Leite, P Costa and F Gomide;    

- Evolving granular classification neural networks, by DF Leite, P Costa and F Gomide;   

- Stability analysis for an online evolving neuro-fuzzy recurrent network, by J de Jesus 

Rubio; 

- A TSK fuzzy inference algorithm for online identification, by K Kim, EJ Whang, CW 

Park, E Kim and M Park; 

- Design of experiments in neuro-fuzzy systems, by C Zanchettin, LL Minku and TB 

Ludermir; 

- EFuNNs ensembles construction using a clustering method and a coevolutionary genetic 

algorithm, by FL Minku and TB Ludermir; 

- eT2FIS: An evolving type-2 neural fuzzy inference system, by SW Tung, C Quek and C 

Guan; 

- Designing radial basis function networks for classification using differential evolution, by 

B O'Hora, J Perera and A Brabazon;  

- A meta-cognitive neuro-fuzzy inference system (McFIS) for sequential classification 

problems, by K Subramanian, S Sundaram and N Sundararajan; 

- An evolving fuzzy neural network based on the mapping of similarities, by JAM 

Hernández and FG Castaeda;  

- Incremental learning by heterogeneous bagging ensemble, by QL Zhao, YH Jiang and M 

Xu;  
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TB Ludermir;   
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Salimi-Badr  and Mohammad Mehdi Ebadzadeh; 

- A projection-based split-and merge clustering algorithm, by Mingchang Cheng, Tiefeng 

Ma and Youbo Liu; 

- Granular modelling, by Mohammad Tayyab, Bahari Belaton and Mohammed Anbar; 

- Permutation entropy to detect synchronisation, by Zahra Shahriari and Michael Small;  

- Evolving connectionist systems: Characterisation, simplification, formalisation, 

explanation and optimisation (MJ Watts, 2004, PhD Thesis; www.otago.ourarchive.ac.nz). 

 

The above methods that manifest elements of ECOS have been applied in various 

applications , some of them listed in the next sub-section.  

 

9.2.3. ECOS-Based Applications 

 

Based on the ECOS concepts and methods, sustained engineering applications 

have been developed, some of them included in the list below and presented in 

(Kasabov, 2007) in detail: 

- Discovery of diagnostic markers for early detection of bladder cancer, colorectal cancer 

and other types of cancer based on EFuNN (Pacific Edge Biotechnology Ltd, 

www.pebl.co.nz), (Futschik, Kasabov, 2002); (Futschik et al, 2002). 

- Medical diagnosis of renal function evaluation using DENFIS (Marshall et al, 2005); 

- Risk analysis and discovery of evolving economic clusters in Europe, by N Kasabov, L 

Erzegovesi, M Fedrizzi and A Beber;  

- Adaptive robot control system based on ECOS  (Huang et al, 2008);  

-  Personalised modelling systems (www.crunchouse.ai); 

- Monthly electricity demand forecasting based on a weighted evolving fuzzy neural 

network approach, by PC Chang, CY Fan and JJ Lin; 

- Decision making for cognitive radio equipment, by W Jouini, C Moy and  J Palicot; 

- An incremental learning structure using granular computing and model fusion with 

application to materials processing, by G Panoutsos and M Mahfouf; 

- Evolving fuzzy systems for data streams, by RD Baruah and P Angelov; 

-  Handwritten digits classification, by GS Ng, S Erdogan, D Shi and A Wahab; 

-  On-line time series prediction system with EFuNN-T, by X Wang; 

- Comparative analysis of the two fuzzy neural systems ANFIS and EFuNN for the 

classification of handwritten digits, by T Murali, N Sriskanthan and GS Ng; 

- Online Identification of Evolving Takagi-Sugeno-Kang Fuzzy Models for Crane Systems, 

by RE Precup, HI Filip, MB Rădac, EM Petriu and S Preitl; 

- Modelling ozone levels in an arid region-a dynamically evolving soft computing approach, 

by SM Rahman, AN Khondaker and RA Khan; 

- A software agent framework to overcome malicious host threats and uncontrolled agent 

clones, by Sujitha, G. Annie and Amudha, T.;  

- Comparing evaluation methods based on neural networks for a virtual reality simulator 

for medical training, by RM de Moraes and LS Machado;  

- eFSM—A novel online neural-fuzzy semantic memory model, by WL Tung and C Quek;  

- Stock trading using RSPOP: A novel rough set-based neuro-fuzzy approach, by KK Ang 

and C Quek; 

- A stable online clustering fuzzy neural network for nonlinear system identification, by JJ 
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Rubio and J Pacheco; 

- Evolving granular neural networks from fuzzy data streams, by D Leite, P Costa and F 

Gomide; 

- Neural networks for QoS network management, by R del-Hoyo-Alonso and  P Fernández-

de-Alarcón; 

- Adaptive on-line co-ordination of ubiquitous computing devices with multiple objectives 

and constraints, by E   Tawil and H Hagras; 

- Advances in classification of EEG signals via evolving fuzzy classifiers and dependent 

multiple HMMs, by C Xydeas, P Angelov, SY Chiao and M Reoullas; 

- Online data-driven fuzzy clustering with applications to real-time robotic tracking, by PX 

Liu and MQH Meng;  

- Evolving fuzzy systems for pricing fixed income options, by L Maciel, A Lemos, F 

Gomide and R Ballini;    

- Combustion engine modelling using an evolving local model network, by C Hametner and 

S Jakubek;  

- Intelligent information systems for online analysis and modelling of biological data, by 

MJ Middlemiss, (2001, PhD thesis, www.otago.ourarchive.ac.nz) 

 - Evolving neurocomputing systems for horticulture applications, by BJ Woodford; 

 - Neuro-fuzzy system for post-dialysis urea rebound prediction, by AT Azar, AH Kandil 

and KM Wahba;  

- ARPOP: An Appetitive Reward-Based Pseudo-Outer-Product Neural Fuzzy Inference 

System Inspired From the Operant Conditioning of Feeding Behavior in Aplysia, by EY 

Cheu, C Quek and SK Ng, 2012; 

- Artificial ventilation modeling using neuro-fuzzy hybrid system, by F Liu, GS Ng, C Quek 

and TF Loh; 

- A data fusion method applied in an autonomous robot, by Y Qingmei and S Jianmin;  

- Evolving fuzzy neural networks applied to odor recognition, by C Zanchettin and TB 

Ludermir; 

- A reduced rule-based localist network for data comprehension, by RJ Oentaryo and M 

Pasquier; 

- Faster self-organizing fuzzy neural network training and a hyperparameter analysis for a 

brain–computer interface, by D Coyle, G Prasad and TM McGinnity; 

-  Adaptive anomaly detection with evolving connectionist systems, by Y Liao, VR Vemuri 

and A Pasos;  

-  Creating evolving user behavior profiles automatically, by JA Iglesias, P Angelov and  A 

Ledezma; 

-  Autonomous visual self-localization in completely unknown environment using evolving 

fuzzy rule-based classifier, by X Zhou and P Angelov; 

-Online Training Evaluation in Virtual Reality Simulators Using Evolving Fuzzy Neural 

Networks, by LS Machado and RM Moraes; 

-   Predictive functional control based on an adaptive fuzzy model of a hybrid semi-batch 

reactor, by D Dovžan and I Škrjanc; 

- An online adaptive condition-based maintenance method for mechanical systems, by F 

Wu, T Wang and J Lee; 

- Driving profile modeling and recognition based on soft computing approach, by A Wahab, 

C Quek and CK Tan;  

- Human action recognition using meta-cognitive neuro-fuzzy inference system, by K 

Subramanian and S Suresh; 

- Hybrid neural systems for pattern recognition in artificial noses, by C Zanchettin and TB 

Ludermir;  

- A novel brain-inspired neural cognitive approach to SARS thermal image analysis, by C 

Quek, W Irawan and  Ng; 

- Intrinsic and extrinsic implementation of a bio-inspired hardware system, by B Glackin, 

LP Maguire and  TM McGinnity; 
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- Financial volatility trading using a self-organising neural-fuzzy semantic network and 

option straddle-based approach, by WL Tung and C Quek; 

- A Bluetooth routing protocol using evolving fuzzy neural networks, by CJ Huang, WK 

Lai, SY Hsiao and HY Liu; 

- QoS provisioning by EFuNNs-based handoff planning in cellular MPLS networks, by BS 

Ghahfarokhi and  N Movahhedinia; 

- Hybrid active learning for reducing the annotation effort of operators in classification 

systems, by E Lughofer; 

- Classification of machine operations based on growing neural models and fuzzy decision, 

by G Vachkov; 

- Computational intelligence tools for next generation quality of service management, by R 

del-Hoyo, B Martín-del-Brío and N Medrano; 

-  Solving the sales prediction problem with fuzzy evolving methods, by D Dovzan, V Logar 

and I Skrjanc; 

-  Predicting environmental extreme events in Algeria using DENFIS, by Heddam et al 

(Heddam et al, 2018);    

-  ICMPv6-Based DoS and DDoS Attacks Detection Using Machine Learning Techniques, 

Open Challenges, and Blockchain Applicability, by Mohammad Tayyab, Bahari 

Belaton and Mohammed Anbar;  

- Prognostic of rolling elemn baring, by Murilo Osorio Camargos, Reinaldo Martinez 

Palhares, Iury Bessa and    Luciana Balieiro Cosme;  

- Estimating dissolved gas and tail-water in water dams, by Salim Heddam and Ozgur 

Kisi;  

- The implementation of univariable scheme-based air temperature for solar radiation 

prediction: New development of dynamic evolving neural-fuzzy inference system model, 

by Ozgur Kisi, Salim Heddam and ,  Zaher Mundher Yaseend (Kisi et al, 1919); 

- Multiple time series prediction (Widiputra et al, 2011).  

While the ECOS methods presented above use predominantly McCulloch and 

Pitts model of a neuron, the further developed evolving spiking neural network 

(eSNN) architectures use a spiking neuron model applying the same or similar 

ECOS principles and applications. 

 
9.3. Evolving Spiking Neural Networks (eSNN) 

 

9.3.1. Main Principles, Methods and Examples of eSNN 

A single biological neuron and the associated synapses is a complex information 

processing machine that involves short term information processing, long term 

.  

                                  Figure 9.4: The structure of the LIFM of a spiking neuron  

information storage, and evolutionary information stored as genes in the nucleus 

of the neuron. A spiking neuron model assumes input information represented as 

trains of spikes over time. When sufficient input information is accumulated in the 

membrane of the neuron, the neuron’s post synaptic potential exceeds a threshold 
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and the neuron emits a spike at its axon (Figure 9.4). 

Some of the-state-of-the-art models of a spiking neuron include: early models 

by Hodgkin and Huxley (1952); more recent models by Maas, Gerstner, Kistler, 

Izhikevich and others, e.g., Spike Response Models (SRM); Integrate-and-Fire 

Model (IFM) (Figure 11.4); Izhikevich models; adaptive IFM; probabilistic IFM 

(for details, see: Hebb, 1949; Gerstner, 1995; Hopfield, 1995; Izhikevich, 2004; 

Kasabov, 2010). 

Based on the ECOS principles, an evolving spiking neural network architecture 

(eSNN) was proposed (Kasabov, 2007; Wysoski et al., 2010). It was initially 

designed as a visual pattern recognition system. The first eSNNs were based on 

the Thorpe’s neural model (Thorpe and Delorme, 2001), in which the importance 

of early spikes (after the onset of a certain stimulus) is boosted, called rank-order 

coding and learning. Synaptic plasticity is employed by a fast supervised one-pass 

learning algorithm. Different eSNN models were developed, including: 

 

— Reservoir-based eSNN for spatio- and spectro-temporal pattern recognition 

shown in Figure 9.5 (following the main principles from Verstraeten et al., 

2007); 

— Dynamic eSNN (deSNN) (Kasabov et al., 2013a) a model that uses both rank- 

order and time-based STDP learning (Song et al., 2000) to account for spatio- 

temporal data; 

and many more. For references, see (Schliebs and Kasabov, 2013). 

 

Extracting fuzzy rules from an eSNN would make the eSNN not only efficient 

learning models, but also knowledge-based models. A method was proposed in (Soltic 

and Kasabov, 2010) and illustrated in Figures 9.6 and 9.7. Based on the connection 

weights (W) between the receptive field layer (L1) and the class output neuron 

layer (L2), the following fuzzy rules are extracted: 

 

IF (input variable v is SMALL) THEN class Ci ;                      (3) 

                                         IF (v is LARGE) THEN class Cj       

 

 

                         Figure 9.5: A reservoir-based eSNN for spatio-temporal pattern classification. 
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Figure 9.6: A simplified structure of an eSNN for 2-class classification showing 

only one input variable using 6 receptive fields to convert the input values into 

spike trains. 
 
 

 

Figure 9.7: The connection weights of the connections to class Ci and Cj output 

neurons respectively are interpreted as fuzzy rules (equation 3). 
 

 

9.4. Computational Neuro-Genetic Models (CNGM)    

 

9.4.1. Main Principles 

 

CNGM integrate principles of spiking neural networks and gene information processing. A 

neurogenetic model of a neuron is first proposed in (Kasabov, 2007) and studied in (Benuskova 

and Kasabov, 2007). It utilises information about how some proteins and genes affect the spiking 

activities of a neuron such as fast excitation, fast inhibition, slow excitation, and slow inhibition. 

An important part of the model is a dynamic gene/protein regulatory network (GRN) model of 

the dynamic interactions between genes/proteins over time that affect the spiking activity of the 

neuron — Figure 9.8. 

 

New types of neuro-genetic fuzzy rules can be extracted from such CNGM in the form 

of: 

IF < GRN is represented by a function F > AND < input is Small > 

THEN < Class C > (4) 

This type of CNGM is further developed into a comprehensive SNN framework called 

NeuCube for spatio/spectro temporal data modelling and analysis as presented in the 

next section. 



 

 

 

 

Figure 9.8  A schematic diagram of a CNGM framework, consisting of a GRN as part of a eSNN 

(Benuskova and Kasabov, 2007). 

 

 

9.4.2. The NeuCube Architecture 

The latest development of neurogenetic systems is NeuCube (Kasabov, 2014), 

initially designed for spatio-temporal brain data modelling, but then it is used for 

climate data modelling, stroke occurrence prediction and other applications 

(Kasabov, et al., 2016). 

The NeuCube framework is depicted in Figure 9.9. It consists of the following 

functional parts (modules): 

— Input information encoding module; 

— 3D SNN reservoir module (SNNr) for unsupervised learning; 

— Output classification/regression module; 

— Gene Regulatory Network Module.   
 

 

 

. 

 
       Figure 9.9: A block diagram of the NeuCube architecture (from Kasabov, 2014) 



 

 

Memory in the NeuCube architecture is represented as a combination of the three 

types of memory described below, which are mutually interacting: 

— Short-term memory, represented as changes of the membrane level and 

temporary changes of synaptic efficacy; 

— Long-term memory, represented as a stable establishment of synaptic efficacy 

— LTP and LTD; 

— Genetic memory, represented as a genetic code. 

In NeuCube similar activation patterns (called ‘polychronous waves’) can be 

generated in the SNNc with recurrent connections to represent short term memory. 

When using STDP learning, connection weights change to form LTP or LTD, which 

constitute long-term memory. Results of the use of the NeuCube suggest that the 

NeuCube architecture can be explored for learning long (spatio-) temporal patterns and 

to be used as associative memory. Once data is learned, the SNNc retains the 

connections as a long-term memory. Since the SNNc learns functional pathways of 

spiking activities represented as structural pathways of connections, when only a 

small initial part of input data is entered the SNNc will ‘synfire’ and ‘chain-fire’ 

learned connection pathways to reproduce learned functional pathways. Thus a 

NeuCube can be used as an associative memory and as a predictive system. 

 

9.4.3. Applications of NeuCube 

 
Current applications of the NeuCube include (see Kasabov et al, 2016; Kasabov, 2018): 

 

• Brain data modelling and analysis, such as: 

 - Modelling EEG, fMRI, DTI data;   

 - Personalised brain data modelling (Doborjeh, M. et al, 2020); 

 - Sleep data modelling ( 

 - Predicting brain re-wiring through mindfulness (Doborjeh, Z. et al, 2019)  

 - Emotion Recognition (Tan et al, 2020);   

   

•  Audio/Visual signals 

 - Speech, sound and music recognition;  

 - Video of moving object recognition  

  

• Multisensory streaming data modelling 

 - Prediction of events from temporal climate data (stroke) (Kasabov et al, 2014); 

 - Hazardous environmental event prediction;  

 - Predicting risk of earthquakes (Kasabov et al, 2016);  

 - Predicting flooding in Malaysia by Muhaini Othman et al;    

 - Predicting pollution in London area (Maciag et al, 2019);  

 - Predicting extreme weather from satellite images; 

 - Predicting traffic flow (Lana et al, 2019); 

 - Odour recognition   (Vanarse et al, 2020). 

 

The above applications are only few of the current projects. 

 

 
9.4.4. Neuromorphic Implementations 



 

 

The different types of eSNN and neurogenetic systems, especially the NeuCube 

architecture, are suitable to be implemented as a neuromorphic hardware system for 

embedded applications. For this purpose, both digital (e.g., Furber, 2012) and 

analogue (e.g., Indiveri et al., 2011) realizations can be used. 

 

9.5. Quantum Inspired Optimisation of eSNN 

 

eSNN have several parameters that need to be optimized for an optimal performance. 

Several successful methods have been proposed for this purpose, among them are: 

Quantum-inspired evolutionary algorithm, QiEA (Defoin-Platel et al., 2009); and 

Quantum inspired particle swarm optimization method, QiPSO (Nuzly et al., 2010). 

Quantum inspired optimization methods use the principle of superposition of 

states to represent and optimize features (input variables) and parameters of the eSNN 

(Kasabov, 2007). Features and parameters are represented as qubits that are in a 

superposition of 1 (selected), with a probability α, and 0 (not selected) with a 

probability β. When the model output is calculated, the quantum bits ‘collapse’ in 1 or 

0. 

 

 
9.6. Conclusion 

 
This chapter presents briefly the methods of ECOS. ECOS facilitate adaptive learning 

and knowledge discovery from complex data. ECOS integrating principles are derived 

from neural networks, fuzzy systems, evolutionary computation, quantum computing 

and brain information processing. ECOS methods include: 

- EFuNN and DENFIS;  

- eSNN;  

- deSNN;  

- NeuCube;  

- neurogenetic and  

- quantum inspired.   

 

ECOS applications are manifold, but perhaps most welcome they are in the 

environmental and health sciences, where the diagnostic phenomena are chaotic in 

nature and the data sets are massive and often incomplete. In the field of sustainability 

science, whether it is in analyzing issues related to sustainable resource utilization, 

countering global environmental issues, or the assurance of the continuity of life, 

(particularly human life) on earth, the speed of transformation is most rapid.  

 

Massive data sets with the characteristics just described need to be analyzed, virtually 

in real time, for prognoses to be made and solutions to the issues sought at a 

heightened level of urgency. In this sense, evolving connectionist systems for adaptive 

learning and knowledge discovery can make a great contribution to the methodologies 

of intelligent evolving systems.   
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