1,141 research outputs found

    From ‘hands up’ to ‘hands on’: harnessing the kinaesthetic potential of educational gaming

    Get PDF
    Traditional approaches to distance learning and the student learning journey have focused on closing the gap between the experience of off-campus students and their on-campus peers. While many initiatives have sought to embed a sense of community, create virtual learning environments and even build collaborative spaces for team-based assessment and presentations, they are limited by technological innovation in terms of the types of learning styles they support and develop. Mainstream gaming development – such as with the Xbox Kinect and Nintendo Wii – have a strong element of kinaesthetic learning from early attempts to simulate impact, recoil, velocity and other environmental factors to the more sophisticated movement-based games which create a sense of almost total immersion and allow untethered (in a technical sense) interaction with the games’ objects, characters and other players. Likewise, gamification of learning has become a critical focus for the engagement of learners and its commercialisation, especially through products such as the Wii Fit. As this technology matures, there are strong opportunities for universities to utilise gaming consoles to embed levels of kinaesthetic learning into the student experience – a learning style which has been largely neglected in the distance education sector. This paper will explore the potential impact of these technologies, to broadly imagine the possibilities for future innovation in higher education

    Design an engaging interactive experience for people with dementia

    Get PDF
    The population of the world is increasing resulting in a higher number of people dealing with dementia–whether being diagnosed with it or taking care of someone that is diagnosed with it. This master thesis aims to investigate which types of multi-media technology-based experiences can improve the quality of life for people with dementia. To reach the goal of the thesis–investigation will be done through different iterations of a design method; divergence, transformation and convergence. These iterations will include observations, interviews and using personas as a tool to design. The results from the methods were used to create a high fidelity prototype which was evaluated by an expert in the field of dementia

    Natural User Interfaces (NUI): review

    Get PDF
    The article summarizes and systematizes knowledge concerning natural user interfaces. The most important facts related to this problem have been supplemented with examples of possible practical use of such type of human-computer communication. Moreover, the article contains descriptions of three most popular controllers: Microsoft Kinect, Nintendo Wii and Sony Move

    Fall prevention intervention technologies: A conceptual framework and survey of the state of the art

    Get PDF
    In recent years, an ever increasing range of technology-based applications have been developed with the goal of assisting in the delivery of more effective and efficient fall prevention interventions. Whilst there have been a number of studies that have surveyed technologies for a particular sub-domain of fall prevention, there is no existing research which surveys the full spectrum of falls prevention interventions and characterises the range of technologies that have augmented this landscape. This study presents a conceptual framework and survey of the state of the art of technology-based fall prevention systems which is derived from a systematic template analysis of studies presented in contemporary research literature. The framework proposes four broad categories of fall prevention intervention system: Pre-fall prevention; Post-fall prevention; Fall injury prevention; Cross-fall prevention. Other categories include, Application type, Technology deployment platform, Information sources, Deployment environment, User interface type, and Collaborative function. After presenting the conceptual framework, a detailed survey of the state of the art is presented as a function of the proposed framework. A number of research challenges emerge as a result of surveying the research literature, which include a need for: new systems that focus on overcoming extrinsic falls risk factors; systems that support the environmental risk assessment process; systems that enable patients and practitioners to develop more collaborative relationships and engage in shared decision making during falls risk assessment and prevention activities. In response to these challenges, recommendations and future research directions are proposed to overcome each respective challenge.The Royal Society, grant Ref: RG13082

    Measuring the impact of game controllers on player experience in FPS games

    Get PDF
    An increasing amount of games is released on multiple platforms, and game designers face the challenge of integrating different interaction paradigms for console and PC users while keeping the core mechanics of a game. However, little research has addressed the influence of game controls on player experience. In this paper, we examine the impact of mouse and keyboard versus gamepad control in first-person shooters using the PC and PlayStation 3 versions of Battlefield: Bad Company 2. We conducted a study with 45 participants to compare player experience and game usability issues of participants who had previously played similar games on one of the respective gaming systems, while also exploring the effects of players being forced to switch to an unfamiliar platform. The results show that players switching to a new platform experience more usability issues and consider themselves more challenged, but report an equally positive overall experience as players on their comfort platform. © 2011 ACM

    A Software Development Kit for Camera-Based Gesture Interaction

    Get PDF
    Human-Computer Interaction is a rapidly expanding field, in which new implementations of ideas are consistently being released. In recent years, much of the concentration in this field has been on gesture-based control, either touch-based or camera-based. Even though camera-based gesture recognition was previously seen more in science fiction than in reality, this method of interaction is rising in popularity. There are a number of devices readily available to the average consumer that are designed to support this type of input, including the popular Microsoft Kinect and Leap Motion devices. Despite this rise in availability and popularity, development for these devices is currently an arduous task, unless only the most simple of gestures is required. The goal of this thesis is to develop a Software Development Kit (SDK) with which developers can more easily develop interfaces that utilize gesture-based control. If successful, this SDK could significantly reduce the amount of work (both in effort and in lines of code) necessary for a programmer to implement gesture control in an application. This, in turn, could help reduce the intellectual barrier which many face when attempting to implement a new interface. The developed SDK has three main goals. The SDK will place an emphasis on simplicity of code for developers using it; will allow for a variety of gestures, including gestures made by single or multiple trackable objects (e.g., hands and fingers), gestures performed in stages, and continuously-updating gestures; and will be device-agnostic, in that it will not be written exclusively for a single device. The thesis presents the results of a system validation study that suggests all of these goals have been met

    A Comparison of Exergaming Interfaces for Use in Rehabilitation Programs and Research

    Get PDF
    Exergames or active video games are video games with interfaces that require active involvement and the exertion of physical force by participants. These exergames are designed to track body motion and provide both fun and exercise for game players. Numerous video game console companies have designed exergaming interfaces that are becoming very popular. This paper examines the nature of the interfaces and explores the possibility of using these interfaces for rehabilitation programs and research. While many systems exist, this paper will focus on three major players: Sony PlayStation Move, Nintendo Wii, and Microsoft Xbox 360 Kinect. Comparisons include the technical specifications, the motion sensed by each interface, and the motion required in each therapeutic activity type. Discussion addresses the research implications of using these tools

    Comparative Analysis of The Effects Of Virtual Reality Active Video Game And Controller-Free Active Video Game Play On Physiological Response, Perceived Exertion, And Hedonic Experience

    Get PDF
    Over 60% of US adults are overweight or obese. Sedentary lifestyles are considered major contributors to the high rates and increasing prevalence of obesity. Physical activity is a critical component in shifting from sedentary lifestyles. Studies indicate that less than half of U.S. adults meet the CDC/ACSM physical activity recommendations. Interactive video games can increase PA, but no study has yet assessed physiologic effort, hedonics, and perceived exertion for playing immersive virtual reality (VR) and controller-free screen-based active video games (AVGs), compared to treadmill walking and resting. We ran 25 subjects (9 female, 16 male) in 10-minute sessions of five conditions. Head Mounted Display VR: Oculus (Fruit Ninja and Boxing), Screen-based AVG: Kinect (Fruit Ninja and Boxing), and Treadmill walking at 3 mph. One, six-condition (Rest, Treadmill 3.0, Kinect Boxing, Kinect Fruit Ninja, Oculus Boxing, Oculus Fruit Ninja) repeated-measures ANOVA was used to examine differences in HRmean. Three, five-condition (Treadmill 3.0, Kinect Boxing, Kinect Fruit Ninja, Oculus Boxing, Oculus Fruit Ninja) repeated-measures ANOVA were used to examine differences in HRpeak, ratings of perceived exertion (RPE) and Hedonics (Liking). Post hoc analyses using pairwise comparisons were used to further assess significant main effects of the condition. A Pearson\u27s product-moment correlation was run to assess the relationship between activity condition HRmean and RPE VR Boxing elicited the greatest physiological effort, producing vigorous-intensity PA. There was no significant difference in average heart rate for the Treadmill, Kinect Fruit Ninja, Kinect Boxing, and VR Fruit Ninja. Thus, the Kinect and VR sport and casual games are comparable to treadmill walking PA levels and qualify as moderate-intensity activity. The VR Fruit Ninja, VR Boxing, Kinect Fruit Ninja were the most enjoyed activities. Despite having the highest Heart rate and the highest self-reported Rating of Perceived Exertion (RPE), VR Boxing was significantly more enjoyable than Treadmill Walking. There was no statistically significant correlation between Activity Condition HRmean and RPE. Both casual and sports VR and AVG activities are enjoyable activities for adults, stimulating moderate-to-vigorous activity through a traditionally sedentary medium. This research extends previous works in active video gaming effects on physiological cost, perceived exertion and hedonics and fills the gap relating virtual reality active video games. The significance of the research outcomes is that this analysis provides a scientifically validated approach to support the establishment of physical activity level goals and guidelines in the development of active video games as a response and/or remedy to address the sedentary lifestyles that are contributing to American and global obesity

    A natural user interface architecture using gestures to facilitate the detection of fundamental movement skills

    Get PDF
    Fundamental movement skills (FMSs) are considered to be one of the essential phases of motor skill development. The proper development of FMSs allows children to participate in more advanced forms of movements and sports. To be able to perform an FMS correctly, children need to learn the right way of performing it. By making use of technology, a system can be developed that can help facilitate the learning of FMSs. The objective of the research was to propose an effective natural user interface (NUI) architecture for detecting FMSs using the Kinect. In order to achieve the stated objective, an investigation into FMSs and the challenges faced when teaching them was presented. An investigation into NUIs was also presented including the merits of the Kinect as the most appropriate device to be used to facilitate the detection of an FMS. An NUI architecture was proposed that uses the Kinect to facilitate the detection of an FMS. A framework was implemented from the design of the architecture. The successful implementation of the framework provides evidence that the design of the proposed architecture is feasible. An instance of the framework incorporating the jump FMS was used as a case study in the development of a prototype that detects the correct and incorrect performance of a jump. The evaluation of the prototype proved the following: - The developed prototype was effective in detecting the correct and incorrect performance of the jump FMS; and - The implemented framework was robust for the incorporation of an FMS. The successful implementation of the prototype shows that an effective NUI architecture using the Kinect can be used to facilitate the detection of FMSs. The proposed architecture provides a structured way of developing a system using the Kinect to facilitate the detection of FMSs. This allows developers to add future FMSs to the system. This dissertation therefore makes the following contributions: - An experimental design to evaluate the effectiveness of a prototype that detects FMSs - A robust framework that incorporates FMSs; and - An effective NUI architecture to facilitate the detection of fundamental movement skills using the Kinect
    corecore