1,062 research outputs found

    The luminosity function of Swift long gamma-ray bursts

    Get PDF
    The accumulation of Swift observed gamma-ray bursts (GRBs) has gradually made it possible to directly derive a GRB luminosity function (LF) from the observational luminosity distribution. However, two complexities are involved: (i) the evolving connection between GRB rate and cosmic star formation rate; and (ii) observational selection effects due to telescope thresholds and redshift measurements. With a phenomenological investigation of these two complexities, we constrain and discriminate two popular competing LF models (i.e. the broken-power-law LF and the single-power-law LF with an exponential cut-off at low luminosities). As a result, we find that the broken-power-law LF may be more favoured by observations, with a break luminosity L b= 2.5 × 10 52ergs -1 and prior- and post-break indices ν 1= 1.72 and ν 2= 1.98. Regarding an extra evolution effect expressed by a factor (1 +z) δ, if the metallicity of GRB progenitors is lower than ~0.1Z ⊙ as expected by some collapsar models, then there may be no extra evolution effect other than the metallicity evolution (i.e. δ approaches zero). Alternatively, if we remove the theoretical metallicity requirement, then a relationship between the degenerate parameters δ and Z max can be found, very roughly, δ~ 2.4(Z max/Z ⊙- 0.06). This indicates that extra evolution could become necessary for relatively high metallicities. © 2011 The Authors Monthly Notices of the Royal Astronomical Society © 2011 RAS.published_or_final_versio

    Structure of hadron resonances with a nearby zero of the amplitude

    Get PDF
    We discuss the relation between the analytic structure of the scattering amplitude and the origin of an eigenstate represented by a pole of the amplitude.If the eigenstate is not dynamically generated by the interaction in the channel of interest, the residue of the pole vanishes in the zero coupling limit. Based on the topological nature of the phase of the scattering amplitude, we show that the pole must encounter with the Castillejo-Dalitz-Dyson (CDD) zero in this limit. It is concluded that the dynamical component of the eigenstate is small if a CDD zero exists near the eigenstate pole. We show that the line shape of the resonance is distorted from the Breit-Wigner form as an observable consequence of the nearby CDD zero. Finally, studying the positions of poles and CDD zeros of the KbarN-piSigma amplitude, we discuss the origin of the eigenstates in the Lambda(1405) region.Comment: 7 pages, 3 figures, v2: published versio

    Measurement of the inclusive and dijet cross-sections of b-jets in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector

    Get PDF
    The inclusive and dijet production cross-sections have been measured for jets containing b-hadrons (b-jets) in proton-proton collisions at a centre-of-mass energy of sqrt(s) = 7 TeV, using the ATLAS detector at the LHC. The measurements use data corresponding to an integrated luminosity of 34 pb^-1. The b-jets are identified using either a lifetime-based method, where secondary decay vertices of b-hadrons in jets are reconstructed using information from the tracking detectors, or a muon-based method where the presence of a muon is used to identify semileptonic decays of b-hadrons inside jets. The inclusive b-jet cross-section is measured as a function of transverse momentum in the range 20 < pT < 400 GeV and rapidity in the range |y| < 2.1. The bbbar-dijet cross-section is measured as a function of the dijet invariant mass in the range 110 < m_jj < 760 GeV, the azimuthal angle difference between the two jets and the angular variable chi in two dijet mass regions. The results are compared with next-to-leading-order QCD predictions. Good agreement is observed between the measured cross-sections and the predictions obtained using POWHEG + Pythia. MC@NLO + Herwig shows good agreement with the measured bbbar-dijet cross-section. However, it does not reproduce the measured inclusive cross-section well, particularly for central b-jets with large transverse momenta.Comment: 10 pages plus author list (21 pages total), 8 figures, 1 table, final version published in European Physical Journal

    Bacteria-instructed synthesis of polymers for self-selective microbial binding and labelling

    Get PDF
    The detection and inactivation of pathogenic strains of bacteria continues to be an important therapeutic goal. Hence, there is a need for materials that can bind selectively to specific microorganisms, for diagnostic or anti-infective applications, but which can be formed from simple and inexpensive building blocks. Here, we exploit bacterial redox systems to induce a copper-mediated radical polymerisation of synthetic monomers at cell surfaces, generating polymers in situ that bind strongly to the microorganisms which produced them. This ‘bacteria-instructed synthesis’ can be carried out with a variety of microbial strains, and we show that the polymers produced are self-selective binding agents for the ‘instructing’ cell types. We further expand on the bacterial redox chemistries to ‘click’ fluorescent reporters onto polymers directly at the surfaces of a range of clinical isolate strains, allowing rapid, facile and simultaneous binding and visualisation of pathogens

    Multi-scale spatio-temporal analysis of human mobility

    Get PDF
    The recent availability of digital traces generated by phone calls and online logins has significantly increased the scientific understanding of human mobility. Until now, however, limited data resolution and coverage have hindered a coherent description of human displacements across different spatial and temporal scales. Here, we characterise mobility behaviour across several orders of magnitude by analysing ∼850 individuals' digital traces sampled every ∼16 seconds for 25 months with ∼10 meters spatial resolution. We show that the distributions of distances and waiting times between consecutive locations are best described by log-normal and gamma distributions, respectively, and that natural time-scales emerge from the regularity of human mobility. We point out that log-normal distributions also characterise the patterns of discovery of new places, implying that they are not a simple consequence of the routine of modern life

    EphA2-receptor deficiency exacerbates myocardial infarction and reduces survival in hyperglycemic mice

    Get PDF
    Background We have previously shown that EphrinA1/EphA expression profile changes in response to myocardial infarction (MI), exogenous EphrinA1-Fc administration following MI positively influences wound healing, and that deletion of the EphA2 Receptor (EphA2-R) exacerbates injury and remodeling. To determine whether or not ephrinA1-Fc would be of therapeutic value in the hyperglycemic infarcted heart, it is critical to evaluate how ephrinA1/EphA signaling changes in the hyperglycemic myocardium in response to MI. Methods Streptozotocin (STZ)-induced hyperglycemia in wild type (WT) and EphA2-receptor mutant (EphA2-R-M) mice was initiated by an intraperitoneal injection of STZ (150 mg/kg) 10 days before surgery. MI was induced by permanent ligation of the left anterior descending coronary artery and analyses were performed at 4 days post-MI. ANOVAs with Student-Newman Keuls multiple comparison post-hoc analysis illustrated which groups were significantly different, with significance of at least p < 0.05. Results Both WT and EphA2-R-M mice responded adversely to STZ, but only hyperglycemic EphA2-R-M mice had lower ejection fraction (EF) and fractional shortening (FS). At 4 days post-MI, we observed greater post-MI mortality in EphA2-R-M mice compared with WT and this was greater still in the EphA2-R-M hyperglycemic mice. Although infarct size was greater in hyperglycemic WT mice vs normoglycemic mice, there was no difference between hyperglycemic EphA2-R-M mice and normoglycemic EphA2-R-M mice. The hypertrophic response that normally occurs in viable myocardium remote to the infarct was noticeably absent in epicardial cardiomyocytes and cardiac dysfunction worsened in hyperglycemic EphA2-R-M hearts post-MI. The characteristic interstitial fibrotic response in the compensating myocardium remote to the infarct also did not occur in hyperglycemic EphA2-R-M mouse hearts to the same extent as that observed in the hyperglycemic WT mouse hearts. Differences in neutrophil and pan-leukocyte infiltration and serum cytokines implicate EphA2-R in modulation of injury and the differences in ephrinA1 and EphA6-R expression in governing this are discussed. Conclusions We conclude that EphA2-mutant mice are more prone to hyperglycemia-induced increased injury, decreased survival, and worsened LV remodeling due to impaired wound healing

    Search for R-parity-violating supersymmetry in events with four or more leptons in sqrt(s) =7 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for new phenomena in final states with four or more leptons (electrons or muons) is presented. The analysis is based on 4.7 fb−1 of s=7  TeV \sqrt{s}=7\;\mathrm{TeV} proton-proton collisions delivered by the Large Hadron Collider and recorded with the ATLAS detector. Observations are consistent with Standard Model expectations in two signal regions: one that requires moderate values of missing transverse momentum and another that requires large effective mass. The results are interpreted in a simplified model of R-parity-violating supersymmetry in which a 95% CL exclusion region is set for charged wino masses up to 540 GeV. In an R-parity-violating MSUGRA/CMSSM model, values of m 1/2 up to 820 GeV are excluded for 10 < tan β < 40
    corecore