32 research outputs found

    Selected growth and interaction characteristics of seafloor faults in the central Mississippi Canyon Offshore Continental Shelf (OCS) area, northern Gulf of Mexico

    Get PDF
    The characteristics of some shallow faults in the Gulf of Mexico interpreted to be active are poorly understood. A better understanding of these faults will increase our understanding of formerly and presently active geologic processes in the Gulf. Specifically, the characteristics of growth, interaction, and linkage of faults are of interest. Most of the Gulf has seen continuous clastic sediment deposition since the end of continental rifting in the middle Mesozoic. The Gulf is a tectonically quiescent basin, with the only major structural processes being salt diapirism and subsidence. Numerous styles of faulting have been observed in the Gulf, with each style being related to a specific type of deformation. Numerous authors have concluded that fault growth processes generally involve tipline propagation and linkage of faults. Evidence of these processes has been observed in seismic data sets. This investigation uses a HR 3-D seismic data set to characterize growth, interaction, and linkage of a fault set in the northern Gulf of Mexico. This work shows that linked and interacting faults are present in the study area. These conclusions were reached using measurements of throw on horizons offset by several faults and interpreting the throw data using a model of fault growth and interaction based on separate processes of growth by tipline propagation and growth by linkage of smaller faults. The ratio of these parameters for a fault population can be described by a power law relationship. For the fault set considered here, the power law was found to be valid

    Multiple sclerosis genomic map implicates peripheral immune cells and microglia in susceptibility

    Get PDF

    Office-Based Management of Impotence and Peyronie’s Disease

    No full text

    De Novo Pathogenic Variants in N-cadherin Cause a Syndromic Neurodevelopmental Disorder with Corpus Callosum, Axon, Cardiac, Ocular, and Genital Defects

    No full text
    International audienceCadherins constitute a family of transmembrane proteins that mediate calcium-dependent cell-cell adhesion. The extracellular domain of cadherins consists of extracellular cadherin (EC) domains, separated by calcium binding sites. The EC interacts with other cadherin molecules in cis and in trans to mechanically hold apposing cell surfaces together. CDH2 encodes N-cadherin, whose essential roles in neural development include neuronal migration and axon pathfinding. However, CDH2 has not yet been linked to a Mendelian neurodevelopmental disorder. Here, we report de novo heterozygous pathogenic variants (seven missense, two frameshift) in CDH2 in nine individuals with a syndromic neurodevelopmental disorder characterized by global developmental delay and/or intellectual disability, variable axon pathfinding defects (corpus callosum agenesis or hypoplasia, mirror movements, Duane anomaly), and ocular, cardiac, and genital anomalies. All seven missense variants (c.1057G>A [p.Asp353Asn]; c.1789G>A [p.Asp597Asn]; c.1789G>T [p.Asp597Tyr]; c.1802A>C [p.Asn601Thr]; c.1839C>G [p.Cys613Trp]; c.1880A>G [p.Asp627Gly]; c.2027A>G [p.Tyr676Cys]) result in substitution of highly conserved residues, and six of seven cluster within EC domains 4 and 5. Four of the substitutions affect the calcium-binding site in the EC4-EC5 interdomain. We show that cells expressing these variants in the EC4-EC5 domains have a defect in cell-cell adhesion; this defect includes impaired binding in trans with N-cadherin-WT expressed on apposing cells. The two frameshift variants (c.2563_2564delCT [p.Leu855Valfs∗4]; c.2564_2567dupTGTT [p.Leu856Phefs∗5]) are predicted to lead to a truncated cytoplasmic domain. Our study demonstrates that de novo heterozygous variants in CDH2 impair the adhesive activity of N-cadherin, resulting in a multisystemic developmental disorder, that could be named ACOG syndrome (agenesis of corpus callosum, axon pathfinding, cardiac, ocular, and genital defects)

    Energy loss, range, path length, time-of-flight, straggling, multiple scattering, and nuclear interaction probability

    No full text

    Heterozygous loss-of-function variants significantly expand the phenotypes associated with loss of GDF11

    No full text
    Growth differentiation factor 11 (GDF11) is a key signaling protein required for proper development of many organ systems. Only one prior study has associated an inherited GDF11 variant with a dominant human disease in a family with variable craniofacial and vertebral abnormalities. Here, we expand the phenotypic spectrum associated with GDF11 variants and document the nature of the variants.We present a cohort of six probands with de novo and inherited nonsense/frameshift (4/6 patients) and missense (2/6) variants in GDF11. We generated gdf11 mutant zebrafish to model loss of gdf11 phenotypes and used an overexpression screen in Drosophila to test variant functionality.Patients with variants in GDF11 presented with craniofacial (5/6), vertebral (5/6), neurological (6/6), visual (4/6), cardiac (3/6), auditory (3/6), and connective tissue abnormalities (3/6). gdf11 mutant zebrafish show craniofacial abnormalities and body segmentation defects that match some patient phenotypes. Expression of the patients’ variants in the fly showed that one nonsense variant in GDF11 is a severe loss-of-function (LOF) allele whereas the missense variants in our cohort are partial LOF variants.GDF11 is needed for human development, particularly neuronal development, and LOF GDF11 alleles can affect the development of numerous organs and tissues

    De Novo Variants in WDR37 Are Associated with Epilepsy, Colobomas, Dysmorphism, Developmental Delay, Intellectual Disability, and Cerebellar Hypoplasia

    No full text
    corecore