11 research outputs found

    PERFORMANCE RELATED TECHNIQUE FACTORS IN OLYMPIC SPRINT KAYAKING

    Get PDF
    A sprint kayaking specific deterministic model was used to identify key performance related technique factors using data from 12 international-level kayakers. There was large variability in the strength of the between-factor relationships across the group. The pull phase was split into 3 components with the 1st phase contributing the most to increases in boat velocity and the 3rd phase causing a decrease in velocity. The propulsive impulse had the largest influence on velocity, but the magnitude of the impact was moderated by blade slip. Large propulsive impulses in the 3rd phase of the pull were associated with larger decreases in velocity. The results show that the model can be used to identify key technique factors on an individual level, although the use of the model should be confirmed on additional kayakers before being used in an applied setting by practitioners

    KINEMATICS OF WOMEN'S SPRINT CANOEING TECHNIQUE

    Get PDF
    Little is known about the biomechanics of sprint canoeing, especially for women's canoeing, and a quantitative kinematic description of the motion would help coaches to develop valid technique coaching models. Five highly-trained female canoeists were filmed at 150 Hz while undertaking a 50 s maximal effort on a canoe ergometer, whose trolley motions were taken to represent those of the boat. Selected boat, body and paddle kinematics were evaluated at three key stroke cyde events (Contact, Paddle Vertical, and End of Drive) and their patterns monitored across the stroke cycle. While no clear trends between the kinematics and power output emerged, a range of strategies were identified and the data represent an initial step in the construction of detailed technique models that can be used to evaluate and monitor individual athletes

    Performance Related Technique Factors in Olympic Sprint Kayaking

    Get PDF
    A sprint kayaking specific deterministic model was used to identify key performance related technique factors using data from 12 international-level kayakers. There was large variability in the strength of the between-factor relationships across the group. The pull phase was split into 3 components with the 1st phase contributing the most to increases in boat velocity and the 3rd phase causing a decrease in velocity. The propulsive impulse had the largest influence on velocity, but the magnitude of the impact was moderated by blade slip. Large propulsive impulses in the 3rd phase of the pull were associated with larger decreases in velocity. The results show that the model can be used to identify key technique factors on an individual level, although the use of the model should be confirmed on additional kayakers before being used in an applied setting by practitioners

    Brewer’s Yeasts

    No full text

    Effectiveness of prescribed fire to re-establish sagebrush steppe vegetation and ecohydrologic function on woodland-encroached sagebrush rangelands, Great Basin, USA: Part I: Vegetation, hydrology, and erosion responses

    No full text
    corecore