95 research outputs found

    Evidence for the h_b(1P) meson in the decay Upsilon(3S) --> pi0 h_b(1P)

    Get PDF
    Using a sample of 122 million Upsilon(3S) events recorded with the BaBar detector at the PEP-II asymmetric-energy e+e- collider at SLAC, we search for the hb(1P)h_b(1P) spin-singlet partner of the P-wave chi_{bJ}(1P) states in the sequential decay Upsilon(3S) --> pi0 h_b(1P), h_b(1P) --> gamma eta_b(1S). We observe an excess of events above background in the distribution of the recoil mass against the pi0 at mass 9902 +/- 4(stat.) +/- 2(syst.) MeV/c^2. The width of the observed signal is consistent with experimental resolution, and its significance is 3.1sigma, including systematic uncertainties. We obtain the value (4.3 +/- 1.1(stat.) +/- 0.9(syst.)) x 10^{-4} for the product branching fraction BF(Upsilon(3S)-->pi0 h_b) x BF(h_b-->gamma eta_b).Comment: 8 pages, 4 postscript figures, submitted to Phys. Rev. D (Rapid Communications

    Measurement of the Top Pair Production Cross Section in the Dilepton Decay Channel in ppbar Collisions at sqrt s = 1.96 TeV

    Get PDF
    Submitted to Phys. Rev. DA measurement of the \ttbar production cross section in \ppbar collisions at s\sqrt{{\rm s}} = 1.96 TeV using events with two leptons, missing transverse energy, and jets is reported. The data were collected with the CDF II Detector. The result in a data sample corresponding to an integrated luminosity 2.8 fb1^{-1} is: \sigma_{\ttbar} = 6.27 ±\pm 0.73(stat) ±\pm 0.63(syst) ±\pm 0.39(lum) pb. for an assumed top mass of 175 GeV/c2c^{2}.A measurement of the tt̅ production cross section in pp̅ collisions at √s=1.96  TeV using events with two leptons, missing transverse energy, and jets is reported. The data were collected with the CDF II detector. The result in a data sample corresponding to an integrated luminosity 2.8  fb-1 is σtt̅ =6.27±0.73(stat)±0.63(syst)±0.39(lum)  pb. for an assumed top mass of 175  GeV/c2.Peer reviewe

    Conditions and configuration metadata for the ATLAS experiment

    No full text
    In the ATLAS experiment, a system called COMA (Conditions/Configuration Metadata for ATLAS), has been developed to make globally important run-level metadata more readily accessible. It is based on a relational database storing directly extracted, refined, reduced, and derived information from system-specific database sources as well as information from non-database sources. This information facilitates a variety of unique dynamic interfaces and provides information to enhance the functionality of other systems. This presentation will give an overview of the components of the COMA system, enumerate its diverse data sources, and give examples of some of the interfaces it facilitates. We list important principles behind COMA schema and interface design, and how features of these principles create coherence and eliminate redundancy among the components of the overall system. In addition, we elucidate how interface logging data has been used to refine COMA content and improve the value and performance of end-user reports and browsers.

    The embryo as moral work object: PGD/IVF staff views and experiences

    Get PDF
    Copyright @ 2008 the authors. This article is available in accordance with the Creative Commons Deed, Attribution 2.5, see http://creativecommons.org/licenses/by-nc-nd/2.5/deed.en_CA.We report on one aspect of a study that explored the views and experiences of practitioners and scientists on social, ethical and clinical dilemmas encountered when working in the field of preimplantation genetic diagnosis (PGD) for serious genetic disorders. The study produced an ethnography based on observation, interviews and ethics discussion groups with staff from two PGD/IVF Units in the UK. We focus here on staff perceptions of work with embryos that entails disposing of ‘affected’ or ‘spare’ embryos or using them for research. A variety of views were expressed on the ‘embryo question’ in contrast to polarised media debates. We argue that the prevailing policy acceptance of destroying affected embryos, and allowing research on embryos up to 14 days leaves some staff with rarely reported, ambivalent feelings. Staff views are under-researched in this area and we focus on how they may reconcile their personal moral views with the ethical framework in their field. Staff construct embryos in a variety of ways as ‘moral work objects’. This allows them to shift attention between micro-level and overarching institutional work goals, building on Casper's concept of ‘work objects’ and focusing on negotiation of the social order in a morally contested field.The Wellcome Trust Biomedical Ethics Programme, who funded the projects‘Facilitating choice, framing choice: the experience of staff working in pre-implantation genetic diagnosis’ (no: 074935), and ‘Ethical Frameworks for Embryo Donation:the views and practices of IVF/PGD staff’ (no: 081414)

    Measurements of electroweak Wjj production and constraints on anomalous gauge couplings with the ATLAS detector

    No full text
    Measurements of the electroweak production of a W boson in association with two jets at high dijet invariant mass are performed using √s = 7 and 8 TeV proton–proton collision data produced by the Large Hadron Collider, corresponding respectively to 4.7 and 20.2 fb−1 of integrated luminosity collected by the ATLAS detector. The measurements are sensitive to the production of a W boson via a triple-gauge-boson vertex and include both the fiducial and differential cross sections of the electroweak process

    Search for new phenomena in dijet mass and angular distributions from pp collisions at root s=13 TeV with the ATLAS detector

    No full text
    This Letter describes a model-agnostic search for pairs of jets (dijets) produced by resonant and non-resonant phenomena beyond the Standard Model in 3.6 fb-1 of proton-proton collisions with a centre-of-mass energy of s=13 TeV recorded by the ATLAS detector at the Large Hadron Collider. The distribution of the invariant mass of the two leading jets is examined for local excesses above a data-derived estimate of the smoothly falling prediction of the Standard Model. The data are also compared to a Monte Carlo simulation of Standard Model angular distributions derived from the rapidity of the two jets. No evidence of anomalous phenomena is observed in the data, which are used to exclude, at 95% CL, quantum black holes with threshold masses below 8.3 TeV, 8.1 TeV, or 5.1 TeV in three different benchmark scenarios; resonance masses below 5.2 TeV for excited quarks, 2.6 TeV in a W' model, a range of masses starting from mZ'=1.5 TeV and couplings from gq=0.2 in a Z' model; and contact interactions with a compositeness scale below 12.0 TeV and 17.5 TeV respectively for destructive and constructive interference between the new interaction and QCD processes. These results significantly extend the ATLAS limits obtained from 8 TeV data. Gaussian-shaped contributions to the mass distribution are also excluded if the effective cross-section exceeds values ranging from approximately 50-300 fb for masses below 2 TeV to 2-20 fb for masses above 4 TeV

    Search for electroweak production of supersymmetric states in scenarios with compressed mass spectra at √ s = 13 TeV with the ATLAS detector

    No full text
    A search for electroweak production of supersymmetric particles in scenarios with compressed mass spectra in final states with two low-momentum leptons and missing transverse momentum is presented. This search uses proton–proton collision data recorded by the ATLAS detector at the Large Hadron Collider in 2015–2016, corresponding to 36.1 fb−1 of integrated luminosity at √ s = 13 TeV. Events with same-flavor pairs of electrons or muons with opposite electric charge are selected. The data are found to be consistent with the Standard Model prediction. Results are interpreted using simplified models of R-parityconserving supersymmetry in which there is a small mass difference between the masses of the produced supersymmetric particles and the lightest neutralino. Exclusion limits at 95% confidence level are set on next-to-lightest neutralino masses of up to 130 GeV for Higgsino production and 170 GeV for wino production, and sleptons masses of up to 180 GeV for pair production of sleptons. In the compressed mass regime, the exclusion limits extend down to mass splittings of 3 GeV for Higgsino production, 2.5 GeV for wino production, and 1 GeV for slepton production. The results are also interpreted in the context of a radiatively-driven natural supersymmetry model with non-universal Higgs boson masses

    Search for TeV-scale gravity signatures in high-mass final states with leptons and jets with the ATLAS detector at √s=13 TeV

    No full text
    A search for physics beyond the Standard Model, in final states with at least one high transverse momentum charged lepton (electron or muon) and two additional high transverse momentum leptons or jets, is performed using 3.2 fb−1 of proton–proton collision data recorded by the ATLAS detector at the Large Hadron Collider in 2015 at √s=13 TeV source. The upper end of the distribution of the scalar sum of the transverse momenta of leptons and jets is sensitive to the production of high-mass objects. No excess of events beyond Standard Model predictions is observed. Exclusion limits are set for models of microscopic black holes with two to six extra dimensions

    A measurement of the calorimeter response to single hadrons and determination of the jet energy scale uncertainty using LHC Run-1 pp-collision data with the ATLAS detector.

    No full text
    A measurement of the calorimeter response to isolated charged hadrons in the ATLAS detector at the LHC is presented. This measurement is performed with 3.2 nb[Formula: see text] of proton-proton collision data at [Formula: see text] [Formula: see text] from 2010 and 0.1 nb[Formula: see text] of data at [Formula: see text] [Formula: see text] from 2012. A number of aspects of the calorimeter response to isolated hadrons are explored. After accounting for energy deposited by neutral particles, there is a 5% discrepancy in the modelling, using various sets of Geant4 hadronic physics models, of the calorimeter response to isolated charged hadrons in the central calorimeter region. The description of the response to anti-protons at low momenta is found to be improved with respect to previous analyses. The electromagnetic and hadronic calorimeters are also examined separately, and the detector simulation is found to describe the response in the hadronic calorimeter well. The jet energy scale uncertainty and correlations in scale between jets of different momenta and pseudorapidity are derived based on these studies. The uncertainty is 2-5% for jets with transverse momenta above 2 [Formula: see text], where this method provides the jet energy scale uncertainty for ATLAS
    corecore