36 research outputs found

    Spectral crossover in non-hermitian spin chains: comparison with random matrix theory

    Full text link
    We systematically study the short range spectral fluctuation properties of three non-hermitian spin chain hamiltonians using complex spacing ratios. In particular we focus on the non-hermitian version of the standard one-dimensional anisotropic XY model having intrinsic rotation-time-reversal (RT\mathcal{RT}) symmetry that has been explored analytically by Zhang and Song in [Phys.Rev.A {\bf 87}, 012114 (2013)]. The corresponding hermitian counterpart is also exactly solvable and has been widely employed as a toy model in several condensed matter physics problems. We show that the presence of a random field along the xx-direction together with the one along zz facilitates integrability and RT\mathcal{RT}-symmetry breaking leading to the emergence of quantum chaotic behaviour indicated by a spectral crossover resembling Poissonian to Ginibre unitary ensemble (GinUE) statistics of random matrix theory. Additionally, we consider two n×nn \times n dimensional phenomenological random matrix models in which, depending upon crossover parameters, the fluctuation properties measured by the complex spacing ratios show an interpolation between 1D-Poisson to GinUE and 2D-Poisson to GinUE behaviour. Here 1D and 2D Poisson correspond to real and complex uncorrelated levels, respectively.Comment: 15 Pages, 16 figure

    Search for dark matter produced in association with bottom or top quarks in √s = 13 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for weakly interacting massive particle dark matter produced in association with bottom or top quarks is presented. Final states containing third-generation quarks and miss- ing transverse momentum are considered. The analysis uses 36.1 fb−1 of proton–proton collision data recorded by the ATLAS experiment at √s = 13 TeV in 2015 and 2016. No significant excess of events above the estimated backgrounds is observed. The results are in- terpreted in the framework of simplified models of spin-0 dark-matter mediators. For colour- neutral spin-0 mediators produced in association with top quarks and decaying into a pair of dark-matter particles, mediator masses below 50 GeV are excluded assuming a dark-matter candidate mass of 1 GeV and unitary couplings. For scalar and pseudoscalar mediators produced in association with bottom quarks, the search sets limits on the production cross- section of 300 times the predicted rate for mediators with masses between 10 and 50 GeV and assuming a dark-matter mass of 1 GeV and unitary coupling. Constraints on colour- charged scalar simplified models are also presented. Assuming a dark-matter particle mass of 35 GeV, mediator particles with mass below 1.1 TeV are excluded for couplings yielding a dark-matter relic density consistent with measurements

    Measurements of top-quark pair differential cross-sections in the eμe\mu channel in pppp collisions at s=13\sqrt{s} = 13 TeV using the ATLAS detector

    Get PDF

    Measurement of the charge asymmetry in top-quark pair production in the lepton-plus-jets final state in pp collision data at s=8TeV\sqrt{s}=8\,\mathrm TeV{} with the ATLAS detector

    Get PDF

    Measurement of the W boson polarisation in ttˉt\bar{t} events from pp collisions at s\sqrt{s} = 8 TeV in the lepton + jets channel with ATLAS

    Get PDF

    Search for single production of vector-like quarks decaying into Wb in pp collisions at s=8\sqrt{s} = 8 TeV with the ATLAS detector

    Get PDF

    Search for dark matter in association with a Higgs boson decaying to bb-quarks in pppp collisions at s=13\sqrt s=13 TeV with the ATLAS detector

    Get PDF

    Measurement of jet fragmentation in Pb+Pb and pppp collisions at sNN=2.76\sqrt{{s_\mathrm{NN}}} = 2.76 TeV with the ATLAS detector at the LHC

    Get PDF

    Charged-particle distributions at low transverse momentum in s=13\sqrt{s} = 13 TeV pppp interactions measured with the ATLAS detector at the LHC

    Get PDF
    corecore