476 research outputs found

    Thoracic empyema with scarlatiniform rash and acral desquamation: a case report

    Get PDF
    A 5 year old girl with thoracic empyema developed a scarlatiniform rash and acral desquamation. Cultures from blood, throat, and pleural fluid all grew Streptococcus pyogenes, a common etiologic agent of pediatric thoracic empyema. The presence of a scarlatiniform rash and acral desquamation in children with a thoracic empyema may help identify the causative organism

    Defining the timing of respiratory syncytial virus (RSV) outbreaks: an epidemiological study

    Get PDF
    BACKGROUND: Seasonal RSV infections occur every year and affect particularly children under six months of age. Passive immunoprophylaxis with monoclonal antibody Palivizumab is recommended in the period with high risk of RSV infection. This study aims to define the period for the southern part of Germany (Stuttgart area). METHODS: Epidemiological analysis of the RSV situation in southern Germany from 1996 to 2004 and comparison of results with literature was made. The respiratory tract specimens were sent in for the detection of RSV mainly by paediatric clinics. Detection of RSV was carried out mainly by real-time RT-PCR or by ELISA "Pathfinder". RSV outbreaks were depicted as an absolute number and as a percentage of RSV diagnoses in a month. Onsets, offsets, peaks, duration and severity of RSV seasons were defined and analysed. RESULTS: An early season with strong RSV activity (early-high phase) was followed by a weaker late season (late-low phase) in a regular biennial rhythm. However, onsets, offsets and durations of outbreaks varied significantly from year to year. RSV epidemics in southern Germany were found to oscillate in an antiphase with RSV epidemics in Finland and Sweden. CONCLUSION: The long-term regular biennial rhythm allows predicting whether the next outbreak will be late or early and whether RSV activity will be strong or weak. Not foreseeable, however, is the precise time of increase and decrease of RSV activity. Moreover, the regular seasonal pattern may be disrupted by irregular outbreaks. Thus, activity of RSV has to be monitored every year to define the period with high risk of infection

    Sensitive Commercial NASBA Assay for the Detection of Respiratory Syncytial Virus in Clinical Specimen

    Get PDF
    The aim of the study was to evaluate the usability of three diagnostic procedures for the detection of respiratory syncytial virus in clinical samples. Therefore, the FDA cleared CE marked NOW® RSV ELISA, the NucliSENS® EasyQ RSV A+B NASBA, and a literature based inhouse RT-PCR protocol were compared for their relative sensitivities. Thereby, NASBA turned out to be the most sensitive method with a total number of 80 RSV positive samples out of a cohort of 251 nasopharyngeal washings from patients suffering from clinical symptoms, followed by the inhouse RT-PCR (62/251) and ELISA (52/251). Thus, NASBA may serve as a rapid and highly sensitive alternative for RSV diagnostics

    Jet energy measurement with the ATLAS detector in proton-proton collisions at root s=7 TeV

    Get PDF
    The jet energy scale and its systematic uncertainty are determined for jets measured with the ATLAS detector at the LHC in proton-proton collision data at a centre-of-mass energy of √s = 7TeV corresponding to an integrated luminosity of 38 pb-1. Jets are reconstructed with the anti-kt algorithm with distance parameters R=0. 4 or R=0. 6. Jet energy and angle corrections are determined from Monte Carlo simulations to calibrate jets with transverse momenta pT≥20 GeV and pseudorapidities {pipe}η{pipe}<4. 5. The jet energy systematic uncertainty is estimated using the single isolated hadron response measured in situ and in test-beams, exploiting the transverse momentum balance between central and forward jets in events with dijet topologies and studying systematic variations in Monte Carlo simulations. The jet energy uncertainty is less than 2. 5 % in the central calorimeter region ({pipe}η{pipe}<0. 8) for jets with 60≤pT<800 GeV, and is maximally 14 % for pT<30 GeV in the most forward region 3. 2≤{pipe}η{pipe}<4. 5. The jet energy is validated for jet transverse momenta up to 1 TeV to the level of a few percent using several in situ techniques by comparing a well-known reference such as the recoiling photon pT, the sum of the transverse momenta of tracks associated to the jet, or a system of low-pT jets recoiling against a high-pT jet. More sophisticated jet calibration schemes are presented based on calorimeter cell energy density weighting or hadronic properties of jets, aiming for an improved jet energy resolution and a reduced flavour dependence of the jet response. The systematic uncertainty of the jet energy determined from a combination of in situ techniques is consistent with the one derived from single hadron response measurements over a wide kinematic range. The nominal corrections and uncertainties are derived for isolated jets in an inclusive sample of high-pT jets. Special cases such as event topologies with close-by jets, or selections of samples with an enhanced content of jets originating from light quarks, heavy quarks or gluons are also discussed and the corresponding uncertainties are determined. © 2013 CERN for the benefit of the ATLAS collaboration

    Measurement of the inclusive and dijet cross-sections of b-jets in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector

    Get PDF
    The inclusive and dijet production cross-sections have been measured for jets containing b-hadrons (b-jets) in proton-proton collisions at a centre-of-mass energy of sqrt(s) = 7 TeV, using the ATLAS detector at the LHC. The measurements use data corresponding to an integrated luminosity of 34 pb^-1. The b-jets are identified using either a lifetime-based method, where secondary decay vertices of b-hadrons in jets are reconstructed using information from the tracking detectors, or a muon-based method where the presence of a muon is used to identify semileptonic decays of b-hadrons inside jets. The inclusive b-jet cross-section is measured as a function of transverse momentum in the range 20 < pT < 400 GeV and rapidity in the range |y| < 2.1. The bbbar-dijet cross-section is measured as a function of the dijet invariant mass in the range 110 < m_jj < 760 GeV, the azimuthal angle difference between the two jets and the angular variable chi in two dijet mass regions. The results are compared with next-to-leading-order QCD predictions. Good agreement is observed between the measured cross-sections and the predictions obtained using POWHEG + Pythia. MC@NLO + Herwig shows good agreement with the measured bbbar-dijet cross-section. However, it does not reproduce the measured inclusive cross-section well, particularly for central b-jets with large transverse momenta.Comment: 10 pages plus author list (21 pages total), 8 figures, 1 table, final version published in European Physical Journal

    Observation of associated near-side and away-side long-range correlations in √sNN=5.02  TeV proton-lead collisions with the ATLAS detector

    Get PDF
    Two-particle correlations in relative azimuthal angle (Δϕ) and pseudorapidity (Δη) are measured in √sNN=5.02  TeV p+Pb collisions using the ATLAS detector at the LHC. The measurements are performed using approximately 1  μb-1 of data as a function of transverse momentum (pT) and the transverse energy (ΣETPb) summed over 3.1<η<4.9 in the direction of the Pb beam. The correlation function, constructed from charged particles, exhibits a long-range (2<|Δη|<5) “near-side” (Δϕ∼0) correlation that grows rapidly with increasing ΣETPb. A long-range “away-side” (Δϕ∼π) correlation, obtained by subtracting the expected contributions from recoiling dijets and other sources estimated using events with small ΣETPb, is found to match the near-side correlation in magnitude, shape (in Δη and Δϕ) and ΣETPb dependence. The resultant Δϕ correlation is approximately symmetric about π/2, and is consistent with a dominant cos⁡2Δϕ modulation for all ΣETPb ranges and particle pT

    Search for R-parity-violating supersymmetry in events with four or more leptons in sqrt(s) =7 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for new phenomena in final states with four or more leptons (electrons or muons) is presented. The analysis is based on 4.7 fb−1 of s=7  TeV \sqrt{s}=7\;\mathrm{TeV} proton-proton collisions delivered by the Large Hadron Collider and recorded with the ATLAS detector. Observations are consistent with Standard Model expectations in two signal regions: one that requires moderate values of missing transverse momentum and another that requires large effective mass. The results are interpreted in a simplified model of R-parity-violating supersymmetry in which a 95% CL exclusion region is set for charged wino masses up to 540 GeV. In an R-parity-violating MSUGRA/CMSSM model, values of m 1/2 up to 820 GeV are excluded for 10 < tan β < 40
    corecore