1,311 research outputs found

    Unintended consequences of urbanization for aquatic ecosystems: A case study from the Arizona desert

    Get PDF
    Many changes wrought during the construction of "designer ecosystems" are intended to ensure - and often succeed in ensuring - that a city can provide ecosystem goods and services; but other changes have unintended impacts on the ecology of the city, impairing its ability to provide these critical functions. Indian Bend Wash, an urbanizing watershed in the Central Arizona-Phoenix (CAP) ecosystem, provides an excellent case study of how human alteration of land cover, stream channel structure, and hydrology affect ecosystem processes, both intentionally and unintentionally. The construction of canals created new flowpaths that cut across historic stream channels, and the creation of artificial lakes produced sinks for fine sediments and hotspots for nitrogen processing. Further hydrologic manipulations, such as groundwater pumping, linked surface flows to the aquifer and replaced ephemeral washes with perennial waters. These alterations of hydrologic structure are typical by-products of urban growth in arid and semiarid regions and create distinct spatial and temporal patterns of nitrogen availability. © 2008 American Institute of Biological Sciences

    Habitat structure: a fundamental concept and framework for urban soil ecology

    Get PDF
    Habitat structure is defined as the composition and arrangement of physical matter at a location. Although habitat structure is the physical template underlying ecological patterns and processes, the concept is relatively unappreciated and underdeveloped in ecology. However, it provides a fundamental concept for urban ecology because human activities in urban ecosystems are often targeted toward management of habitat structure. In addition, the concept emphasizes the fine-scale, on-the-ground perspective needed in the study of urban soil ecology. To illustrate this, urban soil ecology research is summarized from the perspective of habitat structure effects. Among the key conclusions emerging from the literature review are: (1) habitat structure provides a unifying theme for multivariate research about urban soil ecology; (2) heterogeneous urban habitat structures influence soil ecological variables in different ways; (3) more research is needed to understand relationships among sociological variables, habitat structure patterns and urban soil ecology. To stimulate urban soil ecology research, a conceptual framework is presented to show the direct and indirect relationships among habitat structure and ecological variables. Because habitat structure serves as a physical link between sociocultural and ecological systems, it can be used as a focus for interdisciplinary and applied research (e.g., pest management) about the multiple, interactive effects of urbanization on the ecology of soils

    A Meta-Analysis of Global Urban Land Expansion

    Get PDF
    The conversion of Earth's land surface to urban uses is one of the most irreversible human impacts on the global biosphere. It drives the loss of farmland, affects local climate, fragments habitats, and threatens biodiversity. Here we present a meta-analysis of 326 studies that have used remotely sensed images to map urban land conversion. We report a worldwide observed increase in urban land area of 58,000 km2 from 1970 to 2000. India, China, and Africa have experienced the highest rates of urban land expansion, and the largest change in total urban extent has occurred in North America. Across all regions and for all three decades, urban land expansion rates are higher than or equal to urban population growth rates, suggesting that urban growth is becoming more expansive than compact. Annual growth in GDP per capita drives approximately half of the observed urban land expansion in China but only moderately affects urban expansion in India and Africa, where urban land expansion is driven more by urban population growth. In high income countries, rates of urban land expansion are slower and increasingly related to GDP growth. However, in North America, population growth contributes more to urban expansion than it does in Europe. Much of the observed variation in urban expansion was not captured by either population, GDP, or other variables in the model. This suggests that contemporary urban expansion is related to a variety of factors difficult to observe comprehensively at the global level, including international capital flows, the informal economy, land use policy, and generalized transport costs. Using the results from the global model, we develop forecasts for new urban land cover using SRES Scenarios. Our results show that by 2030, global urban land cover will increase between 430,000 km2 and 12,568,000 km2, with an estimate of 1,527,000 km2 more likely

    Movement and habitat use of the snapping turtle in an urban landscape

    Get PDF
    In order to effectively manage urban habitats, it is important to incorporate the spatial ecology and habitat use of the species utilizing them. Our previous studies have shown that the distribution of upland habitats surrounding a highly urbanized wetland habitat, the Central Canal (Indianapolis, IN, USA) influences the distribution of map turtles (Graptemys geographica) and red-eared sliders (Trachemys scripta) during both the active season and hibernation. In this study we detail the movements and habitat use of another prominent member of the Central Canal turtle assemblage, the common snapping turtle, Chelydra serpentina. We find the same major upland habitat associations for C. serpentina as for G. geographica and T. scripta, despite major differences in their activity (e.g., C. serpentina do not regularly engage in aerial basking). These results reinforce the importance of recognizing the connection between aquatic and surrounding terrestrial habitats, especially in urban ecosystems

    Sustainable Urban Systems: Co-design and Framing for Transformation

    Get PDF
    Rapid urbanisation generates risks and opportunities for sustainable development. Urban policy and decision makers are challenged by the complexity of cities as social–ecological–technical systems. Consequently there is an increasing need for collaborative knowledge development that supports a whole-of-system view, and transformational change at multiple scales. Such holistic urban approaches are rare in practice. A co-design process involving researchers, practitioners and other stakeholders, has progressed such an approach in the Australian context, aiming to also contribute to international knowledge development and sharing. This process has generated three outputs: (1) a shared framework to support more systematic knowledge development and use, (2) identification of barriers that create a gap between stated urban goals and actual practice, and (3) identification of strategic focal areas to address this gap. Developing integrated strategies at broader urban scales is seen as the most pressing need. The knowledge framework adopts a systems perspective that incorporates the many urban trade-offs and synergies revealed by a systems view. Broader implications are drawn for policy and decision makers, for researchers and for a shared forward agenda

    Garden and landscape-scale correlates of moths of differing conservation status: significant effects of urbanization and habitat diversity

    Get PDF
    Moths are abundant and ubiquitous in vegetated terrestrial environments and are pollinators, important herbivores of wild plants, and food for birds, bats and rodents. In recent years, many once abundant and widespread species have shown sharp declines that have been cited by some as indicative of a widespread insect biodiversity crisis. Likely causes of these declines include agricultural intensification, light pollution, climate change, and urbanization; however, the real underlying cause(s) is still open to conjecture. We used data collected from the citizen science Garden Moth Scheme (GMS) to explore the spatial association between the abundance of 195 widespread British species of moth, and garden habitat and landscape features, to see if spatial habitat and landscape associations varied for species of differing conservation status. We found that associations with habitat and landscape composition were species-specific, but that there were consistent trends in species richness and total moth abundance. Gardens with more diverse and extensive microhabitats were associated with higher species richness and moth abundance; gardens near to the coast were associated with higher richness and moth abundance; and gardens in more urbanized locations were associated with lower species richness and moth abundance. The same trends were also found for species classified as increasing, declining and vulnerable under IUCN (World Conservation Union) criteria

    Light pollution: The possible consequences of excessive illumination on retina

    Get PDF
    Light is the visible part of the electromagnetic radiation within a range of 380-780 nm; (400-700 on primates retina). In vertebrates, the retina is adapted to capturing light photons and transmitting this information to other structures in the central nervous system. In mammals, light acts directly on the retina to fulfill two important roles: (1) the visual function through rod and cone photoreceptor cells and (2) non-image forming tasks, such as the synchronization of circadian rhythms to a 24 h solar cycle, pineal melatonin suppression and pupil light reflexes. However, the excess of illumination may cause retinal degeneration or accelerate genetic retinal diseases. In the last century human society has increased its exposure to artificial illumination, producing changes in the Light/Dark cycle, as well as in light wavelengths and intensities. Although, the consequences of unnatural illumination or light pollution have been underestimated by modern society in its way of life, light pollution may have a strong impact on people's health. The effects of artificial light sources could have direct consequences on retinal health. Constant exposure to different wavelengths and intensities of light promoted by light pollution may produce retinal degeneration as a consequence of photoreceptor or retinal pigment epithelium cells death. In this review we summarize the different mechanisms of retinal damage related to the light exposure, which generates light pollution.Fil: Contin, Maria Ana. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - CĂłrdoba. Centro de Investigaciones en QuĂ­mica BiolĂłgica de CĂłrdoba. Universidad Nacional de CĂłrdoba. Facultad de Ciencias QuĂ­micas. Centro de Investigaciones en QuĂ­mica BiolĂłgica de CĂłrdoba; ArgentinaFil: Benedetto, MarĂ­a Mercedes. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - CĂłrdoba. Centro de Investigaciones en QuĂ­mica BiolĂłgica de CĂłrdoba. Universidad Nacional de CĂłrdoba. Facultad de Ciencias QuĂ­micas. Centro de Investigaciones en QuĂ­mica BiolĂłgica de CĂłrdoba; ArgentinaFil: Quinteros Quintana, MarĂ­a Luz. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - CĂłrdoba. Centro de Investigaciones en QuĂ­mica BiolĂłgica de CĂłrdoba. Universidad Nacional de CĂłrdoba. Facultad de Ciencias QuĂ­micas. Centro de Investigaciones en QuĂ­mica BiolĂłgica de CĂłrdoba; ArgentinaFil: Guido, Mario Eduardo. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - CĂłrdoba. Centro de Investigaciones en QuĂ­mica BiolĂłgica de CĂłrdoba. Universidad Nacional de CĂłrdoba. Facultad de Ciencias QuĂ­micas. Centro de Investigaciones en QuĂ­mica BiolĂłgica de CĂłrdoba; Argentin

    Relative Roles of Grey Squirrels, Supplementary Feeding, and Habitat in Shaping Urban Bird Assemblages

    Get PDF
    Non-native species are frequently considered to influence urban assemblages. The grey squirrel Sciurus carolinensis is one such species that is widespread in the UK and is starting to spread across Europe; it predates birds’ nests and can compete with birds for supplementary food. Using distance sampling across the urbanisation intensity gradient in Sheffield (UK) we test whether urban grey squirrels influence avian species richness and density through nest predation and competition for supplementary food sources. We also assess how urban bird assemblages respond to supplementary feeding. We find that grey squirrels slightly reduced the abundance of breeding bird species most sensitive to squirrel nest predation by reducing the beneficial impact of woodland cover. There was no evidence that grey squirrel presence altered relationships between supplementary feeding and avian assemblage structure. This may be because, somewhat surprisingly, supplementary feeding was not associated with the richness or density of wintering bird assemblages. These associations were positive during the summer, supporting advocacy to feed birds during the breeding season and not just winter, but explanatory capacity was limited. The amount of green space and its quality, assessed as canopy cover, had a stronger influence on avian species richness and population size than the presence of grey squirrels and supplementary feeding stations. Urban bird populations are thus more likely to benefit from investment in improving the availability of high quality habitats than controlling squirrel populations or increased investment in supplementary feeding

    Environmental factors shaping the distribution of common wintering waterbirds in a lake ecosystem with developed shoreline

    Get PDF
    In this study, we tested whether the spatial distribution of waterbirds is influenced by shoreline urbanization or other habitat characteristics. We conducted monthly censuses along shoreline sections of a continental lake (Lake Balaton, Hungary) to assess the abundance of 11 common species that use this lake as a feeding and staging area during migration and winter. We estimated the degree of urbanization of the same shoreline sections and also measured other habitat characteristics (water depth, extent of reed cover, biomass of zebra mussels, distances to waste dumps and to other wetlands). We applied linear models and model averaging to identify habitat variables with high relative importance for predicting bird distributions. Bird abundance and urbanization were strongly related only in one species. Other habitat variables exhibited stronger relationships with bird distribution: (1) diving ducks and coots preferred shoreline sections with high zebra mussel biomass, (2) gulls preferred sites close to waste dumps, and (3) the abundances of several species were higher on shoreline sections close to other wetlands. Our findings suggest that the distribution of waterbirds on Lake Balaton is largely independent of shoreline urbanization and influenced by food availability and connectivity between wetlands

    Measurement of the cross-section of high transverse momentum vector bosons reconstructed as single jets and studies of jet substructure in pp collisions at √s = 7 TeV with the ATLAS detector

    Get PDF
    This paper presents a measurement of the cross-section for high transverse momentum W and Z bosons produced in pp collisions and decaying to all-hadronic final states. The data used in the analysis were recorded by the ATLAS detector at the CERN Large Hadron Collider at a centre-of-mass energy of √s = 7 TeV;{\rm Te}{\rm V}andcorrespondtoanintegratedluminosityof and correspond to an integrated luminosity of 4.6\;{\rm f}{{{\rm b}}^{-1}}.ThemeasurementisperformedbyreconstructingtheboostedWorZbosonsinsinglejets.ThereconstructedjetmassisusedtoidentifytheWandZbosons,andajetsubstructuremethodbasedonenergyclusterinformationinthejetcentre−of−massframeisusedtosuppressthelargemulti−jetbackground.Thecross−sectionforeventswithahadronicallydecayingWorZboson,withtransversemomentum. The measurement is performed by reconstructing the boosted W or Z bosons in single jets. The reconstructed jet mass is used to identify the W and Z bosons, and a jet substructure method based on energy cluster information in the jet centre-of-mass frame is used to suppress the large multi-jet background. The cross-section for events with a hadronically decaying W or Z boson, with transverse momentum {{p}_{{\rm T}}}\gt 320\;{\rm Ge}{\rm V}andpseudorapidity and pseudorapidity |\eta |\lt 1.9,ismeasuredtobe, is measured to be {{\sigma }_{W+Z}}=8.5\pm 1.7$ pb and is compared to next-to-leading-order calculations. The selected events are further used to study jet grooming techniques
    • 

    corecore