655 research outputs found
Screening for resistance to ripe rot caused by Colletotrichum acutatum in grape germplasm
We screened 235 Vitis and six Muscadinia grapevine cultivars and selections conserved at the National Institute of Fruit Tree Science in Japan for resistance to grape ripe rot, caused by Colletotrichum acutatum Simmonds ex Simmonds. This fungus is insensitive to fungicides such as benomyl, diethofencarb, and iminoctadine-triacetate. We evaluated the disease resistance of nearly ripe berries from each cultivar and selection by artificial inoculation with C. acutatum. Analysis of variance of 20 cultivars and selections indicated that the genotype had a significant effect but that the year had no significant effect on the percentage of diseased berries. Genetic variance explained 85 % of total variance. Each cultivar or selection was classified into one of the following four classes based on its level of resistance to ripe rot: 50 highly resistant (≤ 20 % affected), 37 resistant (21- 40 %), 48 susceptible (41- 60 %), and 106 highly susceptible (≥ 61 %). Of the highly resistant cultivars and selections, we consider a diploid named 676-64 to be promising material for ripe rot resistant table grape breeding.
The grapevine (Vitis vinifera) aquaporin VvNIP2;1 is a silicon channel localized at the plasma membrane highly expressed in roots
Silicon (Si) supplementation has been shown to improve plant tolerance to different stresses and its accumulation in the aerial organs is mediated by NIP2;1 aquaporins (Lsi channels) and Lsi2-type exporters in roots. In the present study, we tested the hypothesis that grapevine expresses a functional NIP2;1 that accounts for root Si uptake and, eventually, Si accumulation in leaves. Own-rooted grapevine cuttings of the cultivar Vinhão accumulated over 0.2 % Si (dw) in leaves when irrigated with 1.5 mM Si for one month, while Si was undetected in control leaves. Real-time PCR showed that VvNIP2;1 was highly expressed in roots and in green berries. The transient transformation of tobacco leaf epidermal cells mediated by Agrobacterium tumefaciens confirmed VvNIP2;1 localization at the plasma membrane. Transport experiments in oocytes showed that VvNIP2;1 mediates Si and arsenite uptake, whereas permeability studies revealed that VvNIP2;1 expressed in yeast is unable to transport water and glycerol. Si supplementation to pigmented grape cultured cells (cv. Gamay Freáux) had no impact on the total phenolic and anthocyanin content, as well as the growth rate and VvNIP2;1 expression. Long-term experiments should help determine the extent of Si uptake over time and if gapevine can benefit from Si fertilizationinfo:eu-repo/semantics/acceptedVersio
Structural basis for high selectivity of a rice silicon channel Lsi1
Silicon (Si), the most abundant mineral element in the earth’s crust, is taken up by plant roots
in the form of silicic acid through Low silicon rice 1 (Lsi1). Lsi1 belongs to the Nodulin 26-like
intrinsic protein subfamily in aquaporin and shows high selectivity for silicic acid. To uncover
the structural basis for this high selectivity, here we show the crystal structure of the rice Lsi1
at a resolution of 1.8 Å. The structure reveals transmembrane helical orientations different
from other aquaporins, characterized by a unique, widely opened, and hydrophilic selectivity
filter (SF) composed of five residues. Our structural, functional, and theoretical investigations
provide a solid structural basis for the Si uptake mechanism in plants, which will contribute to
secure and sustainable rice production by manipulating Lsi1 selectivity for different
metalloids
The aromatic/arginine selectivity filter of NIP aquaporins plays a critical role in substrate selectivity for silicon, boron, and arsenic
Nodulin-26-like intrinsic proteins (NIPs) of the aquaporin family are involved in the transport of diverse solutes, but the mechanisms controlling the selectivity of transport substrates are poorly understood. The purpose of this study was to investigate how the aromatic/arginine (ar/R) selectivity filter influences the substrate selectivity of two NIP aquaporins; the silicic acid (Si) transporter OsLsi1 (OsNIP2;1) from rice and the boric acid (B) transporter AtNIP5;1 from Arabidopsis; both proteins are also permeable to arsenite. Native and site-directed mutagenized variants of the two genes were expressed in Xenopus oocytes and the transport activities for Si, B, arsenite, and water were assayed. Substitution of the amino acid at the ar/R second helix (H2) position of OsLsi1 did not affect the transport activities for Si, B, and arsenite, but that at the H5 position resulted in a total loss of Si and B transport activities and a partial loss of arsenite transport activity. Conversely, changes of the AtNIP5;1 ar/R selectivity filter and the NPA motifs to the OsLsi1 type did not result in a gain of Si transport activity. B transport activity was partially lost in the H5 mutant but unaffected in the H2 mutant of AtNIP5;1. In contrast, both the single and double mutations at the H2 and/or H5 positions of AtNIP5;1 did not affect arsenite transport activity. The results reveal that the residue at the H5 position of the ar/R filter of both OsLsi1 and AtNIP5;1 plays a key role in the permeability to Si and B, but there is a relatively low selectivity for arsenite
Identification of a mammalian silicon transporter.
Silicon (Si) has long been known to play a major physiological and structural role in certain organisms, including diatoms, sponges, and many higher plants, leading to the recent identification of multiple proteins responsible for Si transport in a range of algal and plant species. In mammals, despite several convincing studies suggesting that silicon is an important factor in bone development and connective tissue health, there is a critical lack of understanding about the biochemical pathways that enable Si homeostasis. Here we report the identification of a mammalian efflux Si transporter, namely Slc34a2 (also termed NaPiIIb), a known sodium-phosphate cotransporter, which was upregulated in rat kidney following chronic dietary Si deprivation. Normal rat renal epithelium demonstrated punctate expression of Slc34a2, and when the protein was heterologously expressed in Xenopus laevis oocytes, Si efflux activity (i.e., movement of Si out of cells) was induced and was quantitatively similar to that induced by the known plant Si transporter OsLsi2 in the same expression system. Interestingly, Si efflux appeared saturable over time, but it did not vary as a function of extracellular [Formula: see text] or Na+ concentration, suggesting that Slc34a2 harbors a functionally independent transport site for Si operating in the reverse direction to the site for phosphate. Indeed, in rats with dietary Si depletion-induced upregulation of transporter expression, there was increased urinary phosphate excretion. This is the first evidence of an active Si transport protein in mammals and points towards an important role for Si in vertebrates and explains interactions between dietary phosphate and silicon
Is silicon a panacea for alleviating drought and salt stress in crops?
Salinity affects around 20% of all arable land while an even larger area suffers from recurrent drought. Together these stresses suppress global crop production by as much as 50% and their impacts are predicted to be exacerbated by climate change. Infrastructure and management practices can mitigate these detrimental impacts, but are costly. Crop breeding for improved tolerance has had some success but is progressing slowly and is not keeping pace with climate change. In contrast, Silicon (Si) is known to improve plant tolerance to a range of stresses and could provide a sustainable, rapid and cost-effective mitigation method. The exact mechanisms are still under debate but it appears Si can relieve salt stress via accumulation in the root apoplast where it reduces “bypass flow of ions to the shoot. Si-dependent drought relief has been linked to lowered root hydraulic conductance and reduction of water loss through transpiration. However, many alternative mechanisms may play a role such as altered gene expression and increased accumulation of compatible solutes. Oxidative damage that occurs under stress conditions can be reduced by Si through increased antioxidative enzymes while Si-improved photosynthesis has also been reported. Si fertilizer can be produced relatively cheaply and to assess its economic viability to improve crop stress tolerance we present a cost-benefit analysis. It suggests that Si fertilization may be beneficial in many agronomic settings but may be beyond the means of smallholder farmers in developing countries. Si application may also have disadvantages, such as increased soil pH, less efficient conversion of crops into biofuel and reduced digestibility of animal fodder. These issues may hamper uptake of Si fertilization as a routine agronomic practice. Here, we critically evaluate recent literature, quantifying the most significant physiological changes associated with Si in plants under drought and salinity stress. Analyses show that metrics associated with photosynthesis, water balance and oxidative stress all improve when Si is present during plant exposure to salinity and drought. We further conclude that most of these changes can be explained by apoplastic roles of Si while there is as yet little evidence to support biochemical roles of this element
Spin-dependent transport in nanocomposite C:Co films
The magneto-transport properties of nanocomposite C:Co (15 and 40 at.% Co)
thin films are investigated. The films were grown by ion beam co-sputtering on
thermally oxidized silicon substrates in the temperature range from 200 to 500
degC. Two major effects are reported: (i) a large anomalous Hall effect
amounting to 2 \mu ohm cm, and (ii) a negative magnetoresistance. Both the
field-dependent resistivity and Hall resistivity curves coincide with the
rescaled magnetization curves, a finding that is consistent with spin-dependent
transport. These findings suggest that C:Co nanocomposites are promising
candidates for carbon-based Hall sensors and spintronic devices.Comment: 13 pages, 7 figure
Chimpanzees (Pan troglodytes) do not develop contingent reciprocity in an experimental task
Chimpanzees provide help to unrelated individuals in a broad range of situations. The pattern of helping within pairs suggests that contingent reciprocity may have been an important mechanism in the evolution of altruism in chimpanzees. However, correlational analyses of the cumulative pattern of interactions over time do not demonstrate that helping is contingent upon previous acts of altruism, as required by the theory of reciprocal altruism. Experimental studies provide a controlled approach to examine the importance of contingency in helping interactions. In this study, we evaluated whether chimpanzees would be more likely to provide food to a social partner from their home group if their partner had previously provided food for them. The chimpanzees manipulated a barpull apparatus in which actors could deliver rewards either to themselves and their partners or only to themselves. Our findings indicate that the chimpanzees’ responses were not consistently influenced by the behavior of their partners in previous rounds. Only one of the 11 dyads that we tested demonstrated positive reciprocity. We conclude that contingent reciprocity does not spontaneously arise in experimental settings, despite the fact that patterns of behavior in the field indicate that individuals cooperate preferentially with reciprocating partners
Genotypic differences in shoot silicon content and the impact on grain arsenic accumulation in rice
Silicon in rice has been demonstrated to be involved in resistance to lodging, tolerance to both drought and salinity, and also enhances resistance to pests and diseases. The aim of this study was to determine the range of silicon content in a set of rice (Oryza sativa L.) accessions, and to determine if the natural variation of shoot silicon is linked to the previously identified silicon transporters (Lsi genes). Silicon content was determined in 50 field-grown accessions, representing all sub-populations of rice, with all accessions being genotyped with 700K SNPs. SNPs within 10 kb of the Lsi genes were examined to determine if any were significantly linked with the phenotypic variation. An XRF method of silicon determination compared favourably with digestion and colorimetric analysis. There were significant genotypic differences in shoot silicon ranging from 16.5 – 42.4 mg g-1 of plant dry weight, there was no significant difference between the rice sub-populations. Plants with different alleles for SNPs representing Lsi2 and Lsi3 were significantly different for shoot silicon content. Shoot silicon correlated negatively with grain arsenic in the tropical and temperate japonica sub-population, suggesting that accessions with high shoot silicon have reduced grain arsenic. This study indicates that alleles for Lsi genes are excellent candidate genes for further study to explain the natural variation of shoot silicon in rice
- …