72 research outputs found

    A medical device domain analysis model based on HL7 RIM

    Get PDF
    Clinical investigations (CIs) are carried out to demonstrate safety and efficacy of new Medical Devices (MDs). The presence of many stakeholders participating in CIs makes it necessary to develop a common standard language to achieve semantic interoperability among systems and organizations. In Italy the National Research Council is carrying out a project supported by Ministry of Health aiming to develop an information system (MEDIS) that manages MD clinical investigations. In order to develop a flexible and interoperable system, MEDIS design has been based on the application of HL7 (Health Level 7) v.3 standards. This paper presents the results of the MEDIS design: the MD DAM based on HL7 RIM

    Long-term sustainability of a distributed RI: the EPOS case

    Get PDF
    The European Plate Observing System (EPOS) is a distributed research infrastructure (RI) with the mission to establish and maintain sustainable and long-term access to solid Earth science data and services by integrating the diverse national research infrastructures under a common federated framework governed by EPOS ERIC (European Research Infrastructure Consortium). This paper presents the EPOS approach to ensure financial viability and to tackle the challenge of long-term sustainability of the RI during its operational phase. The EPOS approach to sustainable operation considers the scientific impact and the promotion of scientific research as the preconditions to achieve long-term sustainability. Enabling scientific excellence implies that high-quality data and services are provided reliably and continuously to establish the RI as the enabler of investigations to solid Earth scientists. The strategic approach and the solutions adopted by EPOS ERIC to address the long-term sustainability of a pan-European distributed RI are discussed in this paper focusing on the governance structure, considered as the qualifying dimension that gathers and connects the financial, legal and technical dimensions. The governance and the financial models are discussed to delineate the legal framework necessary to operate the EPOS RI relying on the implemented technical solutions. A sufficiently stable investment environment is necessary to allow the RI to concentrate on providing high quality services for their user communities. This paper discusses the current actions and challenges to be addressed for achieving this goal.publishedVersio

    Monitoring of cardiovascular risk factors in competitive athletes

    Get PDF
    It is well known that physical activity can improve cardiovascular risk factors, but it is also true that strenuous activity may result detrimental for the athlete health. Among the emerging markers of cardiovascular risk, plasma homocysteine (Hcy) plays a prominent role, since it has been shown its significant increase in competitive athletes. Some research has concluded that Hcy levels may be influenced by the duration, intensity and type of exercise, whereas other studies have identified lifestyle factors, such as smoking, eating habits, alcohol consumption, age, elevated blood pressure and genetic factors, as factors that contribute to increased plasma concentrations of Hcy. Polymorphisms in the methylenetetrahydrofolate reductase gene (MTHFR) (677C/T, 1298A/C) are reported to modulate homocysteine levels. The aim of this work was to identify a genetic profile of risk for cardiovascular disease in two populations of competitive athletes, football players (n = 19) and those engaged in athletics (n=37). The distribution of MTHFR A1298C and C677T polymorphisms was examined by Real-time PCR allelic discrimination on genomic DNA isolated from lymphocytes of whole peripheral blood. The serum levels of Hcy were determined by HPLC method, while vitamin B12 and folate by RIA technique. The data showed that 50% of the subjects in both groups are carrier of MTHFR C677T polymorphism either in heterozygous or homozygous state. In addition, all subjects had mild hyperhomocysteinemia (13-27 micromol/L). The highest mean levels of Hcy were recorded in the football players, and the differences compared to those engaged in athletics were very significant (21.8 ± 11.6 vs. 13.5 ± 6.6, p <0.05). The increase of Hcy could be ascribed mainly to the diet style of the recruited subjects, characterized by a high consumption of red meat and very low intake of B vitamins. Moreover, this increase may also be explained in relation to the type of exercise required in football, that is considered an intermittent intensity sport. The preliminary results of this study suggest that screening for the MTHFR variants C677T and A1298C should be included in the panel of screening for cardiovascular risk in competitive athletes

    Assessment Tools of Biopsychosocial Frailty Dimensions in Community-Dwelling Older Adults: A Narrative Review

    Get PDF
    : Frailty is a complex interplay between several factors, including physiological changes in ageing, multimorbidities, malnutrition, living environment, genetics, and lifestyle. Early screening for frailty risk factors in community-dwelling older people allows for preventive interventions on the clinical and social determinants of frailty, which allows adverse events to be avoided. By conducting a narrative review of the literature employing the International Narrative Systematic Assessment tool, the authors aimed to develop an updated framework for the main measurement tools to assess frailty risks in older adults, paying attention to use in the community and primary care settings. This search focused on the biopsychosocial domains of frailty that are covered in the SUNFRAIL tool. The study selected 178 reviews (polypharmacy: 20; nutrition: 13; physical activity: 74; medical visits: 0; falls: 39; cognitive decline: 12; loneliness: 15; social support: 5; economic constraints: 0) published between January 2010 and December 2021. Within the selected reviews, 123 assessment tools were identified (polypharmacy: 15; nutrition: 15; physical activity: 25; medical visits: 0; falls: 26; cognitive decline: 18; loneliness: 9; social support: 15; economic constraints: 0). The narrative review allowed us to evaluate assessment tools of frailty domains to be adopted for multidimensional health promotion and prevention interventions in community and primary care

    Data Management in Distributed, Federated Research Infrastructures: The Case of EPOS

    Get PDF
    Data management is a key activity when Open Data stewardship through services complying with the FAIR principles is required, as it happens in many National and European initiatives. Existing guidelines and tools facilitate the drafting of Data Management Plans by focusing on a set of common parameters or questions. In this paper we describe how data management is carried out in EPOS, the European Research Infrastructure for providing access to integrated data and services in the solid Earth domain. EPOS relies on a federated model and is committed to remain operational in the long term. In EPOS, five key dimensions were identified for the Federated Data Management, namely the management of: thematic data; e-infrastructure for data integration; community of data providers committed to data provision processes; sustainability; and policies. On the basis of the EPOS experience, which is to some extent applicable to other research infrastructures, we propose additional components that may extend the EU Horizon 2020 Data Management Guidelines template, thus comprehensively addressing the Federated Data Management in the context of distributed Research Infrastructures

    Distinct patterns of brain atrophy in Genetic Frontotemporal Dementia Initiative (GENFI) cohort revealed by visual rating scales.

    Get PDF
    BACKGROUND: In patients with frontotemporal dementia, it has been shown that brain atrophy occurs earliest in the anterior cingulate, insula and frontal lobes. We used visual rating scales to investigate whether identifying atrophy in these areas may be helpful in distinguishing symptomatic patients carrying different causal mutations in the microtubule-associated protein tau (MAPT), progranulin (GRN) and chromosome 9 open reading frame (C9ORF72) genes. We also analysed asymptomatic carriers to see whether it was possible to visually identify brain atrophy before the appearance of symptoms. METHODS: Magnetic resonance imaging of 343 subjects (63 symptomatic mutation carriers, 132 presymptomatic mutation carriers and 148 control subjects) from the Genetic Frontotemporal Dementia Initiative study were analysed by two trained raters using a protocol of six visual rating scales that identified atrophy in key regions of the brain (orbitofrontal, anterior cingulate, frontoinsula, anterior and medial temporal lobes and posterior cortical areas). RESULTS: Intra- and interrater agreement were greater than 0.73 for all the scales. Voxel-based morphometric analysis demonstrated a strong correlation between the visual rating scale scores and grey matter atrophy in the same region for each of the scales. Typical patterns of atrophy were identified: symmetric anterior and medial temporal lobe involvement for MAPT, asymmetric frontal and parietal loss for GRN, and a more widespread pattern for C9ORF72. Presymptomatic MAPT carriers showed greater atrophy in the medial temporal region than control subjects, but the visual rating scales could not identify presymptomatic atrophy in GRN or C9ORF72 carriers. CONCLUSIONS: These simple-to-use and reproducible scales may be useful tools in the clinical setting for the discrimination of different mutations of frontotemporal dementia, and they may even help to identify atrophy prior to onset in those with MAPT mutations

    The wide-field, multiplexed, spectroscopic facility WEAVE : survey design, overview, and simulated implementation

    Get PDF
    Funding for the WEAVE facility has been provided by UKRI STFC, the University of Oxford, NOVA, NWO, Instituto de Astrofísica de Canarias (IAC), the Isaac Newton Group partners (STFC, NWO, and Spain, led by the IAC), INAF, CNRS-INSU, the Observatoire de Paris, Région Île-de-France, CONCYT through INAOE, Konkoly Observatory (CSFK), Max-Planck-Institut für Astronomie (MPIA Heidelberg), Lund University, the Leibniz Institute for Astrophysics Potsdam (AIP), the Swedish Research Council, the European Commission, and the University of Pennsylvania.WEAVE, the new wide-field, massively multiplexed spectroscopic survey facility for the William Herschel Telescope, will see first light in late 2022. WEAVE comprises a new 2-degree field-of-view prime-focus corrector system, a nearly 1000-multiplex fibre positioner, 20 individually deployable 'mini' integral field units (IFUs), and a single large IFU. These fibre systems feed a dual-beam spectrograph covering the wavelength range 366-959 nm at R ∼ 5000, or two shorter ranges at R ∼ 20,000. After summarising the design and implementation of WEAVE and its data systems, we present the organisation, science drivers and design of a five- to seven-year programme of eight individual surveys to: (i) study our Galaxy's origins by completing Gaia's phase-space information, providing metallicities to its limiting magnitude for ∼ 3 million stars and detailed abundances for ∼ 1.5 million brighter field and open-cluster stars; (ii) survey ∼ 0.4 million Galactic-plane OBA stars, young stellar objects and nearby gas to understand the evolution of young stars and their environments; (iii) perform an extensive spectral survey of white dwarfs; (iv) survey  ∼ 400 neutral-hydrogen-selected galaxies with the IFUs; (v) study properties and kinematics of stellar populations and ionised gas in z 1 million spectra of LOFAR-selected radio sources; (viii) trace structures using intergalactic/circumgalactic gas at z > 2. Finally, we describe the WEAVE Operational Rehearsals using the WEAVE Simulator.PostprintPeer reviewe

    The wide-field, multiplexed, spectroscopic facility WEAVE: Survey design, overview, and simulated implementation

    Full text link
    WEAVE, the new wide-field, massively multiplexed spectroscopic survey facility for the William Herschel Telescope, will see first light in late 2022. WEAVE comprises a new 2-degree field-of-view prime-focus corrector system, a nearly 1000-multiplex fibre positioner, 20 individually deployable 'mini' integral field units (IFUs), and a single large IFU. These fibre systems feed a dual-beam spectrograph covering the wavelength range 366-959\,nm at R5000R\sim5000, or two shorter ranges at R20000R\sim20\,000. After summarising the design and implementation of WEAVE and its data systems, we present the organisation, science drivers and design of a five- to seven-year programme of eight individual surveys to: (i) study our Galaxy's origins by completing Gaia's phase-space information, providing metallicities to its limiting magnitude for \sim3 million stars and detailed abundances for 1.5\sim1.5 million brighter field and open-cluster stars; (ii) survey 0.4\sim0.4 million Galactic-plane OBA stars, young stellar objects and nearby gas to understand the evolution of young stars and their environments; (iii) perform an extensive spectral survey of white dwarfs; (iv) survey 400\sim400 neutral-hydrogen-selected galaxies with the IFUs; (v) study properties and kinematics of stellar populations and ionised gas in z<0.5z<0.5 cluster galaxies; (vi) survey stellar populations and kinematics in 25000\sim25\,000 field galaxies at 0.3z0.70.3\lesssim z \lesssim 0.7; (vii) study the cosmic evolution of accretion and star formation using >1>1 million spectra of LOFAR-selected radio sources; (viii) trace structures using intergalactic/circumgalactic gas at z>2z>2. Finally, we describe the WEAVE Operational Rehearsals using the WEAVE Simulator.Comment: 41 pages, 27 figures, accepted for publication by MNRA

    Amyloid PET as a marker of normal-appearing white matter early damage in multiple sclerosis: correlation with CSF β-amyloid levels and brain volumes

    Get PDF
    PURPOSE The disease course of multiple sclerosis (MS) is unpredictable, and reliable prognostic biomarkers are needed. Positron emission tomography (PET) with β-amyloid tracers is a promising tool for evaluating white matter (WM) damage and repair. Our aim was to investigate amyloid uptake in damaged (DWM) and normal-appearing WM (NAWM) of MS patients, and to evaluate possible correlations between cerebrospinal fluid (CSF) β-amyloid (Aβ) levels, amyloid tracer uptake, and brain volumes. METHODS Twelve MS patients were recruited and divided according to their disease activity into active and non-active groups. All participants underwent neurological examination, neuropsychological testing, lumbar puncture, brain magnetic resonance (MRI) imaging, and F-florbetapir PET. Aβ levels were determined in CSF samples from all patients. MRI and PET images were co-registered, and mean standardized uptake values (SUV) were calculated for each patient in the NAWM and in the DWM. To calculate brain volumes, brain segmentation was performed using statistical parametric mapping software. Nonparametric statistical analyses for between-group comparisons and regression analyses were conducted. RESULTS We found a lower SUV in DWM compared to NAWM (p < 0.001) in all patients. Decreased NAWM-SUV was observed in the active compared to non-active group (p < 0.05). Considering only active patients, NAWM volume correlated with NAWM-SUV (p = 0.01). Interestingly, CSF Aβ concentration was a predictor of both NAWM-SUV (r = 0.79; p = 0.01) and NAWM volume (r = 0.81, p = 0.01). CONCLUSIONS The correlation between CSF Aβ levels and NAWM-SUV suggests that the predictive role of β-amyloid may be linked to early myelin damage and may reflect disease activity and clinical progression

    Measurements of the Higgs boson production and decay rates and coupling strengths using pp collision data at √S=7 and 8 TeV in the ATLAS experiment

    Get PDF
    Combined analyses of the Higgs boson production and decay rates as well as its coupling strengths to vector bosons and fermions are presented. The combinations include the results of the analyses of the H -> gamma gamma, ZZ*, WW*, Z gamma, b (b) over bar, tau tau and mu mu decay modes, and the constraints on the associated production with a pair of top quarks and on the off-shell coupling strengths of the Higgs boson. The results are based on the LHC proton-proton collision datasets, with integrated luminosities of up to 4.7 fb(-1) at root s = 7 TeV and 20.3 fb(-1) at root s = 8 TeV, recorded by the ATLAS detector in 2011 and 2012. Combining all production modes and decay channels, the measured signal yield, normalised to the Standard Model expectation, is 1.18(-0.14)(+0.15). The observed Higgs boson production and decay rates are interpreted in a leading-order coupling framework, exploring a wide range of benchmark coupling models both with and without assumptions on the Higgs boson width and on the Standard Model particle content in loop processes. The data are found to be compatible with the Standard Model expectations for a Higgs boson at a mass of 125.36 GeV for all models considered
    corecore