464 research outputs found

    Gas Purity effect on GEM Performance in He and Ne at Low Temperatures

    Full text link
    The performance of Gas Electron Multipliers (GEMs) in gaseous He, Ne, He+H2 and Ne+H2 was studied at temperatures in the range of 3-293 K. This paper reports on previously published measurements and additional studies on the effects of the purity of the gases in which the GEM performance is evaluated. In He, at temperatures between 77 and 293 K, triple-GEM structures operate at rather high gains, exceeding 1000. There is an indication that this high gain is achieved through the Penning effect as a result of impurities in the gas. At lower temperatures the gain-voltage characteristics are significantly modified probably due to the freeze-out of these impurities. Double-GEM and single-GEM structures can operate down to 3 K at gains reaching only several tens at a gas density of about 0.5 g/l; at higher densities the maximum gain drops further. In Ne, the maximum gain also drops at cryogenic temperatures. The gain drop in Ne at low temperatures can be re-established in Penning mixtures of Ne+H2: very high gains, exceeding 104, have been obtained in these mixtures at 30-77 K, at a density of 9.2 g/l which corresponds to saturated Ne vapor density at 27 K. The addition of small amounts of H2 in He also re-establishes large GEM gains above 30 K but no gain was observed in He+H2 at 4 K and a density of 1.7 g/l (corresponding to roughly one-tenth of the saturated vapor density). These studies are, in part, being pursued in the development of two-phase He and Ne detectors for solar neutrino detection.Comment: 4 pages, 7 figure

    GEM operation in helium and neon at low temperatures

    Full text link
    We study the performance of Gas Electron Multipliers (GEMs) in gaseous He, Ne and Ne+H2 at temperatures in the range of 2.6-293 K. In He, at temperatures between 62 and 293 K, the triple-GEM structures often operate at rather high gains, exceeding 1000. There is an indication that this high gain is achieved by Penning effect in the gas impurities released by outgassing. At lower temperatures the gain-voltage characteristics are significantly modified probably due to the freeze-out of impurities. In particular, the double-GEM and single-GEM structures can operate down to 2.6 K at gains reaching only several tens at a gas density of about 0.5 g/l; at higher densities the maximum gain drops further. In Ne, the maximum gain also drops at cryogenic temperatures. The gain drop in Ne at low temperatures can be reestablished in Penning mixtures of Ne+H2: very high gains, exceeding 10000, have been obtained in these mixtures at 50-60 K, at a density of 9.2 g/l corresponding to that of saturated Ne vapor near 27 K. The results obtained are relevant in the fields of two-phase He and Ne detectors for solar neutrino detection and electron avalanching at low temperatures.Comment: 13 pages, 14 figures. Accepted for publishing in Nucl. Instr. and Meth.

    Energy Linearity and Resolution of the ATLAS Electromagnetic Barrel Calorimeter in an Electron Test-Beam

    Get PDF
    A module of the ATLAS electromagnetic barrel liquid argon calorimeter was exposed to the CERN electron test-beam at the H8 beam line upgraded for precision momentum measurement. The available energies of the electron beam ranged from 10 to 245 GeV. The electron beam impinged at one point corresponding to a pseudo-rapidity of eta=0.687 and an azimuthal angle of phi=0.28 in the ATLAS coordinate system. A detailed study of several effects biasing the electron energy measurement allowed an energy reconstruction procedure to be developed that ensures a good linearity and a good resolution. Use is made of detailed Monte Carlo simulations based on Geant which describe the longitudinal and transverse shower profiles as well as the energy distributions. For electron energies between 15 GeV and 180 GeV the deviation of the measured incident electron energy over the beam energy is within 0.1%. The systematic uncertainty of the measurement is about 0.1% at low energies and negligible at high energies. The energy resolution is found to be about 10% sqrt(E) for the sampling term and about 0.2% for the local constant term

    Two-kaon correlations in central Pb + Pb collisions at 158 A GeV/c

    Get PDF
    Two-particle interferometry of positive kaons is studied in Pb + Pb collisions at mean transverse momenta 0.25\approx 0.25 and 0.91 GeV/c. A three-dimensional analysis was applied to the lower pTp_T data, while a two-dimensional analysis was used for the higher pTp_T data. We find that the source size parameters are consistent with the mTm_T scaling curve observed in pion correlation measurements in the same collisions, and that the duration time of kaon emission is consistent with zero within the experimental sensitivity.Comment: 4 pages incl. 1 table and 3 fig's; RevTeX; accepted for publication in PR

    Strange Meson Enhancement in PbPb Collisions

    Get PDF
    The NA44 Collaboration has measured yields and differential distributions of K+, K-, pi+, pi- in transverse kinetic energy and rapidity, around the center-of-mass rapidity in 158 A GeV/c Pb+Pb collisions at the CERN SPS. A considerable enhancement of K+ production per pi is observed, as compared to p+p collisions at this energy. To illustrate the importance of secondary hadron rescattering as an enhancement mechanism, we compare strangeness production at the SPS and AGS with predictions of the transport model RQMD.Comment: 11 pages, including 4 figures, LATE

    Inclusive search for same-sign dilepton signatures in pp collisions at root s=7 TeV with the ATLAS detector

    Get PDF
    An inclusive search is presented for new physics in events with two isolated leptons (e or mu) having the same electric charge. The data are selected from events collected from p p collisions at root s = 7 TeV by the ATLAS detector and correspond to an integrated luminosity of 34 pb(-1). The spectra in dilepton invariant mass, missing transverse momentum and jet multiplicity are presented and compared to Standard Model predictions. In this event sample, no evidence is found for contributions beyond those of the Standard Model. Limits are set on the cross-section in a fiducial region for new sources of same-sign high-mass dilepton events in the ee, e mu and mu mu channels. Four models predicting same-sign dilepton signals are constrained: two descriptions of Majorana neutrinos, a cascade topology similar to supersymmetry or universal extra dimensions, and fourth generation d-type quarks. Assuming a new physics scale of 1 TeV, Majorana neutrinos produced by an effective operator V with masses below 460 GeV are excluded at 95% confidence level. A lower limit of 290 GeV is set at 95% confidence level on the mass of fourth generation d-type quarks

    Measurement of the top quark-pair production cross section with ATLAS in pp collisions at \sqrt{s}=7\TeV

    Get PDF
    A measurement of the production cross-section for top quark pairs(\ttbar) in pppp collisions at \sqrt{s}=7 \TeV is presented using data recorded with the ATLAS detector at the Large Hadron Collider. Events are selected in two different topologies: single lepton (electron ee or muon μ\mu) with large missing transverse energy and at least four jets, and dilepton (eeee, μμ\mu\mu or eμe\mu) with large missing transverse energy and at least two jets. In a data sample of 2.9 pb-1, 37 candidate events are observed in the single-lepton topology and 9 events in the dilepton topology. The corresponding expected backgrounds from non-\ttbar Standard Model processes are estimated using data-driven methods and determined to be 12.2±3.912.2 \pm 3.9 events and 2.5±0.62.5 \pm 0.6 events, respectively. The kinematic properties of the selected events are consistent with SM \ttbar production. The inclusive top quark pair production cross-section is measured to be \sigmattbar=145 \pm 31 ^{+42}_{-27} pb where the first uncertainty is statistical and the second systematic. The measurement agrees with perturbative QCD calculations.Comment: 30 pages plus author list (50 pages total), 9 figures, 11 tables, CERN-PH number and final journal adde

    Single hadron response measurement and calorimeter jet energy scale uncertainty with the ATLAS detector at the LHC

    Get PDF
    The uncertainty on the calorimeter energy response to jets of particles is derived for the ATLAS experiment at the Large Hadron Collider (LHC). First, the calorimeter response to single isolated charged hadrons is measured and compared to the Monte Carlo simulation using proton-proton collisions at centre-of-mass energies of sqrt(s) = 900 GeV and 7 TeV collected during 2009 and 2010. Then, using the decay of K_s and Lambda particles, the calorimeter response to specific types of particles (positively and negatively charged pions, protons, and anti-protons) is measured and compared to the Monte Carlo predictions. Finally, the jet energy scale uncertainty is determined by propagating the response uncertainty for single charged and neutral particles to jets. The response uncertainty is 2-5% for central isolated hadrons and 1-3% for the final calorimeter jet energy scale.Comment: 24 pages plus author list (36 pages total), 23 figures, 1 table, submitted to European Physical Journal

    Standalone vertex finding in the ATLAS muon spectrometer

    Get PDF
    A dedicated reconstruction algorithm to find decay vertices in the ATLAS muon spectrometer is presented. The algorithm searches the region just upstream of or inside the muon spectrometer volume for multi-particle vertices that originate from the decay of particles with long decay paths. The performance of the algorithm is evaluated using both a sample of simulated Higgs boson events, in which the Higgs boson decays to long-lived neutral particles that in turn decay to bbar b final states, and pp collision data at √s = 7 TeV collected with the ATLAS detector at the LHC during 2011

    Measurement of the inclusive and dijet cross-sections of b-jets in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector

    Get PDF
    The inclusive and dijet production cross-sections have been measured for jets containing b-hadrons (b-jets) in proton-proton collisions at a centre-of-mass energy of sqrt(s) = 7 TeV, using the ATLAS detector at the LHC. The measurements use data corresponding to an integrated luminosity of 34 pb^-1. The b-jets are identified using either a lifetime-based method, where secondary decay vertices of b-hadrons in jets are reconstructed using information from the tracking detectors, or a muon-based method where the presence of a muon is used to identify semileptonic decays of b-hadrons inside jets. The inclusive b-jet cross-section is measured as a function of transverse momentum in the range 20 < pT < 400 GeV and rapidity in the range |y| < 2.1. The bbbar-dijet cross-section is measured as a function of the dijet invariant mass in the range 110 < m_jj < 760 GeV, the azimuthal angle difference between the two jets and the angular variable chi in two dijet mass regions. The results are compared with next-to-leading-order QCD predictions. Good agreement is observed between the measured cross-sections and the predictions obtained using POWHEG + Pythia. MC@NLO + Herwig shows good agreement with the measured bbbar-dijet cross-section. However, it does not reproduce the measured inclusive cross-section well, particularly for central b-jets with large transverse momenta.Comment: 10 pages plus author list (21 pages total), 8 figures, 1 table, final version published in European Physical Journal
    corecore