104 research outputs found

    Depth-resolving the redox compensation mechanism in LixNiO2

    Full text link
    The performances of lithium-ion batteries are set by the electrodes materials capacity to exchange lithium ions and electrons faster and reversibly. To this goal Ni-rich layered metal oxides, especially LiNiO2, are attractive electrode candidate to achieve both high voltage and capacities. Despite its attractiveness, several drawbacks for its industrialization are related to different form of surface and bulk instabilities. These instabilities are due to redox process involving the charge transfer between cations and anions. Therefore, a fundamental understanding based on further experimental evidence is required to resolve of charge transfer between the cation and anion from the surface to the bulk in LiNiO2. Herein, we resolve the role of nickel and oxygen in the charge compensation process in LixNiO2 electrodes from the extreme surface down to 30 nm by energy-dependent core-level HAXPES supported by ab initio simulation. We emphasize the central role of oxygen in the bulk charge compensation mechanism from LiNiO2 to NiO2 due to the negative charge transfer and bond/charge-disproportionation characters of LiNiO2. This bulk behavior is in turn responsible for surface deoxygenation and nickel reduction upon delithiation

    Understanding the electrocatalysis of oxygen reduction on platinum and its alloys

    Get PDF

    Operating a full tungsten actively cooled tokamak: overview of WEST first phase of operation

    Get PDF
    WEST is an MA class superconducting, actively cooled, full tungsten (W) tokamak, designed to operate in long pulses up to 1000 s. In support of ITER operation and DEMO conceptual activities, key missions of WEST are: (i) qualification of high heat flux plasma-facing components in integrating both technological and physics aspects in relevant heat and particle exhaust conditions, particularly for the tungsten monoblocks foreseen in ITER divertor; (ii) integrated steady-state operation at high confinement, with a focus on power exhaust issues. During the phase 1 of operation (2017–2020), a set of actively cooled ITER-grade plasma facing unit prototypes was integrated into the inertially cooled W coated startup lower divertor. Up to 8.8 MW of RF power has been coupled to the plasma and divertor heat flux of up to 6 MW m−2 were reached. Long pulse operation was started, using the upper actively cooled divertor, with a discharge of about 1 min achieved. This paper gives an overview of the results achieved in phase 1. Perspectives for phase 2, operating with the full capability of the device with the complete ITER-grade actively cooled lower divertor, are also described

    Real-time plasma state monitoring and supervisory control on TCV

    Get PDF
    In ITER and DEMO, various control objectives related to plasma control must be simultaneously achieved by the plasma control system (PCS), in both normal operation as well as off-normal conditions. The PCS must act on off-normal events and deviations from the target scenario, since certain sequences (chains) of events can precede disruptions. It is important that these decisions are made while maintaining a coherent prioritization between the real-time control tasks to ensure high-performance operation. In this paper, a generic architecture for task-based integrated plasma control is proposed. The architecture is characterized by the separation of state estimation, event detection, decisions and task execution among different algorithms, with standardized signal interfaces. Central to the architecture are a plasma state monitor and supervisory controller. In the plasma state monitor, discrete events in the continuous-valued plasma state are modeled using finite state machines. This provides a high-level representation of the plasma state. The supervisory controller coordinates the execution of multiple plasma control tasks by assigning task priorities, based on the finite states of the plasma and the pulse schedule. These algorithms were implemented on the TCV digital control system and integrated with actuator resource management and existing state estimation algorithms and controllers. The plasma state monitor on TCV can track a multitude of plasma events, related to plasma current, rotating and locked neoclassical tearing modes, and position displacements. In TCV experiments on simultaneous control of plasma pressure, safety factor profile and NTMs using electron cyclotron heating (ECH) and current drive (ECCD), the supervisory controller assigns priorities to the relevant control tasks. The tasks are then executed by feedback controllers and actuator allocation management. This work forms a significant step forward in the ongoing integration of control capabilities in experiments on TCV, in support of tokamak reactor operation

    Low incidence of SARS-CoV-2, risk factors of mortality and the course of illness in the French national cohort of dialysis patients

    Get PDF

    Environmental Geochemistry of Radioactive Contamination

    Full text link

    Environmental geochemistry of radioactive contamination.

    Get PDF
    This report attempts to describe the geochemical foundations of the behavior of radionuclides in the environment. The information is obtained and applied in three interacting spheres of inquiry and analysis: (1) experimental studies and theoretical calculations, (2) field studies of contaminated and natural analog sites and (3) model predictions of radionuclide behavior in remediation and waste disposal. Analyses of the risks from radioactive contamination require estimation of the rates of release and dispersion of the radionuclides through potential exposure pathways. These processes are controlled by solubility, speciation, sorption, and colloidal transport, which are strong functions of the compositions of the groundwater and geomedia as well as the atomic structure of the radionuclides. The chemistry of the fission products is relatively simple compared to the actinides. Because of their relatively short half-lives, fission products account for a large fraction of the radioactivity in nuclear waste for the first several hundred years but do not represent a long-term hazard in the environment. The chemistry of the longer-lived actinides is complex; however, some trends in their behavior can be described. Actinide elements of a given oxidation state have either similar or systematically varying chemical properties due to similarities in ionic size, coordination number, valence, and electron structure. In dilute aqueous systems at neutral to basic pH, the dominant actinide species are hydroxy- and carbonato-complexes, and the solubility-limiting solid phases are commonly oxides, hydroxides or carbonates. In general, actinide sorption will decrease in the presence of ligands that complex with the radionuclide; sorption of the (IV) species of actinides (Np, Pu, U) is generally greater than of the (V) species. The geochemistry of key radionuclides in three different environments is described in this report. These include: (1) low ionic strength reducing waters from crystalline rocks at nuclear waste research sites in Sweden; (2) oxic water from the J-13 well at Yucca Mountain, Nevada, the site of a proposed repository for high level nuclear waste (HLW) in tuffaceous rocks; and (3) reference brines associated with the Waste Isolation Pilot Plant (WIPP). The transport behaviors of radionuclides associated with the Chernobyl reactor accident and the Oklo Natural Reactor are described. These examples span wide temporal and spatial scales and include the rapid geochemical and physical processes important to nuclear reactor accidents or industrial discharges as well as the slower processes important to the geologic disposal of nuclear waste. Application of geochemical information to remediating or assessing the risk posed by radioactive contamination is the final subject of this report. After radioactive source terms have been removed, large volumes of soil and water with low but potentially hazardous levels of contamination may remain. For poorly-sorbing radionuclides, capture of contaminated water and removal of radionuclides may be possible using permeable reactive barriers and bioremediation. For strongly sorbing radionuclides, contaminant plumes will move very slowly. Through a combination of monitoring, regulations and modeling, it may be possible to have confidence that they will not be a hazard to current or future populations. Abstraction of the hydrogeochemical properties of real systems into simple models is required for probabilistic risk assessment. Simplifications in solubility and sorption models used in performance assessment calculations for the WIPP and the proposed HLW repository at Yucca Mountain are briefly described

    Analyse de sensibilité d'un modèle de fonctionnement d'arbre

    No full text
    La sensibilité des températures de feuille d’arbre à des paramètres architecturaux et fonctionnels a fait l’objet de cette étude au sein de l’INRA de Crouël lors de mon stage. La température de la feuille est générée par un modèle de simulation (RATP) qui lie la distribution spatiale de l’absorption du rayonnement, la transpiration et la photosynthèse. Deux structures ont été prises en compte dans cette étude : un arbre isolé et un couvert continu (forêt) composé de 20 pommiers. La méthode de Morris, une méthode similaire à ANOVA, a été mise en œuvre. Elle a permis d’analyser l’influence de huit paramètres sur la température foliaire: six paramètres qui caractérisent le fonctionnement de la conductance stomatique et deux paramètres liés à l’architecture du couvert. La méthodologie a consisté à gérer l’analyse sous R : génération du plan d’expérience et analyse finale des résultats issus du modèle RATP. L’analyse a porté sur l’ensemble des feuilles constituant le couvert et sur les feuilles vues du dessus. Deux variables ont été utilisées: la température des feuilles à l’ombre et la température des feuilles au soleil. Afin d’avoir une estimation de la répartition spatiale de ces deux températures, les indicateurs spatiaux de Moran et de Geary ont été mis en œuvre. Les résultats obtenus ont montré que les paramètres architecturaux influent le plus sur la température des feuilles et sur son agrégation spatiale. Il a également été montré que cette influence est fonction de la quantité et la qualité du rayonnement reçu par le couvert. Les paramètres fonctionnels de la feuille sont négligeables

    New insight for hydrogen storage in the magnesium nickel and magne- sium copper systems

    No full text
    International audienc

    New insight for hydrogen storage in the magnesium nickel and magne- sium copper systems

    No full text
    International audienc
    corecore