1,509 research outputs found

    The ambiguous role of NKX2-5 mutations in thyroid dysgenesis.

    Get PDF
    NKX2-5 is a homeodomain-containing transcription factor implied in both heart and thyroid development. Numerous mutations in NKX2-5 have been reported in individuals with congenital heart disease (CHD), but recently a select few have been associated with thyroid dysgenesis, among which the p.A119S variation. We sequenced NKX2-5 in 303 sporadic CHD patients and 38 families with at least two individuals with CHD. The p.A119S variation was identified in two unrelated patients: one was found in the proband of a family with four affected individuals with CHD and the other in a sporadic CHD patient. Clinical evaluation of heart and thyroid showed that the mutation did not segregate with CHD in the familial case, nor did any of the seven mutation carriers have thyroid abnormalities. We tested the functional consequences of the p.A119S variation in a cellular context by performing transactivation assays with promoters relevant for both heart and thyroid development in rat heart derived H10 cells and HELA cells. There was no difference between wildtype NKX2-5 and p.A119S NKX2-5 in activation of the investigated promoters in both cell lines. Additionally, we reviewed the current literature on the topic, showing that there is no clear evidence for a major pathogenic role of NKX2-5 mutations in thyroid dysgenesis. In conclusion, our study demonstrates that p.A119S does not cause CHD or TD and that it is a rare variation that behaves equal to wildtype NKX2-5. Furthermore, given the wealth of published evidence, we suggest that NKX2-5 mutations do not play a major pathogenic role in thyroid dysgenesis, and that genetic testing of NKX2-5 in TD is not warranted

    Integrated Management and Visualization of Electronic Tag Data with Tagbase

    Get PDF
    Electronic tags have been used widely for more than a decade in studies of diverse marine species. However, despite significant investment in tagging programs and hardware, data management aspects have received insufficient attention, leaving researchers without a comprehensive toolset to manage their data easily. The growing volume of these data holdings, the large diversity of tag types and data formats, and the general lack of data management resources are not only complicating integration and synthesis of electronic tagging data in support of resource management applications but potentially threatening the integrity and longer-term access to these valuable datasets. To address this critical gap, Tagbase has been developed as a well-rounded, yet accessible data management solution for electronic tagging applications. It is based on a unified relational model that accommodates a suite of manufacturer tag data formats in addition to deployment metadata and reprocessed geopositions. Tagbase includes an integrated set of tools for importing tag datasets into the system effortlessly, and provides reporting utilities to interactively view standard outputs in graphical and tabular form. Data from the system can also be easily exported or dynamically coupled to GIS and other analysis packages. Tagbase is scalable and has been ported to a range of database management systems to support the needs of the tagging community, from individual investigators to large scale tagging programs. Tagbase represents a mature initiative with users at several institutions involved in marine electronic tagging research

    Coevolved mutations reveal distinct architectures for two core proteins in the bacterial flagellar motor

    Get PDF
    Switching of bacterial flagellar rotation is caused by large domain movements of the FliG protein triggered by binding of the signal protein CheY to FliM. FliG and FliM form adjacent multi-subunit arrays within the basal body C-ring. The movements alter the interaction of the FliG C-terminal (FliGC) "torque" helix with the stator complexes. Atomic models based on the Salmonella entrovar C-ring electron microscopy reconstruction have implications for switching, but lack consensus on the relative locations of the FliG armadillo (ARM) domains (amino-terminal (FliGN), middle (FliGM) and FliGC) as well as changes during chemotaxis. The generality of the Salmonella model is challenged by the variation in motor morphology and response between species. We studied coevolved residue mutations to determine the unifying elements of switch architecture. Residue interactions, measured by their coevolution, were formalized as a network, guided by structural data. Our measurements reveal a common design with dedicated switch and motor modules. The FliM middle domain (FliMM) has extensive connectivity most simply explained by conserved intra and inter-subunit contacts. In contrast, FliG has patchy, complex architecture. Conserved structural motifs form interacting nodes in the coevolution network that wire FliMM to the FliGC C-terminal, four-helix motor module (C3-6). FliG C3-6 coevolution is organized around the torque helix, differently from other ARM domains. The nodes form separated, surface-proximal patches that are targeted by deleterious mutations as in other allosteric systems. The dominant node is formed by the EHPQ motif at the FliMMFliGM contact interface and adjacent helix residues at a central location within FliGM. The node interacts with nodes in the N-terminal FliGc α-helix triad (ARM-C) and FliGN. ARM-C, separated from C3-6 by the MFVF motif, has poor intra-network connectivity consistent with its variable orientation revealed by structural data. ARM-C could be the convertor element that provides mechanistic and species diversity.JK was supported by Medical Research Council grant U117581331. SK was supported by seed funds from Lahore University of Managment Sciences (LUMS) and the Molecular Biology Consortium

    Global characteristics and outcomes of SARS-CoV-2 infection in children and adolescents with cancer (GRCCC): a cohort study

    Get PDF
    BACKGROUND: Previous studies have shown that children and adolescents with COVID-19 generally have mild disease. Children and adolescents with cancer, however, can have severe disease when infected with respiratory viruses. In this study, we aimed to understand the clinical course and outcomes of SARS-CoV-2 infection in children and adolescents with cancer. METHODS: We did a cohort study with data from 131 institutions in 45 countries. We created the Global Registry of COVID-19 in Childhood Cancer to capture de-identified data pertaining to laboratory-confirmed SARS-CoV-2 infections in children and adolescents (<19 years) with cancer or having received a haematopoietic stem-cell transplantation. There were no centre-specific exclusion criteria. The registry was disseminated through professional networks through email and conferences and health-care providers were invited to submit all qualifying cases. Data for demographics, oncological diagnosis, clinical course, and cancer therapy details were collected. Primary outcomes were disease severity and modification to cancer-directed therapy. The registry remains open to data collection. FINDINGS: Of 1520 submitted episodes, 1500 patients were included in the study between April 15, 2020, and Feb 1, 2021. 1319 patients had complete 30-day follow-up. 259 (19·9%) of 1301 patients had a severe or critical infection, and 50 (3·8%) of 1319 died with the cause attributed to COVID-19 infection. Modifications to cancer-directed therapy occurred in 609 (55·8%) of 1092 patients receiving active oncological treatment. Multivariable analysis revealed several factors associated with severe or critical illness, including World Bank low-income or lower-middle-income (odds ratio [OR] 5·8 [95% CI 3·8-8·8]; p<0·0001) and upper-middle-income (1·6 [1·2-2·2]; p=0·0024) country status; age 15-18 years (1·6 [1·1-2·2]; p=0·013); absolute lymphocyte count of 300 or less cells per mm3 (2·5 [1·8-3·4]; p<0·0001), absolute neutrophil count of 500 or less cells per mm3 (1·8 [1·3-2·4]; p=0·0001), and intensive treatment (1·8 [1·3-2·3]; p=0·0005). Factors associated with treatment modification included upper-middle-income country status (OR 0·5 [95% CI 0·3-0·7]; p=0·0004), primary diagnosis of other haematological malignancies (0·5 [0·3-0·8]; p=0·0088), the presence of one of more COVID-19 symptoms at the time of presentation (1·8 [1·3-2·4]; p=0·0002), and the presence of one or more comorbidities (1·6 [1·1-2·3]; p=0·020). INTERPRETATION: In this global cohort of children and adolescents with cancer and COVID-19, severe and critical illness occurred in one fifth of patients and deaths occurred in a higher proportion than is reported in the literature in the general paediatric population. Additionally, we found that variables associated with treatment modification were not the same as those associated with greater disease severity. These data could inform clinical practice guidelines and raise awareness globally that children and adolescents with cancer are at high-risk of developing severe COVID-19 illness. FUNDING: American Lebanese Syrian Associated Charities and the National Cancer Institute

    Properties of Graphene: A Theoretical Perspective

    Full text link
    In this review, we provide an in-depth description of the physics of monolayer and bilayer graphene from a theorist's perspective. We discuss the physical properties of graphene in an external magnetic field, reflecting the chiral nature of the quasiparticles near the Dirac point with a Landau level at zero energy. We address the unique integer quantum Hall effects, the role of electron correlations, and the recent observation of the fractional quantum Hall effect in the monolayer graphene. The quantum Hall effect in bilayer graphene is fundamentally different from that of a monolayer, reflecting the unique band structure of this system. The theory of transport in the absence of an external magnetic field is discussed in detail, along with the role of disorder studied in various theoretical models. We highlight the differences and similarities between monolayer and bilayer graphene, and focus on thermodynamic properties such as the compressibility, the plasmon spectra, the weak localization correction, quantum Hall effect, and optical properties. Confinement of electrons in graphene is nontrivial due to Klein tunneling. We review various theoretical and experimental studies of quantum confined structures made from graphene. The band structure of graphene nanoribbons and the role of the sublattice symmetry, edge geometry and the size of the nanoribbon on the electronic and magnetic properties are very active areas of research, and a detailed review of these topics is presented. Also, the effects of substrate interactions, adsorbed atoms, lattice defects and doping on the band structure of finite-sized graphene systems are discussed. We also include a brief description of graphane -- gapped material obtained from graphene by attaching hydrogen atoms to each carbon atom in the lattice.Comment: 189 pages. submitted in Advances in Physic

    Jet energy measurement with the ATLAS detector in proton-proton collisions at root s=7 TeV

    Get PDF
    The jet energy scale and its systematic uncertainty are determined for jets measured with the ATLAS detector at the LHC in proton-proton collision data at a centre-of-mass energy of √s = 7TeV corresponding to an integrated luminosity of 38 pb-1. Jets are reconstructed with the anti-kt algorithm with distance parameters R=0. 4 or R=0. 6. Jet energy and angle corrections are determined from Monte Carlo simulations to calibrate jets with transverse momenta pT≥20 GeV and pseudorapidities {pipe}η{pipe}<4. 5. The jet energy systematic uncertainty is estimated using the single isolated hadron response measured in situ and in test-beams, exploiting the transverse momentum balance between central and forward jets in events with dijet topologies and studying systematic variations in Monte Carlo simulations. The jet energy uncertainty is less than 2. 5 % in the central calorimeter region ({pipe}η{pipe}<0. 8) for jets with 60≤pT<800 GeV, and is maximally 14 % for pT<30 GeV in the most forward region 3. 2≤{pipe}η{pipe}<4. 5. The jet energy is validated for jet transverse momenta up to 1 TeV to the level of a few percent using several in situ techniques by comparing a well-known reference such as the recoiling photon pT, the sum of the transverse momenta of tracks associated to the jet, or a system of low-pT jets recoiling against a high-pT jet. More sophisticated jet calibration schemes are presented based on calorimeter cell energy density weighting or hadronic properties of jets, aiming for an improved jet energy resolution and a reduced flavour dependence of the jet response. The systematic uncertainty of the jet energy determined from a combination of in situ techniques is consistent with the one derived from single hadron response measurements over a wide kinematic range. The nominal corrections and uncertainties are derived for isolated jets in an inclusive sample of high-pT jets. Special cases such as event topologies with close-by jets, or selections of samples with an enhanced content of jets originating from light quarks, heavy quarks or gluons are also discussed and the corresponding uncertainties are determined. © 2013 CERN for the benefit of the ATLAS collaboration

    Measurement of the inclusive and dijet cross-sections of b-jets in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector

    Get PDF
    The inclusive and dijet production cross-sections have been measured for jets containing b-hadrons (b-jets) in proton-proton collisions at a centre-of-mass energy of sqrt(s) = 7 TeV, using the ATLAS detector at the LHC. The measurements use data corresponding to an integrated luminosity of 34 pb^-1. The b-jets are identified using either a lifetime-based method, where secondary decay vertices of b-hadrons in jets are reconstructed using information from the tracking detectors, or a muon-based method where the presence of a muon is used to identify semileptonic decays of b-hadrons inside jets. The inclusive b-jet cross-section is measured as a function of transverse momentum in the range 20 < pT < 400 GeV and rapidity in the range |y| < 2.1. The bbbar-dijet cross-section is measured as a function of the dijet invariant mass in the range 110 < m_jj < 760 GeV, the azimuthal angle difference between the two jets and the angular variable chi in two dijet mass regions. The results are compared with next-to-leading-order QCD predictions. Good agreement is observed between the measured cross-sections and the predictions obtained using POWHEG + Pythia. MC@NLO + Herwig shows good agreement with the measured bbbar-dijet cross-section. However, it does not reproduce the measured inclusive cross-section well, particularly for central b-jets with large transverse momenta.Comment: 10 pages plus author list (21 pages total), 8 figures, 1 table, final version published in European Physical Journal

    Measurement of the cross-section of high transverse momentum vector bosons reconstructed as single jets and studies of jet substructure in pp collisions at √s = 7 TeV with the ATLAS detector

    Get PDF
    This paper presents a measurement of the cross-section for high transverse momentum W and Z bosons produced in pp collisions and decaying to all-hadronic final states. The data used in the analysis were recorded by the ATLAS detector at the CERN Large Hadron Collider at a centre-of-mass energy of √s = 7 TeV;{\rm Te}{\rm V}andcorrespondtoanintegratedluminosityof and correspond to an integrated luminosity of 4.6\;{\rm f}{{{\rm b}}^{-1}}.ThemeasurementisperformedbyreconstructingtheboostedWorZbosonsinsinglejets.ThereconstructedjetmassisusedtoidentifytheWandZbosons,andajetsubstructuremethodbasedonenergyclusterinformationinthejetcentreofmassframeisusedtosuppressthelargemultijetbackground.ThecrosssectionforeventswithahadronicallydecayingWorZboson,withtransversemomentum. The measurement is performed by reconstructing the boosted W or Z bosons in single jets. The reconstructed jet mass is used to identify the W and Z bosons, and a jet substructure method based on energy cluster information in the jet centre-of-mass frame is used to suppress the large multi-jet background. The cross-section for events with a hadronically decaying W or Z boson, with transverse momentum {{p}_{{\rm T}}}\gt 320\;{\rm Ge}{\rm V}andpseudorapidity and pseudorapidity |\eta |\lt 1.9,ismeasuredtobe, is measured to be {{\sigma }_{W+Z}}=8.5\pm 1.7$ pb and is compared to next-to-leading-order calculations. The selected events are further used to study jet grooming techniques

    Search for the neutral Higgs bosons of the minimal supersymmetric standard model in pp collisions at root s=7 TeV with the ATLAS detector

    Get PDF
    A search for neutral Higgs bosons of the Minimal Supersymmetric Standard Model (MSSM) is reported. The analysis is based on a sample of proton-proton collisions at a centre-of-mass energy of 7TeV recorded with the ATLAS detector at the Large Hadron Collider. The data were recorded in 2011 and correspond to an integrated luminosity of 4.7 fb-1 to 4.8 fb-1. Higgs boson decays into oppositely-charged muon or τ lepton pairs are considered for final states requiring either the presence or absence of b-jets. No statistically significant excess over the expected background is observed and exclusion limits at the 95% confidence level are derived. The exclusion limits are for the production cross-section of a generic neutral Higgs boson, φ, as a function of the Higgs boson mass and for h/A/H production in the MSSM as a function of the parameters mA and tan β in the mhmax scenario for mA in the range of 90GeV to 500 GeV. Copyright CERN

    Search for direct pair production of the top squark in all-hadronic final states in proton-proton collisions at s√=8 TeV with the ATLAS detector

    Get PDF
    The results of a search for direct pair production of the scalar partner to the top quark using an integrated luminosity of 20.1fb−1 of proton–proton collision data at √s = 8 TeV recorded with the ATLAS detector at the LHC are reported. The top squark is assumed to decay via t˜→tχ˜01 or t˜→ bχ˜±1 →bW(∗)χ˜01 , where χ˜01 (χ˜±1 ) denotes the lightest neutralino (chargino) in supersymmetric models. The search targets a fully-hadronic final state in events with four or more jets and large missing transverse momentum. No significant excess over the Standard Model background prediction is observed, and exclusion limits are reported in terms of the top squark and neutralino masses and as a function of the branching fraction of t˜ → tχ˜01 . For a branching fraction of 100%, top squark masses in the range 270–645 GeV are excluded for χ˜01 masses below 30 GeV. For a branching fraction of 50% to either t˜ → tχ˜01 or t˜ → bχ˜±1 , and assuming the χ˜±1 mass to be twice the χ˜01 mass, top squark masses in the range 250–550 GeV are excluded for χ˜01 masses below 60 GeV
    corecore