14 research outputs found

    GrassPlot - a database of multi-scale plant diversity in Palaearctic grasslands

    Get PDF
    GrassPlot is a collaborative vegetation-plot database organised by the Eurasian Dry Grassland Group (EDGG) and listed in the Global Index of Vegetation-Plot Databases (GIVD ID EU-00-003). GrassPlot collects plot records (releves) from grasslands and other open habitats of the Palaearctic biogeographic realm. It focuses on precisely delimited plots of eight standard grain sizes (0.0001; 0.001;... 1,000 m(2)) and on nested-plot series with at least four different grain sizes. The usage of GrassPlot is regulated through Bylaws that intend to balance the interests of data contributors and data users. The current version (v. 1.00) contains data for approximately 170,000 plots of different sizes and 2,800 nested-plot series. The key components are richness data and metadata. However, most included datasets also encompass compositional data. About 14,000 plots have near-complete records of terricolous bryophytes and lichens in addition to vascular plants. At present, GrassPlot contains data from 36 countries throughout the Palaearctic, spread across elevational gradients and major grassland types. GrassPlot with its multi-scale and multi-taxon focus complements the larger international vegetationplot databases, such as the European Vegetation Archive (EVA) and the global database " sPlot". Its main aim is to facilitate studies on the scale-and taxon-dependency of biodiversity patterns and drivers along macroecological gradients. GrassPlot is a dynamic database and will expand through new data collection coordinated by the elected Governing Board. We invite researchers with suitable data to join GrassPlot. Researchers with project ideas addressable with GrassPlot data are welcome to submit proposals to the Governing Board

    <scp>ReSurveyEurope</scp>: A database of resurveyed vegetation plots in Europe

    Get PDF
    AbstractAimsWe introduce ReSurveyEurope — a new data source of resurveyed vegetation plots in Europe, compiled by a collaborative network of vegetation scientists. We describe the scope of this initiative, provide an overview of currently available data, governance, data contribution rules, and accessibility. In addition, we outline further steps, including potential research questions.ResultsReSurveyEurope includes resurveyed vegetation plots from all habitats. Version 1.0 of ReSurveyEurope contains 283,135 observations (i.e., individual surveys of each plot) from 79,190 plots sampled in 449 independent resurvey projects. Of these, 62,139 (78%) are permanent plots, that is, marked in situ, or located with GPS, which allow for high spatial accuracy in resurvey. The remaining 17,051 (22%) plots are from studies in which plots from the initial survey could not be exactly relocated. Four data sets, which together account for 28,470 (36%) plots, provide only presence/absence information on plant species, while the remaining 50,720 (64%) plots contain abundance information (e.g., percentage cover or cover–abundance classes such as variants of the Braun‐Blanquet scale). The oldest plots were sampled in 1911 in the Swiss Alps, while most plots were sampled between 1950 and 2020.ConclusionsReSurveyEurope is a new resource to address a wide range of research questions on fine‐scale changes in European vegetation. The initiative is devoted to an inclusive and transparent governance and data usage approach, based on slightly adapted rules of the well‐established European Vegetation Archive (EVA). ReSurveyEurope data are ready for use, and proposals for analyses of the data set can be submitted at any time to the coordinators. Still, further data contributions are highly welcome.</jats:sec

    Assessing the relation between geodiversity and species richness in mountain heaths and tundra landscapes

    No full text
    Abstract Context: Recent studies show that geodiversity—the diversity of Earth’s landforms, materials, and processes—has a positive relationship with biodiversity at a landscape scale. However, there is a substantial lack of evidence from finer scales, although this knowledge could improve the understanding of biodiversity patterns. Objectives: We investigate whether plot-scale geodiversity and plant species richness (vascular plants, bryophytes, lichens, and total richness) are positively linked in different tundra landscapes. Methods: We collected geodiversity (presence of different geofeatures) and plant species richness data from 165 sites in three distinct regions: isolated low-lying mountain heaths, and in sporadic and continuous mountain heaths and tundra. We used non-metric multidimensional scaling (NMDS) ordination to explore the correlations between the composition of geofeatures and species richness, followed by univariate and multivariate generalized linear models (GLM), to assess whether georichness is important for species richness. Results: Geofeature composition was linked to species richness in all regions, as indicated by NMDS ordination. Both univariate and multivariate GLM models showed statistically significant relationship between species richness and georichness in all studied species richness groups in continuous Arctic-alpine tundra. Additionally, there was a positive link between georichness and lichen richness in isolated boreal mountain tops. Main conclusions: We showed that plot-scale geodiversity has a positive relationship with species richness, yet the effect varies regionally and between species groups. Our study provides strong empirical evidence that geodiversity supports species richness in continuous Arctic-alpine tundra. This information can be used in species richness models but also be applied in biodiversity management and conservation

    Fine-grain beta diversity of Palaearctic grassland vegetation

    No full text
    Questions: Which environmental factors influence fine-grain beta diversity of vegetation and do they vary among taxonomic groups? Location: Palaearctic biogeographic realm. Methods: We extracted 4,654 nested-plot series with at least four different grain sizes between 0.0001 m² and 1,024 m² from the GrassPlot database, covering a wide range of different grassland and other open habitat types. We derived extensive environmental and structural information for these series. For each series and four taxonomic groups (vascular plants, bryophytes, lichens, all), we calculated the slope parameter (z-value) of the power law species–area relationship (SAR), as a beta diversity measure. We tested whether z-values differed among taxonomic groups and with respect to biogeographic gradients (latitude, elevation, macroclimate), ecological (site) characteristics (several stress–productivity, disturbance and heterogeneity measures, including land use) and alpha diversity (c-value of the power law SAR). Results: Mean z-values were highest for lichens, intermediate for vascular plants and lowest for bryophytes. Bivariate regressions of z-values against environmental variables had rather low predictive power (mean R² = 0.07 for vascular plants, less for other taxa). For vascular plants, the strongest predictors of z-values were herb layer cover (negative), elevation (positive), rock and stone cover (positive) and the c-value (U-shaped). All tested metrics related to land use (fertilization, livestock grazing, mowing, burning, decrease in naturalness) led to a decrease in z-values. Other predictors had little or no impact on z-values. The patterns for bryophytes, lichens and all taxa combined were similar but weaker than those for vascular plants. Conclusions: We conclude that productivity has negative and heterogeneity positive effects on z-values, while the effect of disturbance varies depending on type and intensity. These patterns and the differences among taxonomic groups can be explained via the effects of these drivers on the mean occupancy of species, which is mathematically linked to beta diversity

    Fine‐grain beta diversity of Palaearctic grassland vegetation

    Get PDF
    Questions Which environmental factors influence fine-grain beta diversity of vegetation and do they vary among taxonomic groups? Location Palaearctic biogeographic realm. Methods We extracted 4,654 nested-plot series with at least four different grain sizes between 0.0001 m2 and 1,024 m2 from the GrassPlot database, covering a wide range of different grassland and other open habitat types. We derived extensive environmental and structural information for these series. For each series and four taxonomic groups (vascular plants, bryophytes, lichens, all), we calculated the slope parameter (z-value) of the power-law species–area relationship (SAR), as a beta diversity measure. We tested whether z-values differed among taxonomic groups and with respect to biogeographic gradients (latitude, elevation, macroclimate), ecological (site) characteristics (several stress-productivity, disturbance and heterogeneity measures, including land use) and alpha diversity (c-value of the power-law SAR). Results Mean z-values were highest for lichens, intermediate for vascular plants and lowest for bryophytes. Bivariate regressions of z-values against environmental variables had rather low predictive power (mean R2 = 0.07 for vascular plants, less for other taxa). For vascular plants, the strongest predictors of z-values were herb layer cover (negative), elevation (positive), rock and stone cover (positive) and the c-value (u-shaped). All tested metrics related to land use (fertilisation, livestock grazing, mowing, burning, decrease in naturalness) led to a decrease in z-values. Other predictors had little or no impact on z-values. The patterns for bryophytes, lichens and all taxa combined were similar but weaker than those for vascular plants. Main conclusions We conclude that productivity has negative and heterogeneity positive effects on z-values, while the effect of disturbance varies depending on type and intensity. These patterns and the differences among taxonomic groups can be explained via the effects of these drivers on the mean occupancy of species, which is mathematically linked to beta diversity

    sPlotOpen - An environmentally balanced, open-access, global dataset of vegetation plots

    Get PDF
    Motivation Assessing biodiversity status and trends in plant communities is critical for understanding, quantifying and predicting the effects of global change on ecosystems. Vegetation plots record the occurrence or abundance of all plant species co-occurring within delimited local areas. This allows species absences to be inferred, information seldom provided by existing global plant datasets. Although many vegetation plots have been recorded, most are not available to the global research community. A recent initiative, called 'sPlot', compiled the first global vegetation plot database, and continues to grow and curate it. The sPlot database, however, is extremely unbalanced spatially and environmentally, and is not open-access. Here, we address both these issues by (a) resampling the vegetation plots using several environmental variables as sampling strata and (b) securing permission from data holders of 105 local-to-regional datasets to openly release data. We thus present sPlotOpen, the largest open-access dataset of vegetation plots ever released. sPlotOpen can be used to explore global diversity at the plant community level, as ground truth data in remote sensing applications, or as a baseline for biodiversity monitoring. Main types of variable contained Vegetation plots (n = 95,104) recording cover or abundance of naturally co-occurring vascular plant species within delimited areas. sPlotOpen contains three partially overlapping resampled datasets (c. 50,000 plots each), to be used as replicates in global analyses. Besides geographical location, date, plot size, biome, elevation, slope, aspect, vegetation type, naturalness, coverage of various vegetation layers, and source dataset, plot-level data also include community-weighted means and variances of 18 plant functional traits from the TRY Plant Trait Database. Spatial location and grain Global, 0.01-40,000 m(2). Time period and grain 1888-2015, recording dates. Major taxa and level of measurement 42,677 vascular plant taxa, plot-level records. Software format Three main matrices (.csv), relationally linked

    Accelerated increase in plant species richness on mountain summits is linked to warming

    No full text
    We thank D. Barolin, J. Birks, A. Björken, C. Björken, S. Dahle, U. Deppe, G. Dussassois, J. V. Ferrández, T. Gassner, S. Giovanettina, F. Giuntoli, Ø. Lunde Heggebø, K. Herz, A. Jost, K. Kallnik, W. Kapfer, T. Kronstad, H. Laukeland, S. Nießner, M. Olson, P. Roux-Fouillet, K. Schofield, M. Suen, D. Watson, J. Wells Abbott, J. Zaremba and numerous additional helpers for fieldwork support; P. Barancˇ ok, J. L. Benito Alonso, M. Camenisch, G. Coldea, J. Dick, M. Gottfried, G. Grabherr, J. I. Holten, J. Kollár, P. Larsson, M. Mallaun, O. Michelsen, U. Molau, M. Pus¸  cas¸ , T. Scheurer, P. Unterluggauer, L. Villar, G.-R. Walther, and numerous helpers for data originating from the GLORIA network13; C. Jenks for linguistic support; and the following institutions for funding. M.J.S.: Danish Carlsbergfondet (CF14-0148), EU Marie Sklodowska-Curie action (grant 707491). C.R., V.S., S.W.: Velux Foundation, Switzerland. C.R., V.S., S.W., J.-P.T., P.V.: Swiss Federal Office for the Environment (FOEN). A.K.: Swiss National Science Foundation (31003A_144011 to C.R.), Basler Stiftung für biologische Forschung, Switzerland. J.K.: Fram Centre, Norway (362202). J.K., J.-A.G., P.C., B.J.: Polish-Norwegian Research Programme of the Norwegian National Centre for Research and Development (Pol-Nor/196829/87/2013). O.F.-A., M.J.H., S.P.: Instituto de Estudios Altoaragoneses (Huesca, Spain). S.D.: Austrian Climate Research Programme (ACRP, project 368575: DISEQU-ALP). F.J.: Botanical Society of Britain & Ireland; Alpine Garden Society, UK. M.J.H.: Felix de Azara research grant (IBERSUMIT project, DPH, Spain). R.K.: Slovak Research and Development Agency (APVV 0866-12). S.N., D.G.: VILLUM Foundation’s Young Investigator Programme (VKR023456; Denmark). S.P.: Ramón y Cajal fellowship (RYC-2013-14164, Ministerio de Economía y Competitividad, Spain). J.-C.S.: European Research Council (ERC-2012-StG-310886-HISTFUNC); VILLUM Investigator project (VILLUM FONDEN grant 16549; Denmark). S.W.: WSL internal grant (201307N0678, Switzerland); EU FP7 Interact Transnational Access (AlpFlor Europe). S.W., S.B., F.J., M.J.H.: Swiss Botanical Society Alpine Flower Fund. Time and effort was supported by sDiv, the Synthesis Centre of iDiv, Germany (DFG FZT 118, sUMMITDiv working group).Peer reviewedPostprin
    corecore