4,582 research outputs found
Imperfect Homoclinic Bifurcations
Experimental observations of an almost symmetric electronic circuit show
complicated sequences of bifurcations. These results are discussed in the light
of a theory of imperfect global bifurcations. It is shown that much of the
dynamics observed in the circuit can be understood by reference to imperfect
homoclinic bifurcations without constructing an explicit mathematical model of
the system.Comment: 8 pages, 11 figures, submitted to PR
Recommended from our members
Identification of MS-specific serum miRNAs in an international multicenter study.
ObjectiveTo identify circulating microRNAs (miRNAs) linked to disease, disease stage, and disability in MS across cohorts.MethodsSamples were obtained from the Comprehensive Longitudinal Investigation of Multiple Sclerosis (CLIMB, Boston, MA), EPIC (San Francisco, CA), AMIR (Beirut, Lebanon) as part of the SUMMIT consortium, and Stockholm Prospective Assessment of Multiple Sclerosis (Stockholm, Sweden) cohorts. Serum miRNA expression was measured using locked nucleic acid-based quantitative PCR. Four groups were compared: (1) MS vs healthy control (HC), (2) relapsing-remitting (RR) vs HC, (3) secondary progressive (SP) vs HC, and (4) RR vs SP. A Wilcoxon rank-sum test was used for the comparisons. The association between each miRNA and the Expanded Disability Status Scale (EDSS) score was assessed using the Spearman correlation coefficient. For each comparison, the p values were corrected for multiple comparisons using the approach of Benjamini and Hochberg to control the false discovery rate.ResultsIn the CLIMB cohort, 5 miRNAs (hsa-miR-484, hsa-miR-140-5p, hsa-miR-320a, hsa-miR-486-5p, and hsa-miR-320c) showed a significant difference between patients with MS and healthy individuals; among these, miR-484 remained significant after accounting for multiple comparisons (p = 0.01). When comparing RRMS with HCs, hsa-miR-484 showed a significant difference (p = 0.004) between the groups after accounting for multiple group comparisons. When SP and HC were compared, 6 miRNAs (hsa-miR-484, hsa-miR-140-5p, hsa-miR-142-5p, hsa-miR-320a, hsa-miR-320b, and hsa-miR-320c) remained significantly different after accounting for multiple comparisons. Disability correlation analysis with miRNA provided 4 miRNAs (hsa-miR-320a, hsa-miR-337-3p, hsa-miR-199a-5p, and hsa-miR-142-5p) that correlated with the EDSS during the internal reproducibility phase. Among these, hsa-miR-337-3p was the most statistically significant miRNA that negatively correlated with the EDSS in three of the MS cohorts tested.ConclusionsThese findings further confirm the use of circulating serum miRNAs as biomarkers to diagnose and monitor disease status in MS.Classification of evidenceThis study provides Class III evidence that levels of circulating miRNAs identify patients with MS
A Theory of Cheap Control in Embodied Systems
We present a framework for designing cheap control architectures for embodied
agents. Our derivation is guided by the classical problem of universal
approximation, whereby we explore the possibility of exploiting the agent's
embodiment for a new and more efficient universal approximation of behaviors
generated by sensorimotor control. This embodied universal approximation is
compared with the classical non-embodied universal approximation. To exemplify
our approach, we present a detailed quantitative case study for policy models
defined in terms of conditional restricted Boltzmann machines. In contrast to
non-embodied universal approximation, which requires an exponential number of
parameters, in the embodied setting we are able to generate all possible
behaviors with a drastically smaller model, thus obtaining cheap universal
approximation. We test and corroborate the theory experimentally with a
six-legged walking machine. The experiments show that the sufficient controller
complexity predicted by our theory is tight, which means that the theory has
direct practical implications. Keywords: cheap design, embodiment, sensorimotor
loop, universal approximation, conditional restricted Boltzmann machineComment: 27 pages, 10 figure
Recommended from our members
A specific amino acid motif of HLA-DRB1 mediates risk and interacts with smoking history in Parkinson's disease.
Parkinson's disease (PD) is a neurodegenerative disease in which genetic risk has been mapped to HLA, but precise allelic associations have been difficult to infer due to limitations in genotyping methodology. Mapping PD risk at highest possible resolution, we performed sequencing of 11 HLA genes in 1,597 PD cases and 1,606 controls. We found that susceptibility to PD can be explained by a specific combination of amino acids at positions 70-74 on the HLA-DRB1 molecule. Previously identified as the primary risk factor in rheumatoid arthritis and referred to as the "shared epitope" (SE), the residues Q/R-K/R-R-A-A at positions 70-74 in combination with valine at position 11 (11-V) is highly protective in PD, while risk is attributable to the identical epitope in the absence of 11-V. Notably, these effects are modified by history of cigarette smoking, with a strong protective effect mediated by a positive history of smoking in combination with the SE and 11-V (P = 10-4; odds ratio, 0.51; 95% confidence interval, 0.36-0.72) and risk attributable to never smoking in combination with the SE without 11-V (P = 0.01; odds ratio, 1.51; 95% confidence interval, 1.08-2.12). The association of specific combinations of amino acids that participate in critical peptide-binding pockets of the HLA class II molecule implicates antigen presentation in PD pathogenesis and provides further support for genetic control of neuroinflammation in disease. The interaction of HLA-DRB1 with smoking history in disease predisposition, along with predicted patterns of peptide binding to HLA, provide a molecular model that explains the unique epidemiology of smoking in PD
Most Reported Genetic Associations with General Intelligence Are Probably False Positives
General intelligence (g) and virtually all other behavioral traits are heritable. Associations between g and specific single-nucleotide polymorphisms (SNPs) in several candidate genes involved in brain function have been reported. We sought to replicate published associations between g and 12 specific genetic variants (in the genes DTNBP1, CTSD, DRD2, ANKK1, CHRM2, SSADH, COMT, BDNF, CHRNA4, DISC1, APOE, and SNAP25) using data sets from three independent, well-characterized longitudinal studies with samples of 5,571, 1,759, and 2,441 individuals. Of 32 independent tests across all three data sets, only 1 was nominally significant. By contrast, power analyses showed that we should have expected 10 to 15 significant associations, given reasonable assumptions for genotype effect sizes. For positive controls, we confirmed accepted genetic associations for Alzheimer’s disease and body mass index, and we used SNP-based calculations of genetic relatedness to replicate previous estimates that about half of the variance in g is accounted for by common genetic variation among individuals. We conclude that the molecular genetics of psychology and social science requires approaches that go beyond the examination of candidate genes.Economic
The Promises and Pitfalls of Genoeconomics
This article reviews existing research at the intersection of genetics and economics, presents some new findings that illustrate the state of genoeconomics research, and surveys the prospects of this emerging field. Twin studies suggest that economic outcomes and preferences, once corrected for measurement error, appear to be about as heritable as many medical conditions and personality traits. Consistent with this pattern, we present new evidence on the heritability of permanent income and wealth. Turning to genetic association studies, we survey the main ways that the direct measurement of genetic variation across individuals is likely to contribute to economics, and we outline the challenges that have slowed progress in making these contributions. The most urgent problem facing researchers in this field is that most existing efforts to find associations between genetic variation and economic behavior are based on samples that are too small to ensure adequate statistical power. This has led to many false positives in the literature. We suggest a number of possible strategies to improve and remedy this problem: (a) pooling data sets, (b) using statistical techniques that exploit the greater information content of many genes jointly, and (c) focusing on economically relevant traits that are most proximate to known biological mechanisms.EconomicsSociolog
Recommended from our members
International meta-analysis of PTSD genome-wide association studies identifies sex- and ancestry-specific genetic risk loci.
The risk of posttraumatic stress disorder (PTSD) following trauma is heritable, but robust common variants have yet to be identified. In a multi-ethnic cohort including over 30,000 PTSD cases and 170,000 controls we conduct a genome-wide association study of PTSD. We demonstrate SNP-based heritability estimates of 5-20%, varying by sex. Three genome-wide significant loci are identified, 2 in European and 1 in African-ancestry analyses. Analyses stratified by sex implicate 3 additional loci in men. Along with other novel genes and non-coding RNAs, a Parkinson's disease gene involved in dopamine regulation, PARK2, is associated with PTSD. Finally, we demonstrate that polygenic risk for PTSD is significantly predictive of re-experiencing symptoms in the Million Veteran Program dataset, although specific loci did not replicate. These results demonstrate the role of genetic variation in the biology of risk for PTSD and highlight the necessity of conducting sex-stratified analyses and expanding GWAS beyond European ancestry populations
The genomes of two key bumblebee species with primitive eusocial organization
Background: The shift from solitary to social behavior is one of the major evolutionary transitions. Primitively eusocial bumblebees are uniquely placed to illuminate the evolution of highly eusocial insect societies. Bumblebees are also invaluable natural and agricultural pollinators, and there is widespread concern over recent population declines in some species. High-quality genomic data will inform key aspects of bumblebee biology, including susceptibility to implicated population viability threats. Results: We report the high quality draft genome sequences of Bombus terrestris and Bombus impatiens, two ecologically dominant bumblebees and widely utilized study species. Comparing these new genomes to those of the highly eusocial honeybee Apis mellifera and other Hymenoptera, we identify deeply conserved similarities, as well as novelties key to the biology of these organisms. Some honeybee genome features thought to underpin advanced eusociality are also present in bumblebees, indicating an earlier evolution in the bee lineage. Xenobiotic detoxification and immune genes are similarly depauperate in bumblebees and honeybees, and multiple categories of genes linked to social organization, including development and behavior, show high conservation. Key differences identified include a bias in bumblebee chemoreception towards gustation from olfaction, and striking differences in microRNAs, potentially responsible for gene regulation underlying social and other traits. Conclusions: These two bumblebee genomes provide a foundation for post-genomic research on these key pollinators and insect societies. Overall, gene repertoires suggest that the route to advanced eusociality in bees was mediated by many small changes in many genes and processes, and not by notable expansion or depauperation
Performance of the CMS Cathode Strip Chambers with Cosmic Rays
The Cathode Strip Chambers (CSCs) constitute the primary muon tracking device
in the CMS endcaps. Their performance has been evaluated using data taken
during a cosmic ray run in fall 2008. Measured noise levels are low, with the
number of noisy channels well below 1%. Coordinate resolution was measured for
all types of chambers, and fall in the range 47 microns to 243 microns. The
efficiencies for local charged track triggers, for hit and for segments
reconstruction were measured, and are above 99%. The timing resolution per
layer is approximately 5 ns
- …
