5,008 research outputs found

    Sensing device with whisker elements

    Get PDF
    A sensing device includes an elongated whisker element having a flexible cantilever region and a base region where a change in moment or curvature is generated by bending of the cantilever region when it contacts an object. One or more sensor elements cooperatively associated with the whisker element provide one or more output signals that is/are representative of two orthogonal components of change in moment or curvature at the whisker base region to permit determination of object distance, fluid velocity profile, or object contour (shape) with accounting for lateral slip of the whisker element and frictional characteristics of the object. Multiple sensing devices can be arranged in arrays in a manner to sense object contour without or with adjustment for lateral slip

    Tactile Responses in the Granule Cell Layer of Cerebellar Folium Crus IIa of Freely Behaving Rats

    Get PDF
    We recorded activity from the granule cell layer (GCL) of cerebellar folium Crus IIa as freely moving rats engaged in a variety of natural behaviors, including grooming, eating, and free tactile exploration. Multiunit responses in the 1000–4500 Hz range were found to be strongly correlated with tactile stimulation of lip and whisker (perioral) regions. These responses occurred regardless of whether the stimulus was externally or self-generated and during both active and passive touch. In contrast, perioral movements that did not tactually stimulate this region of the face (e.g., chewing) produced no detectable increases in GCL activity. In addition, GCL responses were not correlated with movement extremes. When rats used their lips actively for palpation and exploration, the tactile responses in the GCL were not detectably modulated by ongoing jaw movements. However, active palpation and exploratory behaviors did result in the largest and most continuous bursts of GCL activity: responses were on average 10% larger and 50% longer during palpation and exploration than during grooming or passive stimulation. Although activity levels differed between behaviors, the position and spatial extent of the peripheral receptive field was similar over all behaviors that resulted in tactile input. Overall, our data suggest that the 1000–4500 Hz multiunit responses in the Crus IIa GCL of awake rats are correlated with tactile input rather than with movement or any movement parameter and that these responses are likely to be of particular importance during the acquisition of sensory information by perioral structures

    Self-sustained oscillations in whiskers without vortex shedding

    Full text link
    Sensing the flow of water or air disturbance is critical for the survival of many animals: flow information helps them localize food, mates, and prey and to escape predators. Across species, many flow sensors take the form of long, flexible cantilevers. These cantilevers are known to exhibit sustained oscillations when interacting with fluid flow. In the presence of vortex shedding, the oscillations occur through mechanisms such as wake- or vortex-induced vibrations. There is, however, no clear explanation for the mechanisms governing the sustained oscillation of flexible cantilevers without vortex shedding. In recent work, we showed that a flexible cylindrical cantilever could experience sustained oscillations in its first natural vibration mode in water at Reynolds numbers below the critical Reynolds number of vortex shedding. The oscillations were shown to be driven by a frequency match (synchronization) between the flow frequency and the cantilever's first-mode natural frequency. Here, we use a body-fitted fluid-structure solver based on the Navier-Stokes and nonlinear structural equations to simulate the dynamics of a cantilevered whisker in the air at a subcritical value of Reynolds number. Results show that second-mode synchronization governs the whisker's sustained oscillation. Wavy patterns in the shear layer dominate the whisker's wake during the vibrations, indicating that parallel shear layers synchronize with the whisker's motion. As a result of this synchronization, oval-shaped motion trajectories, with matching streamwise and cross-flow vibration frequencies, are observed along the whisker. The outcomes of this study suggest possible directions for designing artificial bio-inspired flow sensors

    A U-band survey of brown dwarfs in the Taurus Molecular Cloud with the XMM-Newton Optical/UV Monitor

    Get PDF
    We aim to characterize the U-band variability of young brown dwarfs in the Taurus Molecular Cloud and discuss its origin. We used the XMM-Newton Extended Survey of the Taurus Molecular Cloud, where a sample of 11 young bona fide brown dwarfs (spectral type later than M6) were observed simultaneously in X-rays with XMM-Newton and in the U-band with the XMM-Newton Optical/UV Monitor (OM). We obtained upper limits to the U-band emission of 10 brown dwarfs (U>19.6-20.6 mag), whereas 2MASSJ04141188+2811535 was detected in the U-band. Remarkably, the magnitude of this brown dwarf increased regularly from U~19.5 mag at the beginning of the observation, peaked 6h later at U~18.4 mag, and then decreased to U~18.65 mag in the next 2h. The first OM U-band measurement is consistent with the quiescent level observed about one year later thanks to ground follow-up observations. This brown dwarf was not detected in X-rays by XMM-Newton during the OM observation. We discuss the possible sources of U-band variability for this young brown dwarf, namely a magnetic flare, non-steady accretion onto the substellar surface, and rotational modulation of a hot spot. We conclude that this event is related to accretion from a circumsubstellar disk, where the mass accretion rate was about a factor of 3 higher than during the quiescent level.Comment: 6 pages and 4 Figures. Accepted by A&A, to appear in a special section/issue dedicated to the XMM-Newton Extended Survey of the Taurus Molecular Cloud (XEST

    Cohesin depleted cells pass through mitosis and reconstitute a functional nuclear architecture

    Get PDF
    The human genome forms thousands of “contact domains”, which are intervals of enhanced contact frequency. Some, called “loop domains” are thought to form by cohesin-mediated loop extrusion. Others, called “compartmental domains”, form due to the segregation of active and inactive chromatin into A and B compartments. Recently, Hi-C studies revealed that the depletion of cohesin leads to the disappearance of all loop domains within a few hours, but strengthens compartment structure. Here, we combine live cell microscopy, super-resolution microscopy, Hi-C, and studies of replication timing to examine the longer-term consequences of cohesin degradation in HCT-116 human colorectal carcinoma cells, tracking cells for up to 30 hours. Surprisingly, cohesin depleted cells proceed through an aberrant mitosis, yielding a single postmitotic cell with a multilobulated nucleus. Hi-C reveals the continued disappearance of loop domains, whereas A and B compartments are maintained. In line with Hi-C, microscopic observations demonstrate the reconstitution of chromosome territories and chromatin domains. An interchromatin channel system (IC) expands between chromatin domain clusters and carries splicing speckles. The IC is lined by active chromatin enriched for RNA Pol II and depleted in H3K27me3. Moreover, the cells exhibit typical early-, mid-, and late- DNA replication timing patterns. Our observations indicate that the functional nuclear compartmentalization can be maintained in cohesin depleted pre- and postmitotic cells. However, we find that replication foci – sites of active DNA synthesis – become physically larger consistent with a model where cohesin dependent loop extrusion tends to compact intervals of replicating chromatin, whereas their genomic boundaries are associated with compartmentalization, and do not change.3D FISH3D fluorescence in situ hybridization3D SIM3D structured illumination microscopyAIDauxin inducible degronANC / INCactive / inactive nuclear compartmentCTchromosome territoryCD(C)chromatin domain (cluster)CTCFCCCTC binding factorDAPI4’,6-diamidino-2-phenylindoleEdU5-Ethynyl-2’-deoxyuridineHi-Cchromosome conformation capturing combined with deep sequencingICinterchromatin compartmentMLNmultilobulated nucleusNCnucleosome clusterPBSphosphate buffered salinePBSTphosphate buffered saline with 0.02% TweenPRperichromatin regionRDreplication domainRLreplication labelingTADtopologically associating domai

    Cohesin depleted cells rebuild functional nuclear compartments after endomitosis

    Get PDF
    Cohesin plays an essential role in chromatin loop extrusion, but its impact on a compartmentalized nuclear architecture, linked to nuclear functions, is less well understood. Using live-cell and super-resolved 3D microscopy, here we find that cohesin depletion in a human colon cancer derived cell line results in endomitosis and a single multilobulated nucleus with chromosome territories pervaded by interchromatin channels. Chromosome territories contain chromatin domain clusters with a zonal organization of repressed chromatin domains in the interior and transcriptionally competent domains located at the periphery. These clusters form microscopically defined, active and inactive compartments, which likely correspond to A/B compartments, which are detected with ensemble Hi-C. Splicing speckles are observed nearby within the lining channel system. We further observe that the multilobulated nuclei, despite continuous absence of cohesin, pass through S-phase with typical spatio-temporal patterns of replication domains. Evidence for structural changes of these domains compared to controls suggests that cohesin is required for their full integrity

    Epsilon iron oxide: origin of the high coercivity stable low Curie temperature magnetic phase found in heated archeological materials

    Get PDF
    The identification of epsilon iron oxide (ɛ-Fe2O3) as the low Curie temperature high coercivity stable phase (HCSLT) carrying the remanence in heated archeological samples has been achieved in samples from two archeological sites that exhibited the clearest evidence of the presence of the HCSLT. This uncommon iron oxide has been detected by Confocal Raman Spectroscopy (CRS) and characterized by rock magnetic measurements. Large numbers of ɛ-Fe2O3 microaggregates (in CO) or isolated clusters (in HEL) could be recognized, distributed over the whole sample, and embedded within the ceramic matrix, along with hematite and pseudobrookite and with minor amounts of anatase, rutile, and maghemite. Curie temperature estimates of around 170°C for CO and 190°C for HEL are lower than for pure, synthetic ɛ-Fe2O3 (227°C). This, together with structural differences between the Raman spectra of the archeologically derived and synthetic samples, is likely due to Ti substitution in the ɛ-Fe2O3 crystal lattice. The γ-Fe2O3-ɛ-Fe2O3-α-Fe2O3 transformation series has been recognized in heated archeological samples, which may have implications in terms of their thermal history and in the factors that govern the formation of ɛ-Fe2O3

    Defining Planktonic Protist Functional Groups on Mechanisms for Energy and Nutrient Acquisition: Incorporation of Diverse Mixotrophic Strategies

    Get PDF
    Arranging organisms into functional groups aids ecological research by grouping organisms (irrespective of phylogenetic origin) that interact with environmental factors in similar ways. Planktonic protists traditionally have been split between photoautotrophic “phytoplankton” and phagotrophic “microzoo-plankton”. However, there is a growing recognition of the importance of mixotrophy in euphotic aquatic systems, where many protists often combine photoautotrophic and phagotrophic modes of nutrition. Such organisms do not align with the traditional dichotomy of phytoplankton and microzooplankton. To reflect this understanding,we propose a new functional grouping of planktonic protists in an eco- physiological context: (i) phagoheterotrophs lacking phototrophic capacity, (ii) photoautotrophs lacking phagotrophic capacity,(iii) constitutive mixotrophs (CMs) as phagotrophs with an inherent capacity for phototrophy, and (iv) non-constitutive mixotrophs (NCMs) that acquire their phototrophic capacity by ingesting specific (SNCM) or general non-specific (GNCM) prey. For the first time, we incorporate these functional groups within a foodweb structure and show, using model outputs, that there is scope for significant changes in trophic dynamics depending on the protist functional type description. Accord- ingly, to better reflect the role of mixotrophy, we recommend that as important tools for explanatory and predictive research, aquatic food-web and biogeochemical models need to redefine the protist groups within their frameworks

    Measurements of branching fraction ratios and CP-asymmetries in suppressed B^- -> D(-> K^+ pi^-)K^- and B^- -> D(-> K^+ pi^-)pi^- decays

    Get PDF
    We report the first reconstruction in hadron collisions of the suppressed decays B^- -> D(-> K^+ pi^-)K^- and B^- -> D(-> K^+ pi^-)pi^-, sensitive to the CKM phase gamma, using data from 7 fb^-1 of integrated luminosity collected by the CDF II detector at the Tevatron collider. We reconstruct a signal for the B^- -> D(-> K^+ pi^-)K^- suppressed mode with a significance of 3.2 standard deviations, and measure the ratios of the suppressed to favored branching fractions R(K) = [22.0 \pm 8.6(stat)\pm 2.6(syst)]\times 10^-3, R^+(K) = [42.6\pm 13.7(stat)\pm 2.8(syst)]\times 10^-3, R^-(K)= [3.8\pm 10.3(stat)\pm 2.7(syst]\times 10^-3, as well as the direct CP-violating asymmetry A(K) = -0.82\pm 0.44(stat)\pm 0.09(syst) of this mode. Corresponding quantities for B^- -> D(-> K^+ pi^-)pi^- decay are also reported.Comment: 8 pages, 1 figure, accepted by Phys.Rev.D Rapid Communications for Publicatio
    corecore