34 research outputs found

    Do stellar magnetic cycles influence the measurement of precise radial velocities?

    Full text link
    The ever increasing level of precision achieved by present and future radial-velocity instruments is opening the way to discovering very low-mass, long-period planets (e.g. solar-system analogs). These systems will be detectable as low-amplitude signals in radial-velocity (RV). However, an important obstacle to their detection may be the existence of stellar magnetic cycles on similar timescales. Here we present the results of a long-term program to simultaneously measure radial-velocities and stellar-activity indicators (CaII, H_alpha, HeI) for a sample of stars with known activity cycles. Our results suggest that all these stellar activity indexes can be used to trace the stellar magnetic cycle in solar-type stars. Likewise, we find clear indications that different parameters of the HARPS cross-correlation function (BIS, FWHM, and contrast) are also sensitive to activity level variations. Finally, we show that, although in a few cases slight correlations or anti-correlations between radial-velocity and the activity level of the star exist, their origin is still not clear. We can, however, conclude that for our targets (early-K dwarfs) we do not find evidence of any radial-velocity variations induced by variations of the stellar magnetic cycle with amplitudes significantly above ~1 m/s.Comment: Accepted for publication in A&A (revised version following minor language corrections

    Reflected Light from Sand Grains in the Terrestrial Zone of a Protoplanetary Disk

    Full text link
    We show that grains have grown to ~mm size (sand sized) or larger in the terrestrial zone (within ~3 AU) of the protoplanetary disk surrounding the 3 Myr old binary star KH 15D. We also argue that the reflected light in the system reaches us by back scattering off the far side of the same ring whose near side causes the obscuration.Comment: 22 pages, 5 figures. To be published in Nature, March 13, 2008. Contains a Supplemen

    Evolution in the Cluster Early-type Galaxy Size-Surface Brightness Relation at z =~ 1

    Full text link
    We investigate the evolution in the distribution of surface brightness, as a function of size, for elliptical and S0 galaxies in the two clusters RDCS J1252.9-2927, z=1.237 and RX J0152.7-1357, z=0.837. We use multi-color imaging with the Advanced Camera for Surveys on the Hubble Space Telescope to determine these sizes and surface brightnesses. Using three different estimates of the surface brightnesses, we find that we reliably estimate the surface brightness for the galaxies in our sample with a scatter of < 0.2 mag and with systematic shifts of \lesssim 0.05 mag. We construct samples of galaxies with early-type morphologies in both clusters. For each cluster, we use a magnitude limit in a band which closely corresponds to the rest-frame B, to magnitude limit of M_B = -18.8 at z=0, and select only those galaxies within the color-magnitude sequence of the cluster or by using our spectroscopic redshifts. We measure evolution in the rest-frame B surface brightness, and find -1.41 \+/- 0.14 mag from the Coma cluster of galaxies for RDCS J1252.9-2927 and -0.90 \+/- 0.12 mag of evolution for RX J0152.7-1357, or an average evolution of (-1.13 \+/- 0.15) z mag. Our statistical errors are dominated by the observed scatter in the size-surface brightness relation, sigma = 0.42 \+/- 0.05 mag for RX J0152.7-1357 and sigma = 0.76 \+/- 0.10 mag for RDCS J1252.9-2927. We find no statistically significant evolution in this scatter, though an increase in the scatter could be expected. Overall, the pace of luminosity evolution we measure agrees with that of the Fundamental Plane of early-type galaxies, implying that the majority of massive early-type galaxies observed at z =~ 1 formed at high redshifts.Comment: Accepted in ApJ, 16 pages in emulateapj format with 15 eps figures, 6 in colo

    Measuring the Initial Mass Function of Low Mass Stars and Brown Dwarfs

    Full text link
    I review efforts to determine the form and any lower limit to the initial mass function in the Galactic disk, using observations of low-mass stars and brown dwarfs in the field, young clusters and star forming regions. I focus on the methodologies that have been used and the uncertainties that exist due to observational limitations and to systematic uncertainties in calibrations and theoretical models. I conclude that whilst it is possible that the low-mass IMFs deduced from the field and most young clusters are similar, there are too many problems to be sure; there are examples of low-mass cluster IMFs that appear to be very discrepant and the IMFs for brown dwarfs in the field and young clusters have yet to be reconciled convincingly.Comment: From a series of lectures presented at the Evry-Schatzman school on Low-mass stars and the transition from stars to brown dwarfs, edited by C. Charbonnel, C. Reyle, M. Schultheis. To appear in the EAS Conference Series. 47p

    Further deep imaging of HR 7329 A (eta Tel A) and its brown dwarf companion B

    Full text link
    About 4" south of the young A0-type star HR 7329, a faint companion candidate was found by Lowrance et al. (2000). Its spectral type of M7-8 is consistent with a young brown dwarf companion. Here, we report ten new astrometric imaging observations of the pair HR 7329 A and B, obtained with the Hubble Space Telescope and the Very Large Telescope, aimed at showing common proper motion with high significance and possible orbital motion of B around A. With 11 yrs of epoch difference between the first and our last image, we can reject by more than 21 sigma that B would be a non-moving background object unrelated to A. We detect no change in position angle and small or no change in separation (2.91 +/- 2.41 mas/yr), so that the orbit of HR 7329 B around A is inclined and/or eccentric and/or the orbital motion is currently only in radial direction. If HR 7329 B is responsible for the outer radius of the debris disk around HR 7329 A being 24 AU, and if HR 7329 B currently is at its apastron at 200 AU (4.2" at 47.7 pc), we determine its pericenter distance to be 71 AU, its semi-major axis to be 136 AU, and its eccentricity to be e=0.47. From the magnitude differences between HR 7329 A and B and the 2MASS magnitudes for the HR 7329 A+B system, we can estimate the magnitudes of HR 7329 B (J=12.06+/-0.19, H=11.75+/-0.10, Ks=11.6+/-0.1, L=11.1+/-0.2 mag) and then, with a few otherwise known parameters, its luminosity and mass (20-50 Jupiter masses). In the deepest images available, we did not detect any additional companion candidates up to <=9", but determine upper limits in the planetary mass regime.Comment: 7 pages, 3 figures, accepted for publication in MNRA

    Debris Disks: Probing Planet Formation

    Full text link
    Debris disks are the dust disks found around ~20% of nearby main sequence stars in far-IR surveys. They can be considered as descendants of protoplanetary disks or components of planetary systems, providing valuable information on circumstellar disk evolution and the outcome of planet formation. The debris disk population can be explained by the steady collisional erosion of planetesimal belts; population models constrain where (10-100au) and in what quantity (>1Mearth) planetesimals (>10km in size) typically form in protoplanetary disks. Gas is now seen long into the debris disk phase. Some of this is secondary implying planetesimals have a Solar System comet-like composition, but some systems may retain primordial gas. Ongoing planet formation processes are invoked for some debris disks, such as the continued growth of dwarf planets in an unstirred disk, or the growth of terrestrial planets through giant impacts. Planets imprint structure on debris disks in many ways; images of gaps, clumps, warps, eccentricities and other disk asymmetries, are readily explained by planets at >>5au. Hot dust in the region planets are commonly found (<5au) is seen for a growing number of stars. This dust usually originates in an outer belt (e.g., from exocomets), although an asteroid belt or recent collision is sometimes inferred.Comment: Invited review, accepted for publication in the 'Handbook of Exoplanets', eds. H.J. Deeg and J.A. Belmonte, Springer (2018

    In-depth study of moderately young but extremely red, very dusty substellar companion HD206893B

    Get PDF
    Accepted for publication in Astronomy & Astrophysics. Reproduced with permission from Astronomy & Astrophysics. © 2018 ESO.The substellar companion HD206893b has recently been discovered by direct imaging of its disc-bearing host star with the SPHERE instrument. We investigate the atypical properties of the companion, which has the reddest near-infrared colours among all known substellar objects, either orbiting a star or isolated, and we provide a comprehensive characterisation of the host star-disc-companion system. We conducted a follow-up of the companion with adaptive optics imaging and spectro-imaging with SPHERE, and a multiinstrument follow-up of its host star. We obtain a R=30 spectrum from 0.95 to 1.64 micron of the companion and additional photometry at 2.11 and 2.25 micron. We carried out extensive atmosphere model fitting for the companions and the host star in order to derive their age, mass, and metallicity. We found no additional companion in the system in spite of exquisite observing conditions resulting in sensitivity to 6MJup (2MJup) at 0.5" for an age of 300 Myr (50 Myr). We detect orbital motion over more than one year and characterise the possible Keplerian orbits. We constrain the age of the system to a minimum of 50 Myr and a maximum of 700 Myr, and determine that the host-star metallicity is nearly solar. The comparison of the companion spectrum and photometry to model atmospheres indicates that the companion is an extremely dusty late L dwarf, with an intermediate gravity (log g 4.5-5.0) which is compatible with the independent age estimate of the system. Though our best fit corresponds to a brown dwarf of 15-30 MJup aged 100-300 Myr, our analysis is also compatible with a range of masses and ages going from a 50 Myr 12MJup planetary-mass object to a 50 MJup Hyades-age brown dwarf...Peer reviewedFinal Accepted Versio

    The Classification of T Dwarfs

    Get PDF
    We discuss methods for classifying T dwarfs based on spectral morphological features and indices. T dwarfs are brown dwarfs which exhibit methane absorption bands at 1.6 and 2.2 μm{\mu}m. Spectra at red optical (6300--10100 {\AA}) and near-infrared (1--2.5 μm{\mu}m) wavelengths are presented, and differences between objects are noted and discussed. Spectral indices useful for classification schemes are presented. We conclude that near-infrared spectral classification is generally preferable for these cool objects, with data sufficient to resolve the 1.17 and 1.25 μm{\mu}m K I doublets lines being most valuable. Spectral features sensitive to gravity are discussed, with the strength of the K-band peak used as an example. Such features may be used to derive a two-dimensional scheme based on temperature and mass, in analogy to the MK temperature and luminosity classes.Comment: 15 pages, 6 figures, conference proceedings for IAU Ultracool Dwarf Stars session, ed. I. Steele & H. Jone

    Circumstellar disks and planets. Science cases for next-generation optical/infrared long-baseline interferometers

    Full text link
    We present a review of the interplay between the evolution of circumstellar disks and the formation of planets, both from the perspective of theoretical models and dedicated observations. Based on this, we identify and discuss fundamental questions concerning the formation and evolution of circumstellar disks and planets which can be addressed in the near future with optical and infrared long-baseline interferometers. Furthermore, the importance of complementary observations with long-baseline (sub)millimeter interferometers and high-sensitivity infrared observatories is outlined.Comment: 83 pages; Accepted for publication in "Astronomy and Astrophysics Review"; The final publication is available at http://www.springerlink.co

    First Scattered-light Images of the Gas-rich Debris Disk around 49 Ceti

    Get PDF
    We present the first scattered-light images of the debris disk around 49 Ceti, a ∼40 Myr A1 main-sequence star at 59 pc, famous for hosting two massive dust belts as well as large quantities of atomic and molecular gas. The outer disk is revealed in reprocessed archival Hubble Space Telescope NICMOS-F110W images, as well as new coronagraphic H-band images from the Very Large Telescope SPHERE instrument. The disk extends from 1.″1 (65 au) to 4.″6 (250 au) and is seen at an inclination of 73°, which refines previous measurements at lower angular resolution. We also report no companion detection larger than 3 M Jup at projected separations beyond 20 au from the star (0.″34). Comparison between the F110W and H-band images is consistent with a gray color of 49 Ceti's dust, indicating grains larger than 2 μm. Our photometric measurements indicate a scattering efficiency/infrared excess ratio of 0.2-0.4, relatively low compared to other characterized debris disks. We find that 49 Ceti presents morphological and scattering properties very similar to the gas-rich HD 131835 system. From our constraint on the disk inclination we find that the atomic gas previously detected in absorption must extend to the inner disk, and that the latter must be depleted of CO gas. Building on previous studies, we propose a schematic view of the system describing the dust and gas structure around 49 Ceti and hypothetical scenarios for the gas nature and origin.E.C. acknowledges support from NASA through Hubble Fellowship grant HST-HF2-51355 awarded by STScI, operated by AURA, Inc. under contract NAS5-26555, and support from HST-AR-12652, for research carried out at the Jet Propulsion Laboratory, California Institute of Technology. J.M. acknowledges ESO through the ESO fellowship program. M.B. acknowledges support from DFG project Kr 2164/15-1. G.M.K. is supported by the Royal Society as a Royal Society University Research Fellow. C.d.B. is supported by Mexican CONACyT research grant CB-2012-183007. L.M. acknowledges support by STFC through a graduate studentship. J.C.A. acknowledges support by the Programme National de Planétologie. We acknowledge support by the European Union through ERC grant 337569 for O.A. and C.A.G.G. and grant 279973 for M.W. and L.M
    corecore