2,593 research outputs found
Monolithic Pixel Sensors in Deep-Submicron SOI Technology
Monolithic pixel sensors for charged particle detection and imaging
applications have been designed and fabricated using commercially available,
deep-submicron Silicon-On-Insulator (SOI) processes, which insulate a thin
layer of integrated full CMOS electronics from a high-resistivity substrate by
means of a buried oxide. The substrate is contacted from the electronics layer
through vias etched in the buried oxide, allowing pixel implanting and reverse
biasing. This paper summarizes the performances achieved with a first prototype
manufactured in the OKI 0.15 micrometer FD-SOI process, featuring analog and
digital pixels on a 10 micrometer pitch. The design and preliminary results on
the analog section of a second prototype manufactured in the OKI 0.20
micrometer FD-SOI process are briefly discussed.Comment: Proceedings of the PIXEL 2008 International Workshop, FNAL, Batavia,
IL, 23-26 September 2008. Submitted to JINST - Journal of Instrumentatio
Total dose effects on deep-submicron SOI technology for Monolithic Pixel Sensor development
We developed and characterized Monolithic pixel detectors in deep-submicron Fully Depleted (FD) Silicon On Insulator (SOI) technology. This paper presents the first studies of total dose effects from ionizing radiation performed on single transistor test structures. This work shows how the substrate bias condition during irradiation heavily affects the resulting radiation damage
LNL irradiation facilities for radiation damage studies on electronic devices
In this paper we will review the wide range of irradiation facilities installed at the INFN Legnaro National Laboratories and routinely used for radiation damage studies on silicon detectors, electronic components and systems. The SIRAD irradiation facility, dedicated to Single Event Effect (SEE) and bulk damage studies, is installed at the 14MV Tandem XTU accelerator and can deliver ion beams from H up to Au in the energy range from 28MeV to 300 MeV. An Ion Electron Emission Microscope, also installed at SIRAD, allows SEE testing with micrometric sensitivity. For total dose tests, two facilities are presently available: an X-rays source and a 60Co γ-ray source. The 7MV Van de Graaff CN accelerator provides 1H beams in the energy range 2–7MeV and currents up to few μA for both total dose and bulk damage studies. At this facility, very high dose rates (up to ∼100 krad/s (SiO2)) can be achieved. Finally, also neutron beams are available,
produced at the CN accelerator, by the reaction d + Be ⇒ n+B
Timbre brownfield prioritization tool to support effective brownfield regeneration.
In the last decade, the regeneration of derelict or underused sites, fully or partly located in urban areas (or so called “brownfields”), has become more common, since free developable land (or so called “greenfields”) has more and more become a scare and, hence, more expensive resource, especially in densely populated areas. Although the regeneration of brownfield sites can offer development potentials, the complexity of these sites requires considerable efforts to successfully complete their revitalization projects and the proper selection of promising sites is a pre-requisite to efficiently allocate the limited financial resources. The identification and analysis of success factors for brownfield sites regeneration can support investors and decision makers in selecting those sites which are the most advantageous for successful regeneration. The objective of this paper is to present the Timbre Brownfield Prioritization Tool (TBPT), developed as a web-based solution to assist stakeholders responsible for wider territories or clusters of brownfield sites (portfolios) to identify which brownfield sites should be preferably considered for redevelopment or further investigation. The prioritization approach is based on a set of success factors properly identified through a systematic stakeholder engagement procedure. Within the TBPT these success factors are integrated by means of a Multi Criteria Decision Analysis (MCDA) methodology, which includes stakeholders' requalification objectives and perspectives related to the brownfield regeneration process and takes into account the three pillars of sustainability (economic, social and environmental dimensions). The tool has been applied to the South Moravia case study (Czech Republic), considering two different requalification objectives identified by local stakeholders, namely the selection of suitable locations for the development of a shopping centre and a solar power plant, respectively. The application of the TBPT to the case study showed that it is flexible and easy to adapt to different local contexts, allowing the assessors to introduce locally relevant parameters identified according to their expertise and considering the availability of local data
Performance of the CMS Cathode Strip Chambers with Cosmic Rays
The Cathode Strip Chambers (CSCs) constitute the primary muon tracking device
in the CMS endcaps. Their performance has been evaluated using data taken
during a cosmic ray run in fall 2008. Measured noise levels are low, with the
number of noisy channels well below 1%. Coordinate resolution was measured for
all types of chambers, and fall in the range 47 microns to 243 microns. The
efficiencies for local charged track triggers, for hit and for segments
reconstruction were measured, and are above 99%. The timing resolution per
layer is approximately 5 ns
Compressed representation of a partially defined integer function over multiple arguments
In OLAP (OnLine Analitical Processing) data are analysed in an n-dimensional cube. The cube may be represented as a partially defined function over n arguments. Considering that often the function is not defined everywhere, we ask: is there a known way of representing the function or the points in which it is defined, in a more compact manner than the trivial one
X-ray emission from the Sombrero galaxy: discrete sources
We present a study of discrete X-ray sources in and around the
bulge-dominated, massive Sa galaxy, Sombrero (M104), based on new and archival
Chandra observations with a total exposure of ~200 ks. With a detection limit
of L_X = 1E37 erg/s and a field of view covering a galactocentric radius of ~30
kpc (11.5 arcminute), 383 sources are detected. Cross-correlation with Spitler
et al.'s catalogue of Sombrero globular clusters (GCs) identified from HST/ACS
observations reveals 41 X-rays sources in GCs, presumably low-mass X-ray
binaries (LMXBs). We quantify the differential luminosity functions (LFs) for
both the detected GC and field LMXBs, whose power-low indices (~1.1 for the
GC-LF and ~1.6 for field-LF) are consistent with previous studies for
elliptical galaxies. With precise sky positions of the GCs without a detected
X-ray source, we further quantify, through a fluctuation analysis, the GC LF at
fainter luminosities down to 1E35 erg/s. The derived index rules out a
faint-end slope flatter than 1.1 at a 2 sigma significance, contrary to recent
findings in several elliptical galaxies and the bulge of M31. On the other
hand, the 2-6 keV unresolved emission places a tight constraint on the field
LF, implying a flattened index of ~1.0 below 1E37 erg/s. We also detect 101
sources in the halo of Sombrero. The presence of these sources cannot be
interpreted as galactic LMXBs whose spatial distribution empirically follows
the starlight. Their number is also higher than the expected number of cosmic
AGNs (52+/-11 [1 sigma]) whose surface density is constrained by deep X-ray
surveys. We suggest that either the cosmic X-ray background is unusually high
in the direction of Sombrero, or a distinct population of X-ray sources is
present in the halo of Sombrero.Comment: 11 figures, 5 tables, ApJ in pres
Radiation testing of GLAST LAT tracker ASICs
Gamma-ray large area space telescope (GLAST) is a next generation high-energy gamma-ray space observatory designed for observations of celestial gamma-ray sources in the energy band extending from 10 MeV to more than 100 GeV. The main instrument, the large area telescope (LAT), consists of a microstrip silicon tracker, a calorimeter, an anticoincidence detector, and the data acquisition (DAQ) system. This paper summarizes the results obtained during the radiation testing of the ASIC chips used in the LAT tracker. Both single event effects (SEE) and total ionizing dose effect (TID) tests have been performed, as part of the radiation hardness assurance (RHA) for the planned 5-yr mission. Heavy-ion SEE tests have been performed at the SIRAD irradiation facility at the INFN National Laboratories of Legnaro, Italy (LNL) and at the Texas A&M University (TAMU) Cyclotron Institute, with LET values ranging up to /spl sim/80 MeV/spl times/cm/sup 2//mg. The tolerance of the chips to ionizing radiation has been evaluated with heavy ions and by irradiating chips with the spherical /sup 60/Co gamma source of the LNL CNR-ISOF laboratory
Performance and Operation of the CMS Electromagnetic Calorimeter
The operation and general performance of the CMS electromagnetic calorimeter
using cosmic-ray muons are described. These muons were recorded after the
closure of the CMS detector in late 2008. The calorimeter is made of lead
tungstate crystals and the overall status of the 75848 channels corresponding
to the barrel and endcap detectors is reported. The stability of crucial
operational parameters, such as high voltage, temperature and electronic noise,
is summarised and the performance of the light monitoring system is presented
- …