1,301 research outputs found

    A Phase II Trial of Lutikizumab, an Anti–Interleukin‐1α/ÎČ Dual Variable Domain Immunoglobulin, in Knee Osteoarthritis Patients With Synovitis

    Get PDF
    Objective: To assess the efficacy and safety of the anti–interleukin‐1α/ÎČ (anti–IL‐1α/ÎČ) dual variable domain immunoglobulin lutikizumab (ABT‐981) in patients with knee osteoarthritis (OA) and evidence of synovitis. Methods: Patients (n = 350; 347 analyzed) with Kellgren/Lawrence grade 2–3 knee OA and synovitis (determined by magnetic resonance imaging [MRI] or ultrasound) were randomized to receive placebo or lutikizumab 25, 100, or 200 mg subcutaneously every 2 weeks for 50 weeks. The coprimary end points were change from baseline in Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) pain score at week 16 and change from baseline in MRI‐assessed synovitis at week 26. Results: The WOMAC pain score at week 16 had improved significantly versus placebo with lutikizumab 100 mg (P = 0.050) but not with the 25 mg or 200 mg doses. Beyond week 16, the WOMAC pain score was reduced in all groups but was not significantly different between lutikizumab‐treated and placebo‐treated patients. Changes from baseline in MRI‐assessed synovitis at week 26 and other key symptom‐ and most structure‐related end points at weeks 26 and 52 were not significantly different between the lutikizumab and placebo groups. Injection site reactions, neutropenia, and discontinuations due to neutropenia were more frequent with lutikizumab versus placebo. Reductions in neutrophil and high‐sensitivity C‐reactive protein levels plateaued with lutikizumab 100 mg, with further reductions not observed with the 200 mg dose. Immunogenic response to lutikizumab did not meaningfully affect systemic lutikizumab concentrations. Conclusion: The limited improvement in the WOMAC pain score and the lack of synovitis improvement with lutikizumab, together with published results from trials of other IL‐1 inhibitors, suggest that IL‐1 inhibition is not an effective analgesic/antiinflammatory therapy in most patients with knee OA and associated synovitis

    Identification of moaA3 gene in patient isolates of Mycobacterium tuberculosis in Kerala, which is absent in M. tuberculosis H37Rv and H37Ra

    Get PDF
    BACKGROUND: Tuberculosis is endemic to developing countries like India. Though the whole genome sequences of the type strain M. tuberculosis H37Rv and the clinical strain M. tuberculosis CDC1551 are available, the clinical isolates from India have not been studied extensively at the genome level. This study was carried out in order to have a better understanding of isolates from Kerala, a state in southern India. RESULTS: A PCR based strategy was followed making use of the deletion region primers to understand the genome level differences between the type strain H37Rv and the clinical isolates of M. tuberculosis from Kerala. PCR analysis of patient isolates using RD1 region primers revealed the amplification of a 386 bp region, in addition to the expected 652 bp amplicon. Southern hybridization of genomic DNA with the 386 bp amplicon confirmed the presence of this new region in a majority of the patient isolates from Kerala. Sequence comparison of this amplicon showed close homology with the moaA3 gene of M. bovis. In M. bovis this gene is present in the RvD5 region, an IS6110 mediated deletion that is absent in M. tuberculosis H37Rv. CONCLUSION: This study demonstrates the presence of moaA3 gene, that is absent in M. tuberculosis H37Rv and H37Ra, in a large number of local isolates. Whether the moaA3 gene provides any specific advantage to the field isolates of the pathogen is unclear. Field strains from Kerala have fewer IS6110 sequences and therefore are likely to have fewer IS6110 dependent rearrangements. But as deletions and insertions account for much of the genomic diversity of M. tuberculosis, the mechanisms of formation of sequence polymorphisms in the local isolates should be further examined. These results suggest that studies should focus on strains from endemic areas to understand the complexities of this pathogen

    Future therapeutic targets in rheumatoid arthritis?

    Get PDF
    Rheumatoid arthritis (RA) is a chronic inflammatory disease characterized by persistent joint inflammation. Without adequate treatment, patients with RA will develop joint deformity and progressive functional impairment. With the implementation of treat-to-target strategies and availability of biologic therapies, the outcomes for patients with RA have significantly improved. However, the unmet need in the treatment of RA remains high as some patients do not respond sufficiently to the currently available agents, remission is not always achieved and refractory disease is not uncommon. With better understanding of the pathophysiology of RA, new therapeutic approaches are emerging. Apart from more selective Janus kinase inhibition, there is a great interest in the granulocyte macrophage-colony stimulating factor pathway, Bruton's tyrosine kinase pathway, phosphoinositide-3-kinase pathway, neural stimulation and dendritic cell-based therapeutics. In this review, we will discuss the therapeutic potential of these novel approaches

    Points to consider for the treatment of immune-mediated inflammatory diseases with Janus kinase inhibitors: a consensus statement

    Get PDF
    Objectives: Janus kinase inhibitors (JAKi) have been approved for use in various immune-mediated inflammatory diseases. With five agents licensed, it was timely to summarise the current understanding of JAKi use based on a systematic literature review (SLR) on efficacy and safety. Methods: Existing data were evaluated by a steering committee and subsequently reviewed by a 29 person expert committee leading to the formulation of a consensus statement that may assist the clinicians, patients and other stakeholders once the decision is made to commence a JAKi. The committee included patients, rheumatologists, a gastroenterologist, a haematologist, a dermatologist, an infectious disease specialist and a health professional. The SLR informed the Task Force on controlled and open clinical trials, registry data, phase 4 trials and meta-analyses. In addition, approval of new compounds by, and warnings from regulators that were issued after the end of the SLR search date were taken into consideration. Results: The Task Force agreed on and developed four general principles and a total of 26 points for consideration which were grouped into six areas addressing indications, treatment dose and comedication, contraindications, pretreatment screening and risks, laboratory and clinical follow-up examinations, and adverse events. Levels of evidence and strengths of recommendations were determined based on the SLR and levels of agreement were voted on for every point, reaching a range between 8.8 and 9.9 on a 10-point scale. Conclusion: The consensus provides an assessment of evidence for efficacy and safety of an important therapeutic class with guidance on issues of practical management

    Facilitating arrhythmia simulation: the method of quantitative cellular automata modeling and parallel running

    Get PDF
    BACKGROUND: Many arrhythmias are triggered by abnormal electrical activity at the ionic channel and cell level, and then evolve spatio-temporally within the heart. To understand arrhythmias better and to diagnose them more precisely by their ECG waveforms, a whole-heart model is required to explore the association between the massively parallel activities at the channel/cell level and the integrative electrophysiological phenomena at organ level. METHODS: We have developed a method to build large-scale electrophysiological models by using extended cellular automata, and to run such models on a cluster of shared memory machines. We describe here the method, including the extension of a language-based cellular automaton to implement quantitative computing, the building of a whole-heart model with Visible Human Project data, the parallelization of the model on a cluster of shared memory computers with OpenMP and MPI hybrid programming, and a simulation algorithm that links cellular activity with the ECG. RESULTS: We demonstrate that electrical activities at channel, cell, and organ levels can be traced and captured conveniently in our extended cellular automaton system. Examples of some ECG waveforms simulated with a 2-D slice are given to support the ECG simulation algorithm. A performance evaluation of the 3-D model on a four-node cluster is also given. CONCLUSIONS: Quantitative multicellular modeling with extended cellular automata is a highly efficient and widely applicable method to weave experimental data at different levels into computational models. This process can be used to investigate complex and collective biological activities that can be described neither by their governing differentiation equations nor by discrete parallel computation. Transparent cluster computing is a convenient and effective method to make time-consuming simulation feasible. Arrhythmias, as a typical case, can be effectively simulated with the methods described

    Injection-site reactions upon Kineret (anakinra) administration: experiences and explanations

    Get PDF
    Anakinra (Kineret), a recombinant form of human interleukin-1 (IL-1) receptor antagonist, is approved for the treatment of rheumatoid arthritis (RA) in combination with methotrexate. Kineret is self-administered by daily subcutaneous injections in patients with active RA. The mechanism of action of anakinra is to competitively inhibit the local inflammatory effects of IL-1. Kineret is generally safe and well tolerated and the only major treatment-related side effects that appear are skin reactions at the injection site. Due to the relatively short half-life of anakinra, daily injection of the drug is required. This, in combination with the comparably high rates of injection-site reactions (ISRs) associated with the drug, can become a problem for the patient. The present review summarises published data concerning ISRs associated with Kineret and provides some explanations as to their cause. The objective is also to present some clinical experiences of how the ISRs can be managed

    Impacts of climate change on plant diseases – opinions and trends

    Get PDF
    There has been a remarkable scientific output on the topic of how climate change is likely to affect plant diseases in the coming decades. This review addresses the need for review of this burgeoning literature by summarizing opinions of previous reviews and trends in recent studies on the impacts of climate change on plant health. Sudden Oak Death is used as an introductory case study: Californian forests could become even more susceptible to this emerging plant disease, if spring precipitations will be accompanied by warmer temperatures, although climate shifts may also affect the current synchronicity between host cambium activity and pathogen colonization rate. A summary of observed and predicted climate changes, as well as of direct effects of climate change on pathosystems, is provided. Prediction and management of climate change effects on plant health are complicated by indirect effects and the interactions with global change drivers. Uncertainty in models of plant disease development under climate change calls for a diversity of management strategies, from more participatory approaches to interdisciplinary science. Involvement of stakeholders and scientists from outside plant pathology shows the importance of trade-offs, for example in the land-sharing vs. sparing debate. Further research is needed on climate change and plant health in mountain, boreal, Mediterranean and tropical regions, with multiple climate change factors and scenarios (including our responses to it, e.g. the assisted migration of plants), in relation to endophytes, viruses and mycorrhiza, using long-term and large-scale datasets and considering various plant disease control methods

    Measurement of the cross-section of high transverse momentum vector bosons reconstructed as single jets and studies of jet substructure in pp collisions at √s = 7 TeV with the ATLAS detector

    Get PDF
    This paper presents a measurement of the cross-section for high transverse momentum W and Z bosons produced in pp collisions and decaying to all-hadronic final states. The data used in the analysis were recorded by the ATLAS detector at the CERN Large Hadron Collider at a centre-of-mass energy of √s = 7 TeV;{\rm Te}{\rm V}andcorrespondtoanintegratedluminosityof and correspond to an integrated luminosity of 4.6\;{\rm f}{{{\rm b}}^{-1}}.ThemeasurementisperformedbyreconstructingtheboostedWorZbosonsinsinglejets.ThereconstructedjetmassisusedtoidentifytheWandZbosons,andajetsubstructuremethodbasedonenergyclusterinformationinthejetcentre−of−massframeisusedtosuppressthelargemulti−jetbackground.Thecross−sectionforeventswithahadronicallydecayingWorZboson,withtransversemomentum. The measurement is performed by reconstructing the boosted W or Z bosons in single jets. The reconstructed jet mass is used to identify the W and Z bosons, and a jet substructure method based on energy cluster information in the jet centre-of-mass frame is used to suppress the large multi-jet background. The cross-section for events with a hadronically decaying W or Z boson, with transverse momentum {{p}_{{\rm T}}}\gt 320\;{\rm Ge}{\rm V}andpseudorapidity and pseudorapidity |\eta |\lt 1.9,ismeasuredtobe, is measured to be {{\sigma }_{W+Z}}=8.5\pm 1.7$ pb and is compared to next-to-leading-order calculations. The selected events are further used to study jet grooming techniques
    • 

    corecore