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Abstract Rheumatoid arthritis (RA) is a chronic inflammato-
ry disease characterized by persistent joint inflammation.
Without adequate treatment, patients with RA will develop
joint deformity and progressive functional impairment. With
the implementation of treat-to-target strategies and availability
of biologic therapies, the outcomes for patients with RA have
significantly improved. However, the unmet need in the treat-
ment of RA remains high as some patients do not respond
sufficiently to the currently available agents, remission is not
always achieved and refractory disease is not uncommon.
With better understanding of the pathophysiology of RA,
new therapeutic approaches are emerging. Apart from more
selective Janus kinase inhibition, there is a great interest in the
granulocyte macrophage-colony stimulating factor pathway,
Bruton’s tyrosine kinase pathway, phosphoinositide-3-kinase
pathway, neural stimulation and dendritic cell-based therapeu-
tics. In this review, we will discuss the therapeutic potential of
these novel approaches.
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Introduction

Rheumatoid arthritis is a chronic inflammatory disease char-
acterized by persistent joint inflammation. Without adequate
treatment, patients with rheumatoid arthritis (RA) will develop
joint deformity and progressive functional impairment.
Substantial evidence indicates that persistent systemic inflam-
mation and immune dysfunction plays a major role in the
development of co-morbidities, such as cardiovascular dis-
eases, osteoporosis, interstitial lung disease and malignancies.
Large retrospective cohorts have shown that the risk of myo-
cardial infarction is at least 1.5 times higher compared with
controls [1, 2] and patients with RA have increased cardiovas-
cular mortality as a result [3–5]. In addition, many studies
consistently indicate an increase in the incidence of malignan-
cies, such as lymphoma [6–8]. As a result, patients with RA
have reduced quality of life and life expectancy.

With the implementation of treat-to-target strategies, the out-
comes of patients with RA have significantly improved. The
likelihoods of achieving remission and low disease activity are
significantly higher compared with usual care and historical con-
trols. As a result, those patients experience less functional im-
pairment [9–15]. Strategic approaches of this nature not only
alleviate clinical symptoms of RA but also demonstrate signifi-
cant benefits to RA-associated co-morbidities. Osteoporosis is
significantly less frequent in patients with disease remission, and
a similar trendwas also observed for cardiovascular disease [16].
Patients in remission have a significant reduction in cardiovas-
cular risk that is comparable to that of healthy controls [17].

In parallel, biologic therapies have revolutionized the treat-
ment paradigm of RA because they are generally more effec-
tive than conventional synthetic disease-modifying anti-rheu-
matic drugs (csDMARDs). Even biologic therapies currently
available only demonstrate clinical efficacy in about two
thirds of patients. As a result, the unmet need in the treatment
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of RA remains high, remission rates are insufficient and new
therapeutic approaches should be explored especially for
those patients with refractory disease. In this review, we will
discuss the potentials of several novel therapeutic agents.

Extracellular target in RA

A range of extracellular targets are currently under consider-
ation. The majority concern previously targeted cytokines,
e.g. IL-6R or ligands, IL-6. Recent studies targeting a variety
of cytokines, e.g. IL-17, IL-20 and IL-21, have been disap-
pointing [18–24]. Herein, we will focus on one novel cytokine
that has elicited promising data in early trials.

Granulocyte macrophage-colony stimulating factor

Granulocyte macrophage-colony stimulating factor (GM-
CSF) is a haematopoietic growth factor responsible for the
differentiation and proliferation of myeloid cells, includ-
ing neutrophils, dendritic cells and macrophages. In addi-
tion, GM-CSF also induces migration and proliferation of
endothelial cells [25]. It is produced by a wide variety of
cell types, such as myeloid cells, lymphocytes and tissue-
resident cells including chondrocytes, fibroblasts, osteo-
blast and endothelial cells [26, 27]. Production of GM-
CSF can be stimulated by multiple agents, such as lipo-
polysaccharide, tumour necrosis factor, IL-1 and IL-23
[28]. It binds to a heterodimeric GM-CSF receptor, which
consists of a ligand-specific binding α-chain and a signal
transducing β-chain [29]. Subsequent signalling from the
GM-CSF receptor activates Janus kinase-signal transducer
a n d a c t i v a t o r o f t r a n s c r i p t i o n ( JAK -STAT ) ,
phosphoinositide-3-kinase (PI3K) and MAPK pathway
[30, 31].

GM-CSF plays a crucial role in innate immune re-
sponses. In general, it enhances the effector functions of
neutrophils and macrophages, leading to increased expres-
sion of adhesion molecules, production of inflammatory
cytokines and activation of phagocytosis [32]. GM-CSF
can also polarize macrophages into an inflammatory M1
phenotype, which are involved in synovial inflammation
[33]. GM-CSF is also involved in the development, mat-
uration, antigen presentation and cytokine production by
dendritic cells [34–36]. Several in vitro studies show that
GM-CSF stimulates the development of inflammatory
dendritic cells. These inflammatory dendritic cells pro-
duce pro-inflammatory cytokines, such as TNF, IL-12
and IL-23. Following antigen engagement and condition-
ing by the pro-inflammatory cytokines, the inflammatory
dendritic cells are able to present self-antigens and stim-
ulate T cell in the lymph nodes [37, 38].

In patients with RA, GM-CSF is expressed in the sy-
novial membrane and the level of GM-CSF is increased in
the synovial fluid [39]. Increased expression of GM-CSF
receptors is found on circulating monocytes [40], which
promotes the subsequent maturation and activation of
macrophages in the synovium. In addition, GM-CSF re-
ceptors are up-regulated in the synovial tissue [41], and
in vitro studies show that GM-CSF induces the prolifera-
tion of fibroblast-like synoviocytes [42]. GM-CSF also
contributes to the differentiation and survival of Th17
cells and dendritic cells [43]. In the presence of GM-
CSF, monocyte-derived dendritic cells maintain their in-
flammatory potential and are resistant to the immunosup-
pressive effect of IL-10 in vitro [44]. These dendritic cells
also produce high levels of IL-1, IL-6 and TNF-α [45]
and are able to present auto-antigens via MHC molecules,
contributing to the pathogenesis of RA [46].

Based on these findings, GM-CSF inhibition is an at-
tractive therapeutic target for RA. In animal models, ad-
ministration of GM-CSF exacerbates arthritis in the
collagen-induced arthritis (CIA) model, while administra-
tion of neutralizing antibodies against GM-CSF prevents
disease progression [47, 48]. In view of the robust effects
of GM-CSF inhibition demonstrated in pre-clinical studies,
the efficacy of GM-CSF inhibitors has been evaluated in
clinical trials [49].

Mavrilimumab is a monoclonal antibody against the hu-
man GM-CSF receptor alpha chain. In the EARTH
EXPLORER I study, 326 patients with active RA and who
had previously an inadequate response to DMARDs were
randomized to receive different doses of mavrilimumab ver-
sus placebo. In this phase IIb study, a greater proportion of
patients receiving mavrilimumab achieved a ≥1.2 decrease in
disease activity score (DAS)28-CRP from baseline and the
100-mg dose demonstrated a significant effect versus placebo
(23.1 vs. 6.7%). Besides, patients receiving mavrilimumab
achieved higher American College of Rheumatology (ACR)
response rates at week 24 (ACR20—69.2 vs. 40.0%,
p = 0.005; ACR50—30.8 vs. 12.0%, p = 0.021; ACR70—
17.9 vs. 4.0%, p = 0.030). Adverse events were generally
mild or moderate in intensity. No significant hypersensitivity
reactions, serious or opportunistic infections, or changes in
pulmonary parameters were observed [50]. In the EARTH
EXPLORER II study, 138 patients with active RA and had
an inadequate response to tumour necrosis factor inhibitors
were randomized to receive mavrilimumab 100 mg every
2 weeks or golimumab 50 mg every 4 weeks for 24 weeks.
The difference in the numbers of patients achieving ACR20
response was not statistically different between groups (65.6
vs. 62%, p = 0.666) (NCT01715896). As a result, further
large-scale studies are warranted to confirm the therapeutic
potential of mavrilimumab and to determine its optimal posi-
tion in the treatment algorithm of RA.
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Intracellular targets in RA

Janus kinase-signal transducer and activator
of transcription pathway

JAK is a receptor tyrosine kinase that mediates intracellular
signalling through the transcription factor STAT. In humans,
the JAK-STAT pathway is the principal signalling cascade for
a wide variety of cytokines and growth factors [51–54].
Intracellular activation of JAK occurs when ligand binding
induces the crosslinking of receptor subunits. Activated
JAKs phosphorylate the tyrosine residues on the receptors,
allowing the binding of STATs in the SRC2 homology do-
main. JAK then phosphorylates the tyrosine residues on the
STATs, leading to dimerization and activation of the STATs.
Activated STATs then migrate via the cytoplasm to translocate
into the nucleus, where they induce transcription of target
genes [54].

The JAK family comprises four members, JAK1, JAK2,
JAK3 and Tyk2. JAK1, JAK2 and Tyk2 are expressed ubiq-
ui tous ly, whi le JAK3 has l imi ted express ion in
haematopoietic cells [55]. JAK1 interacts with a wide variety
of cytokines, through the common γ chain receptor subunit
(IL-2 and IL-4 receptor family) and the glycoprotein-130 sub-
unit. JAK1 is also involved in type 1 interferon signal trans-
duction. JAK2 also interacts with cytokines through the
glycoprotein-130 subunits, as well as other hormones includ-
ing erythropoietin, thrombopoietin, prolactin and growth hor-
mone. As a result, the use of JAK2 inhibitors may be associ-
ated with anaemia and thrombocytopenia. JAK3 interacts with
many inflammatory cytokines through the common γ chain
receptor subunit [56], and inactivating mutations in the com-
mon γ chain and JAK3 have been shown to cause X-linked
severe combined immunodeficiency [57]. Patients with X-
linked severe combined immunodeficiency have a significant-
ly impaired adaptive immune system due to the absence T
cells and non-functional B cells (Table 1).

Many JAK inhibitors have been studied for the treat-
ment of RA [58]. Tofacitinib, the first-in-class JAK inhib-
itor, has been shown to be efficacious in different clinical
settings—it blocks JAK1 and JAK3 preferentially [59–64]
(Table 2). In the ORAL standard trial, patients with an
inadequate response to methotrexate were randomized to
receive tofacitinib, adalimumab or placebo plus back-
ground methotrexate. At 6 months, patients receiving
tofacitinib (5 or 10 mg twice daily) and adalimumab
40 mg every 2 weeks achieved higher ACR20 response
rates (51.5, 52.6 and 47.2%, respectively), compared with
those receiving placebo (28.3%). There were also greater
reductions in the Health Assessment Questionnaire
Disability Index (HAQ-DI) scores at 3 months and higher
percentages of patients achieving DAS remission at
6 months [62]. In the ORAL scan trial, patients receiving

tofacitinib (5 or 10 mg twice daily) had less radiological
progression. The mean changes in total modified Sharp
score for tofacitinib at 5 and 10 mg twice daily were
0.12 and 0.06, respectively, versus 0.47 for placebo [60].
Patients with inadequate response to tumour necrosis fac-
tor inhibitors were evaluated in the ORAL step trial. The
addition of tofacitinib (5 or 10 mg twice daily) to metho-
trexate (MTX), compared with placebo plus MTX, result-
ed in significantly higher ACR20 response rates (42, 48
vs. 24%, respectively) and greater reductions in the HAQ-
DI scores at 3 months [61].

The relative safety of tofacitinib has generally appeared
similar to that of biologic DMARDs, including increased
risk of infections and liver function derangements, cytope-
nias, hyperlipidaemia and, possibly, increased serum creat-
inine levels. Gastrointestinal perforations have also been
reported. The incidence was similar to the published data
of tumour necrosis factor inhibitors and perhaps lower than
that associated with tocilizumab. It has been postulated that
this potential side effect could be due to a significant inhi-
bition of IL-6 production. The risk of herpes zoster reacti-
vation was found to be significantly increased in patients
receiving tofacitinib. Data from the phase II, III and long-
term extension studies showed that the incidence rate of
herpes zoster reactivation was 4.4 per 100 patient-years
in patients receiving tofacitinib, compared to 1.5 per
patient-years in the placebo arm. The risk is substantially
higher among Asians, the elderly and those using higher
doses of glucocorticoids [65].

Baricitinib, another novel JAK inhibitor, has also been
evaluated in several phase III clinical trials. It preferentially
inhibits JAK1 and JAK2 and demonstrates efficacy in patients
with RA in different clinical settings [66–69] (Table 3). In the
RA-BEAM trial, patients with active RA on background
MTX were randomized to receive baricitinib 4 mg daily,
adalimumab 40 mg every 2 weeks or placebo (switched to
baricitinib at week 24) for 52 weeks. At week 12, patients
receiving baricitinib were more likely to achieve ACR20 re-
sponse compared with those receiving adalimumab or placebo
(70 vs. 61 vs. 40%). The ACR20 response rates at week 12 in
patients receiving 4 mg baricitinib and placebo were 70 and
40%, respectively. There were also greater reductions in the
HAQ-DI scores and progression of mean total modified Sharp
scores at 24 weeks [69]. Similar results were also demonstrat-
ed in the RA-BUILD trial. Patients with active RA and who
had an inadequate response to conventional synthetic
DMARDs were randomized to receive baricitinib (2 or 4 mg
daily) or placebo. Patients receiving 4 mg baricitinib achieved
higher ACR20 response rates than those receiving placebo at
12 weeks [66]. In addition, patients who had an inadequate
response to tumour necrosis factor inhibitors also showed a
significant improvement after receiving high-dose baricitinib.
The ACR20 response rates at week 12 in patients receiving

Semin Immunopathol (2017) 39:487–500 489



4 mg baricitinib and placebo were 55 and 27%, respectively
[67]. To date, baricitinib is pending approval by the FDA and
EMA.

Meanwhile, other JAK inhibitors are being evaluated in
phase III clinical trials. Filgotinib developed by Galapagos
NV/Gilead and ABT-494 by AbbVie are both selective
JAK1 inhibitors. The use of these agents can theoretically
reduce the risk of JAK2- and JAK3-associated adverse reac-
tions. Both filgotinib and ABT-494 showed promising results
in patients with RA in phase IIb studies [70–73], and phase III

studies are being conducted to evaluate their therapeutic effi-
cacies (Table 4).

Bruton’s tyrosine kinase pathway

Bruton’s tyrosine kinase (BTK) is another key intracellular ki-
nase being actively investigated for the treatment of RA in addi-
tion to other immune-mediated disorders, e.g. SLE. It is a mem-
ber of the Tec family of non-receptor tyrosine kinases with re-
stricted expression in B cells and myeloid cells, such as

Table 1 Cytokines and
hormones activating the JAK
pathway

JAK1 JAK2 JAK3

Common γ chain receptor family

IL-2, IL-4, IL-7, IL-9, IL-15, IL-21

Common γ chain receptor family

IL-2, IL-4, IL-7, IL-9, IL-15, IL-21

Gp130 receptor family

IL-6, IL-11, IL-27, IL-31

Gp130 receptor family

IL-6, IL-11, IL-27, IL-31
Interferon

IFNα/β/γ

Interferon

IFNα/β/γ
Hormones

Erythropoietin

Thrombopoietin

Prolactin

Growth hormone
GM-CSF receptor family

IL-3R, IL-5R, GM-CSF-R

Table 2 Clinical trials of tofacitinib

Study name Number of
subjects

Subject
characteristics

Intervention Primary endpoints Results

ORAL start [59] 958 MTX naive Tofacitinib (5 or 10 mg) vs.
MTX 20 mg per week

ACR70 response
Mean change in modified

total Sharp score

25.5, 37.7 vs. 12.0%
0.2, <0.1 vs. 0.8

ORAL scan [60] 797 MTX-IR Tofacitinib (5 or 10 mg) vs. placebo ACR20 response
Mean change in modified

total Sharp score
Mean change in HAQ-DI
DAS remission

51.5, 61.8 vs. 25.3%
0.12, 0.06 vs. 0.47a

−0.40, −0.54 vs. −0.15
7.2, 16 vs. 1.6%

ORAL solo [63] 611 DMARD-IR* Tofacitinib (5 or 10 mg) vs. placebo ACR20 response
Mean change in HAQ-DI
DAS remission

59.8, 65.7 vs. 26.7%
−0.50, −0.57 vs. −0.19
5.6, 8.7 vs. 4.4% (NS)

ORAL sync [64] 792 DMARD-IR* Tofacitinib (5 or 10 mg) vs. placebo ACR20 response
Mean change in HAQ-DI
DAS remission

52.1, 56.6 vs. 30.8%
-0.44, -0.53 vs. -0.16
8.5, 12.5 vs. 2.6%

ORAL standard [62] 717 MTX-IR Tofacitinib (5 or 10 mg) vs.
adalimumab 40 mg q2w vs. placebo

ACR20 response
Mean change in HAQ-DI
DAS remission

51.5, 52.6, 47.2 vs. 28.3%
0.55, −0.61, 0.49 vs. −0.24
6.2, 12.5, 6.7 vs. 1.1%

ORAL step [61] 399 TNFi-IR Tofacitinib (5 or 10 mg) vs. placebo ACR20 response
Mean change in HAQ-DI
DAS remission

41.7, 48.1 vs. 24.4%
−0.43, −0.46 vs. −0.18
6.7, 8.8 vs. 1.7%

*At least 1 non-biologic or biologic DMARD#262
a Since tofacitinib 5 mg twice daily failed to show statistically significance for radiographic progression, and due to the step-down procedure applied to
the primary efficacy endpoints, significance was not declared for the HAQ-DI and DAS remission
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macrophages and dendritic cells [74]. It plays a crucial role in B
cell development and activation. When an antigen binds to the B
cell receptor, spleen tyrosine kinase (SYK) is activated and leads
to subsequent phosphorylation of adaptor proteins recruiting
PI3K to the plasma membrane. As a result, intracellular levels
of phosphatidylinositol-3,4,5-triphosphate (PIP3) increases [75].
PIP3 binds to the pleckstrin homology domain of BTK and
thereby promotes the recruitment of BTK to the plasma mem-
brane [76]. Subsequent phosphorylation of BTK by the Src-
kinases and SYK activates phospholipase C-γ2, which leads to
nuclear factor κB and nuclear factor of activated Tcells transcrip-
tional activation [77]. Through these signalling pathways, BTK
activation induces B cell survival, proliferation and differentia-
tion into plasma cell. Mutations of the BTK genes are associated
with the development of X-linked agammaglobulinaemia in hu-
man and X-linked immunodeficiency in mice [78, 79]. In addi-
tion to B cell receptor signalling, BTK is also associated with
macrophage signalling through the FCγ receptors. In the absence
of BTK, FCγ receptor-associated functions are impaired. In

animal models, macrophages frommice with X-linked immuno-
deficiency produce less nitric oxide, TNF-α and IL-Iβ [80, 81].

Given that BTK is functionally active in both B cells and
myeloid cell function, it is an attractive therapeutic target for
RA. In particular, inhibiting the kinase activity of BTK would
blockmultiple signalling pathways in different cell populations.
In the CIA model, mice with mutations in BTK have decreased
susceptibility to develop arthritis [82]. Similarly, FCγ receptor-
deficient mice do not develop arthritis, even with the presence
of auto-antibodies [83]. Consequently, several small molecule
BTK inhibitors have been developed and demonstrated efficacy
in animal models of RA [84]. However, only six BTK inhibi-
tors are currently reported to be in clinical development for RA.
All of the inhibitors selectively target the ATP-binding pocket
of BTK, and the irreversible inhibitors covalently bind the cys-
teine residue in the active site of the kinase domain [85].

CC-292 is the first irreversible BTK inhibitor that has been
evaluated in a phase II study. Forty-seven patients with active
RA and had an inadequate response to methotrexate were

Table 3 Clinical trial of baricitinib

Study name Number of
subjects

Subject
characteristics

Intervention Primary endpoints Results

RA-BEGIN
[68]

588 DMARD naive Baricitinib 4 mg + MTX
10-20 mg per week vs.
baricitinib 4 mg vs.
MTX 10–20 mg per week

ACR20 response 77 vs. 62%a

RA-BEAM [69] 1307 MTX-IR Baricitinib 4 mg vs. adalimumab
40 mg q2w vs. placebo

ACR20 response 70 vs. 61 vs. 40%b

RA-BUILD [66] 684 DMARD-IR Baricitinib (2 or 4 mg) vs. placebo ACR20 response 62 vs. 39%c

RA-BEACON [67] 527 TNFi-IR Baricitinib (2 or 4 mg) vs. placebo ACR20 response 55 vs. 27%c

RA-BEYOND Estimated 3073 Baricitinib (2 or 4 mg) 1 drug-related adverse event
or any serious adverse events

Ongoing

a The primary endpoint is a non-inferiority comparison of baricitinib monotherapy to MTX monotherapy
b The primary endpoint is a superiority comparison of baricitinib therapy to placebo. Baricitinib therapy is compared with adalimumab based on non-
inferiority design
c The primary endpoint is the comparison between baricitinib 4mg and placebo

Table 4 Clinical trials of filgotinib and ABT-494

Study drug Estimated enrolment Subject characteristics Intervention Primary endpoints ClinivalTrials.gov identifier

Filgotinib 1200 MTX naive Filgotinib + MTX vs.
filgotinib vs. MTX

ACR20 response NCT02886728

1650 MTX-IR Filgotinib vs. adalimumab
vs. placebo

ACR20 response NCT02889796

423 bDMARD-IR Filgotinib vs. placebo ACR20 response NCT02873936

ABT-494 975 MTX naive ABT-494 vs. MTX ACR50 response;
DAS28-CRP remission

NCT02706873

1500 MTX-IR ABT-494 vs. adalimumab
vs. placebo

ACR20 response NCT02629159

600 MTX-IR ABT-494 vs. MTX ACR20 response;
DAS28-CRP LDA

NCT02706951

600 csDMARD-IR ABT-494 vs. placebo ACR20 response;
DAS28-CRP LDA

NCT02675426
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randomized to receive either CC-292 375 mg daily versus pla-
cebo. The primary endpoint was the ACR20 response at
4 weeks. The study was completed in March 2016 but the
results have not been published so far (NCT01975610). Other
potential BTK inhibitors are still being investigated in pre-
clinical or early phase clinical studies. The phase I study on
HM71224 (NCT01765478), developed by Hamni, has just
been completed, while the phase I study on TK-020
(NCT02413255), developed by Takeda, is still ongoing [86].

Phosphoinositide-3-kinase pathway

PI3Ks are lipid-signalling kinases that phosphorylate
phosphoinositides to produce phosphorylated inositol lipids.
PI3Ks are classified into class I, II and III according to their
structures, regulations and lipid substrate specificities [87, 88].
To date, only the functions of class I PI3Ks have been well
characterized, whereas the roles of class II and III PI3Ks in
humans are yet to be elucidated. Class I PI3Ks, which include
PI3Kα, PI3Kβ, PI3Kδ and PI3Kγ, catalyze the phosphoryla-
tion of phosphatidylinositol-4,5-bisphosphate to phos-
phatidylinositol-3,4,5-trisphosphate (Table 5). Through subse-
quent signalling cascades, class I PI3Ks control many cellular
functions, such as growth, proliferation, survival and apopto-
sis, as well as leukocyte adhesion and migration. PI3Kα and
PI3Kβ are ubiquitously expressed, whereas PI3Kδ and PI3Kγ
are preferentially expressed in leukocytes and play a crucial
role in innate and adaptive immune response.

In Tcells, class I PI3Ks are activated by Tcell receptor (TCR)
or IL-2 receptor engagement. In p110γ knockout T cells, TCR-
mediated early signalling is relatively unaffected, but they prolif-
erate less after stimulation with CD3-specific antibody and pro-
duce lower levels of cytokines in vitro [89]. Similarly, PI3Kδ
kinase inactive knockin mice also show reduced T cell prolifera-
tion and activation in vitro, and impaired antigen-specific T cell
responses in vivo [90]. In addition, PI3Kδ is involved in the
differentiation of T cells. In animal models, p110δ mutant mice
had impaired differentiation along the T helper (Th) 1 and Th 2
lineage [91] and exhibited a significant decrease in T helper 2
cytokine responses [92]. P110δ mutant mice also had reduced
regulatory T cell (Treg) populations in the spleen and lymph

nodes, implicating PI3Kδ in the maintenance of Treg in the pe-
riphery. Moreover, Treg cells with inactive PI3Kδ had attenuated
secretion of IL-10 to suppress T cell proliferation in vitro [93].

PI3Kδ is essential for B cell development and function as it
generates survival signals even without antigen binding to the
B cell receptors [94–96]. In animal models, PI3Kδ mutant
mice have significant reductions in the IgM producing B cell
and marginal zone B cell populations [96]. B cell proliferative
responses to IL-4 stimulation and Tcell-independent antibody
responses in PI3Kδ mutant mice are also attenuated [97, 98].
Furthermore, B cells deficient in p110δ showed diminished
chemotactic responses to CXCL13 and CXCR5-dependent B
cell homing to Peyer’s patches [99].

In common with other leucocytes, class I PI3Ks are mark-
edly enriched in neutrophils. In p110γ knockout mice, neutro-
phils migrate less efficiently towards chemokines and chemo-
attractants, such as complement C5a and bacterial peptide N-
formyl-methionyl-leucyl-pehnylalamine (fMLP) [100, 101].
Neutrophils with inactive p110γ also demonstrated impaired
reactive oxygen species production [101] and neutrophil respi-
ratory burst in response to fMLP [102]. Apart from neutrophils,
dendritic cells from p110γ knockout mice also developed im-
pairedmigration to the site of inflammation [103]. Although the
involvement of PI3Kδ in neutrophil functions has been contro-
versial, PI3Kδ may have a role in promoting IL-6 release in
response to cKit stimulation on dendritic cells [104].

Based on these findings, PI3Kδ and PI3Kγ have attracted
considerable interest as pharmacological targets in the treat-
ment of RA [105, 106]. In the CIA model, mice treated with a
p110γ selective inhibitor show significant reduction in joint
inflammation. Histological measures of synovial inflamma-
tion and neutrophil infiltration in arthritic joints are also sig-
nificantly attenuated [107]. PI3Kγ is also implicated in the
regulation of synovial fibroblasts, in which p110γ deficiency
leads to a milder inflammatory-erosive arthritis and TNF-
mediated cartilage destruction through reduced expression of
matrix metalloproteinases in fibroblasts and chondrocytes.
In vitro analyses confirmed that the decreased invasiveness
of fibroblasts is mediated by reduced phosphorylation of Akt
and extracellular signal-regulated kinase. Similar findings
using a PI3Kγ-specific inhibitor in human synovial

Table 5 Isoforms of PI3K
PI3K isoform Catalytic subunit Regulatory subunits Substrate Product

Class IA PI3Kα

PI3Kβ

PI3Kδ

p110α

p110β

p110δ

p85α, p85β, p55α, p55γ, p50α PI-4,5-P2 PIP3

Class IB PI3Kγ p110γ p101, p84 PI-4,5-P2 PIP3

Class II PIK3-C2

PIK3-C3

PIK3-C2

PI-4-P

PI

PI-3,4P2

PI-3-P

Class III VPS34 P150 PI PI-3-P
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fibroblasts from patients with RAwho exhibit disease-specific
up-regulation of PI3Kγ was also confirmed in this study
[108]. A recent study also reported the role of PI3K signalling
pathway in synovial angiogenesis in the CIAmodel. Hypoxia-
inducible factor 1α and vascular endothelial growth factor are
up-regulated through PI3K signalling and mediates subse-
quent neovascularization of the synovium [109].

At present, PI3K inhibition is a major focus in the field of
oncology. Idelalisib, the first-in-class PI3K inhibitor, appears ef-
ficacious in refractory chronic lymphocytic leukaemia and indo-
lent non-Hodgkin’s lymphoma and has provided some safety
data concerning PI3K inhibition [110–113]. Many pharmaceuti-
cal companies are exploring the potential of PI3K inhibitors in
autoimmune diseases, like RA. However, no PI3K inhibitor has
yet entered a clinical development programme to our knowledge.

Neuropathways in RA

The reciprocal effects of the nervous system on immunity has
raised recent interest. It is well known that the nervous system
regulates inflammation through peripheral nerves and a variety
of neurotransmitters and neuropeptides. In animal models, pe-
ripheral denervation attenuates joint inflammation in mice with
adjuvant induced arthritis [114]. An imbalance of the autonom-
ic nervous system has been implicated in many inflammatory
conditions. In general, activation of para-sympathetic nervous
systemmediates an anti-inflammatory response, while the sym-
pathetic nervous system may have both pro-inflammatory and
anti-inflammatory properties [115]. The para-sympathetic ner-
vous system, through the vagus nerve, exerts anti-inflammatory
actions. In a mouse model, electrical stimulation of the periph-
eral part of the vagus nerve significantly decreases serum
TNF-α levels in rats with bilateral cervical vagotomy. In vitro
studies showed that acetylcholine (ACh) inhibits pro-
inflammatory cytokine release by the macrophages in a dose
dependent fashion [116]. Subsequent research had identified
the neuronal type α7-ACh receptor subtype as the essential
regulator of the anti-inflammatory effects mediated by the
para-sympathetic nervous system [117]. α7-ACh receptors are
not only found on neurons but also widely expressed in im-
mune cells and fibroblast like synoviocytes [118–120]. In the
CIA model, administration of a specific α7-ACh receptor ago-
nist showed effective attenuation of arthritis and systemic in-
flammatory responses [121, 122]. Conversely, α7-ACh recep-
tor knockout mice developed more severe arthritis compared
with the wild type controls [123]. Apart from the effects medi-
ated by immune cells, activation of the α7-ACh receptor in the
fibroblast like synoviocytes also suppresses the production of
pro-inflammatory cytokines [119, 124]. The spleen also plays
an important role in the regulation of systemic inflammation.
Although there is no evidence showing that lymphoid organs
are directly innervated by the para-sympathetic innervation,

studies have shown that the spleen is able to receive signals
from the para-sympathetic system and vagus nerve activation
may inhibit TNF-α production by splenic macrophages via
the celiac superior mesenteric plexus [125, 126]. Recently a
clinical trial provided proof of concept that vagal nerve stimu-
lation could be therapeutically feasible in RA [127]. In this
study, 17 patients with RA received vagus nerve stimulation.
At day 42, DAS28-CRP levels significantly improved from
baseline (6.05 ± 0.18 vs. 4.16) and the results were more robust
in biologic naive patients. The proportions of patients achieving
ACR20, ACR50 and ACR70 response were 71.4, 57.1 and
28.6%, respectively. Among patients who responded to vagus
nerve stimulation, their serum IL-6 levels were significantly
reduced from baseline and the reduction in IL-6 levels correlat-
ed with the improvement in disease activity [127].

The sympathetic nervous system, in turn, mediates its
effect on the immune system via catecholamine produc-
tion. Both primary and secondary lymphoid organs are in-
nervated by the sympathetic nervous system [128, 129].
Lymphocytes primarily express the β2 adrenergic recep-
tors while cells of the innate immune systems express α1,
α2 and β2 adrenergic receptors [129]. The effect of sym-
pathetic nervous system on the immune system is more
complex. In general, sympathetic activation is able to in-
hibit the development of a Th1 immune response [128].
Patients with RA have an imbalance of the autonomic ner-
vous system, with increased sympathetic and reduced para-
sympathetic activities [130]. However, peripheral mononu-
clear cells from patients with RA express lower levels of
β2 adrenergic receptors and, therefore, less effective in
suppressing T cell activation and proliferation via β2 ad-
renergic activation [131]. In contrary, catecholamines me-
diate their effects through α1 adrenergic receptors on the
peripheral mononuclear cells [132], leading to increased
production of IL-6 [133]. In addition, α2 stimulation pro-
motes the proliferation of fibroblast-like synoviocytes in
patients with RA and subsequent production of pro-
inflammatory cytokines [134]. At present, modulations of
the sympathetic nervous system yield inconsistent effects
in animal arthritis models, and none of them has been eval-
uated in clinical development programme.

Long-term remission strategies and immune
homeostasis

Dendritic cell therapeutics

Dendritic cells (DCs) play a key role in both the innate and
adaptive immunity. In the periphery, DCs exist as immature
cells and undergo differentiation after exposure to pro-
inflammatory cytokines, immune complexes or pathogens
and endogenous inflammatory factors that are recognized by
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the Toll-like receptors. Mature DCs then migrate to lymph
nodes and present antigens on the MHC molecules to the
naive T cells. Cytokines produced by the DCs also promote
the differentiation and maturation of T and B cells [135]. DCs
are important for maintaining intra-thymic and peripheral tol-
erance. Immature DCs recognize and phagocytose apoptotic
cells [136], rendering DCs tolerogenic as they produce immu-
nosuppressive cytokines and promote cross tolerance of the T
cells by inducing T cell anergy, clonal deletion or Treg and
suppressor T cell differentiation [137–139]. In normal circum-
stances, this process does not result in DC maturation.
However, failed clearance of apoptotic cells or exposure to
maturation signals may induce the production of immunogen-
ic DCs [140, 141].

In patients with RA, the synovial DCs are activated in
response to pro-inflammatory cytokines, with up-regulation
of MHC and co-stimulatory molecule expression [142, 143].
They also produce IL-12 and IL-23 to potentially promote the
differentiation of Th1 and Th17 cell [144]. Treatment with
TNFi not only ameliorates the clinical symptoms of RA but
also reduces the number of activated DCs and inhibits DC
maturation [145, 146]. These observations support the strate-
gy of targeting dendritic cells for the treatment of RA.

In CIAmodels, administration of low doses of semi-mature
DCs inhibits disease progression by enhancing Treg popula-
tions and suppresses antigen-specific Th1- and Th17-
mediated immunity [147]. Treatment of CIA mice with
tolerogenic DCs modified by tacrolimus significantly
inhibited the severity and progression of disease with the al-
teration of the proportion of the Th1 and Th17 in the spleen
[148]. Similar results have been confirmed by administration
of tolerogenic DCs generated by GM-CSF and IL-4 stimula-
tions [149]. These data provide a better understanding and
consolidate the role of tolerogenic DCs in the treatment of
RA [150, 151].

The first clinical study using tolerogenic DCs was carried
out in the University of Queensland. In this phase 1 study,
tolerogenic DCs were generated by treatment of monocyte-
derived DCs with an inhibitor of NFkB signalling. These
tolerogenic DCs are deficient for CD40 expression but ex-
press high levels of CD86 [152]. After priming with
citrullinated peptide antigens, the tolerogenic DCs were
injected intradermally to 18 patients with RA positive for
HLA-DR expression. The treatment was well tolerated with
no major adverse effects. The results of another phase 1 trial
were published recently. It is a randomized, unblinded, place-
bo-controlled, dose-escalation phase I study. The tolerogenic
DCs were generated by pharmacological modulation of
monocyte-derived DCs from patients with dexamethasone
and vitamin D3, together with a Toll-like receptor-4 agonist.
The tolerogenic DCs express high levels of MHC class II
molecules and intermediate levels of co-stimulatory mole-
cules CD80 and CD86 and produce high levels of IL-10 and

TGF-β [150]. Instead of intradermal injection, 13 patients
received three different doses of tolerogenic DCs through
intra-articular injection under arthroscopic guidance. The pri-
mary objective was to assess the safety of intra-articular injec-
tion of tolerogenic DCs in patients with RA. No patient de-
veloped an exacerbation of arthritis in the target knee within
5 days of treatment. At day 14, arthroscopic synovitis was
present in all participants except for one who received
10 × 106 tolerogenic DCs. Two patients receiving 3 × 106

tolerogenic DCs and one patient receiving 10 × 106

tolerogenic DCs demonstrated improvement in vascularity
on day 14, whereas no improvement was seen in six patients
receiving 1 × 106 tolerogenic DCs or placebo. Synovitis im-
proved in one of three patients in each of the 1 × 106 and
3 × 106 tolerogenic DC cohorts and in both assessable patients
in the 10 × 106 tolerogenic DC cohorts. There were no trends
in DAS28 or HAQ score or consistent immunomodulatory
effects in peripheral blood [153].

Although tolerogenic DC therapy demonstrates promising
results in patients with RA, there are some important issues to
be tackled for further clinical evaluation. Administration of
tolerogenic DC therapy in patients with established autoim-
munity may be less efficacious, and therefore, it should per-
haps ideally be given to the patient with RA as early as pos-
sible. However, the timing of the treatment is still controver-
sial as potentially elevation of regulatory pathways may suf-
fice. Secondly, the selection of auto-antigens for the genera-
tion of tolerogenic DCs may be critical for the efficacy of
tolerogenic DC therapy in patients with RA. However, these
auto-antigens are not always detected and little is known about
the immunodominant profile of these auto-antigens in associ-
ation with RA pathogenesis and disease progression. Besides,
careful consideration should be given to the dose of
tolerogenic DCs administered because a high dose of
tolerogenic DCs may be potentially immunogenic
[154–156]. At present, there is no reliable biomarker of toler-
ance induction that can be measured after administration of
tolerogenic DC therapy. Therefore, further studies are neces-
sary for the development of this immunotherapy.

Conclusion

Recent advances in the understanding of the pathophysiology
of RA facilitate the development of new therapeutic agents.
Inhibition of the JAK pathway has already been used in clin-
ical practice, and more selective JAK inhibitors are expected
to be available in the near future. The therapeutic potential of
BTK inhibitors is being evaluated in phase II studies. As a
result, it is expected that over time we will see a balance of
therapeutic interventions between biologic and small mole-
cule targeted synthetic DMARDs.
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