50 research outputs found

    A functional role of Facebook : psychological and social needs.

    Get PDF
    Two studies were conducted to investigate motivations to use Facebook. In Study 1, data from 87 participants were used to determine which psychological (e.g., competence, autonomy, and relatedness) and social (e.g., achievement, affiliation, intimacy, and power) needs predict concrete, observable Facebook behaviors. The data supported the hypothesis that psychological and social needs will predict Facebook behaviors. The need for competence positively predicts hours per week spent on Facebook and the number of personal websites on Facebook. The need for autonomy positively predicts the number of friends and number of photo albums on Facebook. The need for relatedness negatively predicts the number of friends on Facebook. The need for achievement negatively predicts the number of About Me words on Facebook. The need for affiliation negatively predicts the number of photo albums on Facebook. In Study 2, data from 14 participants were used to determine the effect of social exclusion on response time to login to Facebook. The data supported the hypothesis that socially excluded individuals will log into Facebook faster than non-socially excluded individuals. For the socially excluded, Facebook can function to reduce social pain. These results suggest that one function of Facebook is to maintain balance in life between psychological needs, social needs, and social interactions

    Covert observation in practice: lessons from the evaluation of the prohibition of smoking in public places in Scotland

    Get PDF
    Background: A ban on smoking in wholly or substantially enclosed public places has been in place in Scotland since 26th March 2006. The impact of this legislation is currently being evaluated in seven studies, three of which involve direct observation of smoking in bars and other enclosed public places. While the ethical issues around covert observation have been widely discussed there is little practical guidance on the conduct of such research. A workshop was therefore convened to identify practical lessons learned so far from the Scottish evaluation. Methods: We convened a workshop involving researchers from the three studies which used direct observation. In addition, one of the fieldwork managers collected written feedback on the fieldwork, identifying problems that arose in the field and some solutions. Results: There were four main themes identified: (i) the difficulty of achieving and maintaining concealment; (ii) the experience of being an observer; (iii) the risk of bias in the observations and (iv) issues around training and recruitment. These are discussed. Conclusion: Collecting covert observational data poses unique practical challenges, in particular in relation to the health and safety of the researcher. The findings and solutions presented in this paper will be of value to researchers designing similar studies

    Mathematical Model of a Cell Size Checkpoint

    Get PDF
    How cells regulate their size from one generation to the next has remained an enigma for decades. Recently, a molecular mechanism that links cell size and cell cycle was proposed in fission yeast. This mechanism involves changes in the spatial cellular distribution of two proteins, Pom1 and Cdr2, as the cell grows. Pom1 inhibits Cdr2 while Cdr2 promotes the G2 β†’ M transition. Cdr2 is localized in the middle cell region (midcell) whereas the concentration of Pom1 is highest at the cell tips and declines towards the midcell. In short cells, Pom1 efficiently inhibits Cdr2. However, as cells grow, the Pom1 concentration at midcell decreases such that Cdr2 becomes activated at some critical size. In this study, the chemistry of Pom1 and Cdr2 was modeled using a deterministic reaction-diffusion-convection system interacting with a deterministic model describing microtubule dynamics. Simulations mimicked experimental data from wild-type (WT) fission yeast growing at normal and reduced rates; they also mimicked the behavior of a Pom1 overexpression mutant and WT yeast exposed to a microtubule depolymerizing drug. A mechanism linking cell size and cell cycle, involving the downstream action of Cdr2 on Wee1 phosphorylation, is proposed

    Tension and Robustness in Multitasking Cellular Networks

    Get PDF
    Cellular networks multitask by exhibiting distinct, context-dependent dynamics. However, network states (parameters) that generate a particular dynamic are often sub-optimal for others, defining a source of β€œtension” between them. Though multitasking is pervasive, it is not clear where tension arises, what consequences it has, and how it is resolved. We developed a generic computational framework to examine the source and consequences of tension between pairs of dynamics exhibited by the well-studied RB-E2F switch regulating cell cycle entry. We found that tension arose from task-dependent shifts in parameters associated with network modules. Although parameter sets common to distinct dynamics did exist, tension reduced both their accessibility and resilience to perturbation, indicating a trade-off between β€œone-size-fits-all” solutions and robustness. With high tension, robustness can be preserved by dynamic shifting of modules, enabling the network to toggle between tasks, and by increasing network complexity, in this case by gene duplication. We propose that tension is a general constraint on the architecture and operation of multitasking biological networks. To this end, our work provides a framework to quantify the extent of tension between any network dynamics and how it affects network robustness. Such analysis would suggest new ways to interfere with network elements to elucidate the design principles of cellular networks

    Regulation of signal duration and the statistical dynamics of kinase activation by scaffold proteins

    Get PDF
    Scaffolding proteins that direct the assembly of multiple kinases into a spatially localized signaling complex are often essential for the maintenance of an appropriate biological response. Although scaffolds are widely believed to have dramatic effects on the dynamics of signal propagation, the mechanisms that underlie these consequences are not well understood. Here, Monte Carlo simulations of a model kinase cascade are used to investigate how the temporal characteristics of signaling cascades can be influenced by the presence of scaffold proteins. Specifically, we examine the effects of spatially localizing kinase components on a scaffold on signaling dynamics. The simulations indicate that a major effect that scaffolds exert on the dynamics of cell signaling is to control how the activation of protein kinases is distributed over time. Scaffolds can influence the timing of kinase activation by allowing for kinases to become activated over a broad range of times, thus allowing for signaling at both early and late times. Scaffold concentrations that result in optimal signal amplitude also result in the broadest distributions of times over which kinases are activated. These calculations provide insights into one mechanism that describes how the duration of a signal can potentially be regulated in a scaffold mediated protein kinase cascade. Our results illustrate another complexity in the broad array of control properties that emerge from the physical effects of spatially localizing components of kinase cascades on scaffold proteins.Comment: 12 pages, 6 figure

    Justify your alpha

    Get PDF
    Benjamin et al. proposed changing the conventional β€œstatistical significance” threshold (i.e.,the alpha level) from p ≀ .05 to p ≀ .005 for all novel claims with relatively low prior odds. They provided two arguments for why lowering the significance threshold would β€œimmediately improve the reproducibility of scientific research.” First, a p-value near .05provides weak evidence for the alternative hypothesis. Second, under certain assumptions, an alpha of .05 leads to high false positive report probabilities (FPRP2 ; the probability that a significant finding is a false positive

    A Comparison of Mathematical Models for Polarization of Single Eukaryotic Cells in Response to Guided Cues

    Get PDF
    Polarization, a primary step in the response of an individual eukaryotic cell to a spatial stimulus, has attracted numerous theoretical treatments complementing experimental studies in a variety of cell types. While the phenomenon itself is universal, details differ across cell types, and across classes of models that have been proposed. Most models address how symmetry breaking leads to polarization, some in abstract settings, others based on specific biochemistry. Here, we compare polarization in response to a stimulus (e.g., a chemoattractant) in cells typically used in experiments (yeast, amoebae, leukocytes, keratocytes, fibroblasts, and neurons), and, in parallel, responses of several prototypical models to typical stimulation protocols. We find that the diversity of cell behaviors is reflected by a diversity of models, and that some, but not all models, can account for amplification of stimulus, maintenance of polarity, adaptation, sensitivity to new signals, and robustness

    Association of the OPRM1 Variant rs1799971 (A118G) with Non-Specific Liability to Substance Dependence in a Collaborative de novo Meta-Analysis of European-Ancestry Cohorts

    Get PDF
    Peer reviewe
    corecore