297 research outputs found

    ERBB4 confers metastatic capacity in Ewing sarcoma.

    Get PDF
    Metastatic spread is the single-most powerful predictor of poor outcome in Ewing sarcoma (ES). Therefore targeting pathways that drive metastasis has tremendous potential to reduce the burden of disease in ES. We previously showed that activation of the ERBB4 tyrosine kinase suppresses anoikis, or detachment-induced cell death, and induces chemoresistance in ES cell lines in vitro. We now show that ERBB4 is transcriptionally overexpressed in ES cell lines derived from chemoresistant or metastatic ES tumours. ERBB4 activates the PI3K-Akt cascade and focal adhesion kinase (FAK), and both pathways contribute to ERBB4-mediated activation of the Rac1 GTPase in vitro and in vivo. ERBB4 augments tumour invasion and metastasis in vivo, and these effects are blocked by ERBB4 knockdown. ERBB4 expression correlates significantly with reduced disease-free survival, and increased expression is observed in metastatic compared to primary patient-matched ES biopsies. Our findings identify a novel ERBB4-PI3K-Akt-FAK-Rac1 pathway associated with aggressive disease in ES. These results predict that therapeutic targeting of ERBB4, alone or in combination with cytotoxic agents, may suppress the metastatic phenotype in ES

    Nonlinear analysis of reinforced concrete hollow beam with GFRP bars and stirrups using finite element method under cyclic load

    Get PDF
    Insufficient knowledge on using fibre-reinforced polymer (FRP) materials in hollow members limits their application. Torsional load results in the less efficient hollow section that plays an important role in hollow members. This load is generated on the members by an external load. The torsional load in hollow members that are reinforced longitudinally with FRP has been discussed for years. However, research on high-strength concrete (HSC) reinforced with glass fibre-reinforced polymer (GFRP) is scarce. Therefore, in this study, the behaviour of hollow beam internally reinforced with GFRP bars under cyclic load is investigated. For this purpose, the HSC-reinforced concrete hollow beam with GFRP bars and hollow beam with normal reinforcement are considered and finite element model is developed and nonlinear dynamic analysis has been conducted by applying cyclic loads to the developed models. In addition, reinforced concrete (RC) solid beam with HSC material is tested experimentally in order to verify and validate the ability of finite element software to predict the result. The analysis results are investigated in terms of the hysteresis loop, stress and strain distribution in the beam and it is indicated that the performance of hollow beam reinforced with GFRP bars and stirrups has improved in comparison with HSC beam with GFRP bars and also HSC beam with normal steel reinforcement. Therefore, based on this research, it is recommended to implement GFRP bars and stirrup for strengthening the concrete members in the high humidity areas where use of normal steel is not feasible due to corrosion threat

    Measurement of the cross-section of high transverse momentum vector bosons reconstructed as single jets and studies of jet substructure in pp collisions at √s = 7 TeV with the ATLAS detector

    Get PDF
    This paper presents a measurement of the cross-section for high transverse momentum W and Z bosons produced in pp collisions and decaying to all-hadronic final states. The data used in the analysis were recorded by the ATLAS detector at the CERN Large Hadron Collider at a centre-of-mass energy of √s = 7 TeV;{\rm Te}{\rm V}andcorrespondtoanintegratedluminosityof and correspond to an integrated luminosity of 4.6\;{\rm f}{{{\rm b}}^{-1}}.ThemeasurementisperformedbyreconstructingtheboostedWorZbosonsinsinglejets.ThereconstructedjetmassisusedtoidentifytheWandZbosons,andajetsubstructuremethodbasedonenergyclusterinformationinthejetcentreofmassframeisusedtosuppressthelargemultijetbackground.ThecrosssectionforeventswithahadronicallydecayingWorZboson,withtransversemomentum. The measurement is performed by reconstructing the boosted W or Z bosons in single jets. The reconstructed jet mass is used to identify the W and Z bosons, and a jet substructure method based on energy cluster information in the jet centre-of-mass frame is used to suppress the large multi-jet background. The cross-section for events with a hadronically decaying W or Z boson, with transverse momentum {{p}_{{\rm T}}}\gt 320\;{\rm Ge}{\rm V}andpseudorapidity and pseudorapidity |\eta |\lt 1.9,ismeasuredtobe, is measured to be {{\sigma }_{W+Z}}=8.5\pm 1.7$ pb and is compared to next-to-leading-order calculations. The selected events are further used to study jet grooming techniques

    Search for direct pair production of the top squark in all-hadronic final states in proton-proton collisions at s√=8 TeV with the ATLAS detector

    Get PDF
    The results of a search for direct pair production of the scalar partner to the top quark using an integrated luminosity of 20.1fb−1 of proton–proton collision data at √s = 8 TeV recorded with the ATLAS detector at the LHC are reported. The top squark is assumed to decay via t˜→tχ˜01 or t˜→ bχ˜±1 →bW(∗)χ˜01 , where χ˜01 (χ˜±1 ) denotes the lightest neutralino (chargino) in supersymmetric models. The search targets a fully-hadronic final state in events with four or more jets and large missing transverse momentum. No significant excess over the Standard Model background prediction is observed, and exclusion limits are reported in terms of the top squark and neutralino masses and as a function of the branching fraction of t˜ → tχ˜01 . For a branching fraction of 100%, top squark masses in the range 270–645 GeV are excluded for χ˜01 masses below 30 GeV. For a branching fraction of 50% to either t˜ → tχ˜01 or t˜ → bχ˜±1 , and assuming the χ˜±1 mass to be twice the χ˜01 mass, top squark masses in the range 250–550 GeV are excluded for χ˜01 masses below 60 GeV

    Synthesis of iron-doped TiO2 nanoparticles by ball-milling process : the influence of process parameters on the structural, optical, magnetic, and photocatalytic properties

    Get PDF
    Titanium dioxide (TiO2) absorbs only a small fraction of incoming sunlight in the visible region thus limiting its photocatalytic efficiency and concomitant photocatalytic ability. The large-scale application of TiO2 nanoparticles has been limited due to the need of using an ultraviolet excitation source to achieve high photocatalytic activity. The inclusion of foreign chemical elements in the TiO2 lattice can tune its band gap resulting in an absorption edge red-shifted to lower energies enhancing the photocatalytic performance in the visible region of the electromagnetic spectrum. In this research work, TiO2 nanoparticles were doped with iron powder in a planetary ball-milling system using stainless steel balls. The correlation between milling rotation speeds with structural and morphologic characteristics, optical and magnetic properties, and photocatalytic abilities of bare and Fedoped TiO2 powders was studied and discussed.This work was partially financed by FCT-Fundacao para a Ciencia e Tecnologia-under the project PTDC/FIS/120412/2010: "Nanobased concepts for Innovative & Eco-sustainable constructive material's surfaces.
    corecore