116 research outputs found

    A Multilaboratory Comparison of Calibration Accuracy and the Performance of External References in Analytical Ultracentrifugation

    Get PDF
    Analytical ultracentrifugation (AUC) is a first principles based method to determine absolute sedimentation coefficients and buoyant molar masses of macromolecules and their complexes, reporting on their size and shape in free solution. The purpose of this multi-laboratory study was to establish the precision and accuracy of basic data dimensions in AUC and validate previously proposed calibration techniques. Three kits of AUC cell assemblies containing radial and temperature calibration tools and a bovine serum albumin (BSA) reference sample were shared among 67 laboratories, generating 129 comprehensive data sets. These allowed for an assessment of many parameters of instrument performance, including accuracy of the reported scan time after the start of centrifugation, the accuracy of the temperature calibration, and the accuracy of the radial magnification. The range of sedimentation coefficients obtained for BSA monomer in different instruments and using different optical systems was from 3.655 S to 4.949 S, with a mean and standard deviation of (4.304 ± 0.188) S (4.4%). After the combined application of correction factors derived from the external calibration references for elapsed time, scan velocity, temperature, and radial magnification, the range of s-values was reduced 7-fold with a mean of 4.325 S and a 6-fold reduced standard deviation of ± 0.030 S (0.7%). In addition, the large data set provided an opportunity to determine the instrument-to-instrument variation of the absolute radial positions reported in the scan files, the precision of photometric or refractometric signal magnitudes, and the precision of the calculated apparent molar mass of BSA monomer and the fraction of BSA dimers. These results highlight the necessity and effectiveness of independent calibration of basic AUC data dimensions for reliable quantitative studies

    A multilaboratory comparison of calibration accuracy and the performance of external references in analytical ultracentrifugation.

    Get PDF
    Analytical ultracentrifugation (AUC) is a first principles based method to determine absolute sedimentation coefficients and buoyant molar masses of macromolecules and their complexes, reporting on their size and shape in free solution. The purpose of this multi-laboratory study was to establish the precision and accuracy of basic data dimensions in AUC and validate previously proposed calibration techniques. Three kits of AUC cell assemblies containing radial and temperature calibration tools and a bovine serum albumin (BSA) reference sample were shared among 67 laboratories, generating 129 comprehensive data sets. These allowed for an assessment of many parameters of instrument performance, including accuracy of the reported scan time after the start of centrifugation, the accuracy of the temperature calibration, and the accuracy of the radial magnification. The range of sedimentation coefficients obtained for BSA monomer in different instruments and using different optical systems was from 3.655 S to 4.949 S, with a mean and standard deviation of (4.304 ± 0.188) S (4.4%). After the combined application of correction factors derived from the external calibration references for elapsed time, scan velocity, temperature, and radial magnification, the range of s-values was reduced 7-fold with a mean of 4.325 S and a 6-fold reduced standard deviation of ± 0.030 S (0.7%). In addition, the large data set provided an opportunity to determine the instrument-to-instrument variation of the absolute radial positions reported in the scan files, the precision of photometric or refractometric signal magnitudes, and the precision of the calculated apparent molar mass of BSA monomer and the fraction of BSA dimers. These results highlight the necessity and effectiveness of independent calibration of basic AUC data dimensions for reliable quantitative studies

    The HERMES Spectrometer

    Get PDF
    The HERMES experiment is collecting data on inclusive and semi-inclusive deep inelastic scattering of polarised positrons from polarised targets of Il, D, and He-3. These data give information on the spin structure of the nucleon. This paper describes the forward angle spectrometer built for this purpose. The spectrometer includes numerous tracking chambers (micro-strip gas chambers, drift and proportional chambers) in front of and behind a 1.3 T.m magnetic field, as well as an extensive set of detectors for particle identification (a lead-glass calorimeter, a pre-shower detector, a transition radiation detector, and a threshold Cherenkov detector). Two of the main features of the spectrometer are its good acceptance and identification of both positrons and hadrons, in particular pions. These characteristics, together with the purity of the targets, are allowing HERMES to make unique contributions to the understanding of how the spins of the quarks contribute to the spin of the nucleon. (C) 1998 Elsevier Science B.V. All rights reserved

    Purine Nucleoside Phosphorylase Targeted by Annexin V to Breast Cancer Vasculature for Enzyme Prodrug Therapy

    Get PDF
    Conceived and designed the experiments: JJK OD RGH. Performed the experiments: JJK OD. Analyzed the data: JJK OD RGH. Wrote the paper: JJK OD RGH.Background and PurposeThe targeting of therapeutics is a promising approach for the development of new cancer treatments that seek to reduce the devastating side effects caused by the systemic administration of current drugs. This study evaluates a fusion protein developed as an enzyme prodrug therapy targeted to the tumor vasculature. Cytotoxicity would be localized to the site of the tumor using a protein fusion of purine nucleoside phosphorylase (PNP) and annexin V. Annexin V acts as the tumor-targeting component of the fusion protein as it has been shown to bind to phosphatidylserine expressed externally on cancer cells and the endothelial cells of the tumor vasculature, but not normal vascular endothelial cells. The enzymatic component of the fusion, PNP, converts the FDA-approved cancer therapeutic, fludarabine, into a more cytotoxic form. The purpose of this study is to determine if this system has a good potential as a targeted therapy for breast cancer.MethodsA fusion of E. coli purine nucleoside phosphorylase and human annexin V was produced in E. coli and purified. Using human breast cancer cell lines MCF-7 and MDA-MB-231 and non-confluent human endothelial cells grown in vitro, the binding strength of the fusion protein and the cytotoxicity of the enzyme prodrug system were determined. Endothelial cells that are not confluent expose phosphatidylserine and therefore mimic the tumor vasculature.ResultsThe purified recombinant fusion protein had good enzymatic activity and strong binding to the three cell lines. There was significant cell killing (p<0.001) by the enzyme prodrug treatment for all three cell lines, with greater than 80% cytotoxicity obtained after 6 days of treatment.ConclusionThese results suggest that this treatment could be useful as a targeted therapy for breast cancer.Yeshttp://www.plosone.org/static/editorial#pee

    Herophilus and Erasistratus on the hēgemonikon

    Get PDF
    This is the author accepted manuscript. The final version is available from Cambridge University Press via the DOI in this record.In Alexandria at some point in the early third century bc, Herophilus of Chalcedon identified the nerves as a distinct system within the body, traced their origins to the brain, and recognised their role in transmitting sensation and voluntary motion. His discovery was based on dissection and vivisection, not only of animals, but also of human beings. Herophilus’ younger contemporary Erasistratus also integrated these findings into his rather bolder physiology. The implications of this discovery were of course wide-ranging. From a modern perspective, it is now widely celebrated as having established, for the first time on something like a scientific basis, that the brain has more or less the functions that we now ascribe to it. Likewise, in antiquity, Galen relied heavily on Herophilus’ discovery in his proof that the rational soul is located in the brain. As we shall see, it also had an impact on Stoic psychology. What exactly Herophilus and Erasistratus saw as its implications, however, is a different question, and the difficulties in answering it are considerable given the state of the evidence

    Ceramide modulates HERG potassium channel gating by translocation into lipid rafts

    No full text
    Human ether-à-go-go-related gene (HERG) potassium channels play an important role in cardiac action potential repolarization, and HERG dysfunction can cause cardiac arrhythmias. However, recent evidence suggests a role for HERG in the proliferation and progression of multiple types of cancers, making it an attractive target for cancer therapy. Ceramide is an important second messenger of the sphingolipid family, which due to its proapoptotic properties has shown promising results in animal models as an anticancer agent. Yet the acute effects of ceramide on HERG potassium channels are not known. In the present study we examined the effects of cell-permeable C6-ceramide on HERG potassium channels stably expressed in HEK-293 cells. C6-ceramide (10 μM) reversibly inhibited HERG channel current (IHERG) by 36 ± 5%. Kinetically, ceramide induced a significant hyperpolarizing shift in the current-voltage relationship (ΔV1/2 = −8 ± 0.5 mV) and increased the deactivation rate (43 ± 3% for τfast and 51 ± 3% for τslow). Mechanistically, ceramide recruited HERG channels within caveolin-enriched lipid rafts. Cholesterol depletion and repletion experiments and mathematical modeling studies confirmed that inhibition and gating effects are mediated by separate mechanisms. The ceramide-induced hyperpolarizing gating shift (raft mediated) could offset the impact of inhibition (raft independent) during cardiac action potential repolarization, so together they may nullify any negative impact on cardiac rhythm. Our results provide new insights into the effects of C6-ceramide on HERG channels and suggest that C6-ceramide can be a promising therapeutic for cancers that overexpress HERG

    Insights from studying statistical learning

    Get PDF
    Acquiring language is notoriously complex, yet for the majority of children this feat is accomplished with remarkable ease. Usage-based accounts of language acquisition suggest that this success can be largely attributed to the wealth of experience with language that children accumulate over the course of language acquisition. One field of research that is heavily underpinned by this principle of experience is statistical learning, which posits that learners can perform powerful computations over the distribution of information in a given input, which can help them to discern precisely how that input is structured, and how it operates. A growing body of work brings this notion to bear in the field of language acquisition, due to a developing understanding of the richness of the statistical information contained in speech. In this chapter we discuss the role that statistical learning plays in language acquisition, emphasising the importance of both the distribution of information within language, and the situation in which language is being learnt. First, we address the types of statistical learning that apply to a range of language learning tasks, asking whether the statistical processes purported to support language learning are the same or distinct across different tasks in language acquisition. Second, we expand the perspective on what counts as environmental input, by determining how statistical learning operates over the situated learning environment, and not just sequences of sounds in utterances. Finally, we address the role of variability in children’s input, and examine how statistical learning can accommodate (and perhaps even exploit) this during language acquisition. © 2020 John Benjamins Publishing Compan
    corecore