49 research outputs found

    Dynamique d'écoulement et pellétisation dans un granulateur à rotor

    Get PDF
    Cette thĂšse propose diffĂ©rentes approches permettant de quantifier l’évolution de la dynamique d’écoulement particulaire dans un procĂ©dĂ© de granulation et Ă©valuer son impact sur celui-ci. Plusieurs types d’équipement permettent d’effectuer la granulation. Pour ce travail, un granulateur Ă  rotor a Ă©tĂ© sĂ©lectionnĂ© puisqu’il permet de produire un Ă©coulement de particules relativement simple Ă  caractĂ©riser. Le choix de ce granulateur a aussi Ă©tĂ© basĂ© sur le fait qu’il a Ă©tĂ© trĂšs peu Ă©tudiĂ© par rapport aux mĂ©langeurs Ă  cisaillement Ă©levĂ© ou les lits fluidisĂ©s. Le sujet de cette thĂšse est approchĂ© selon trois angles diffĂ©rents : ‱ La caractĂ©risation et la quantification des patrons d’écoulement et de sĂ©grĂ©gation particulaire dans un sphĂ©roniseur modifiĂ© (granulateur Ă  rotor); ‱ Le dĂ©veloppement d’une mĂ©thode originale qui permet de contrĂŽler l’intensitĂ© des forces interparticulaires dans un Ă©coulement de particules Ă  l’intĂ©rieur d’un sphĂ©roniseur modifiĂ©; ‱ Le dĂ©veloppement d’un modĂšle multi-Ă©chelle prenant en compte le mouvement des particules afin de prĂ©dire la distribution de taille granulaire dans un procĂ©dĂ© de granulation Ă  rotor. Dans un premier temps, l’étude d’un Ă©coulement dense d’un mĂ©lange de particules de 2 et 4 mm dans un sphĂ©roniseur est effectuĂ©e. Pour y arriver, l’emploi d’une mĂ©thode par Ă©lĂ©ments discrets (DEM), une mĂ©thode numĂ©rique basĂ©e sur la seconde loi de Newton, permet de caractĂ©riser le dĂ©placement des particules Ă  l’intĂ©rieur de l’équipement. Le mĂ©lange des particules est analysĂ© Ă  l’aide d’indices de mĂ©lange ayant Ă©tĂ© dĂ©veloppĂ©s par Doucet et al. (2008) afin de caractĂ©riser la sĂ©grĂ©gation se produisant dans le domaine de particules. Cette partie du travail permet de montrer que le niveau de remplissage ainsi que la vitesse du disque (rotor) ont un effet significatif sur le phĂ©nomĂšne de sĂ©grĂ©gation observĂ©. Pour des vitesses de disque variant entre 20 et 100 rad/s, le lit de particules prend la forme d’un tore oĂč deux zones distinctes de sĂ©grĂ©gation sont apparentes. Au fur et Ă  mesure que la vitesse du disque augmente, les petites particules ont tendance Ă  migrer de la zone localisĂ©e au centre du domaine toroĂŻdal vers la deuxiĂšme zone localisĂ©e Ă  la paroi du sphĂ©roniseur. Les coefficients de corrĂ©lation spatiale employĂ©s pour le calcul de l’indice de mĂ©lange corroborent cette migration des petites particules. De plus, l’importance de prendre en compte l’intensitĂ© du cisaillement pour expliquer ces patrons de sĂ©grĂ©gation est aussi exposĂ©e. Les deux zones de sĂ©grĂ©gation associĂ©es Ă  une concentration Ă©levĂ©e de petites particules correspondent Ă  l’emplacement oĂč les taux de cisaillement sont les plus faibles. D’un autre cĂŽtĂ©, une corrĂ©lation considĂ©rant le niveau de cisaillement est dĂ©veloppĂ©e afin de prĂ©dire le profil des vitesses azimutales des particules dans le sphĂ©roniseur. Cette corrĂ©lation permet d’amĂ©liorer sensiblement la prĂ©diction des profils de vitesses lorsque l’intensitĂ© du cisaillement est Ă©levĂ©e. La deuxiĂšme partie de cette thĂšse prĂ©sente le dĂ©veloppement d’une nouvelle approche qui permet de simplifier l’introduction et le contrĂŽle des forces interparticulaires de maniĂšre homogĂšne dans un lit de particules en mouvement. Cette approche utilise un copolymĂšre de PEA/PMMA qui, lorsqu’il est soumis Ă  une augmentation de tempĂ©rature au-dessus de sa tempĂ©rature de transition vitreuse, cause l’apparition de forces cohĂ©sives entre des particules qui en sont enrobĂ©es. La relation entre les forces interparticulaires induites par le copolymĂšre et l’écoulement des particules enrobĂ©es est Ă©tablie avec l’aide d’un appareil de mesure de surface, plus communĂ©ment appelĂ© surface force apparatus (SFA). Cet Ă©quipement met en Ă©vidence l’augmentation linĂ©aire des forces interparticulaires entre 10°C et 50°C. Les forces interparticulaires induites par cette nouvelle approche, comparĂ©es avec d’autres types de forces frĂ©quemment rencontrĂ©es dans les procĂ©dĂ©s de granulation, permet de mettre en valeur la large Ă©tendue d’intensitĂ© de cohĂ©sion pouvant ĂȘtre obtenues. Par la suite, l’écoulement de particules cohĂ©sives est Ă©tudiĂ© pour deux applications diffĂ©rentes. La premiĂšre application considĂšre un Ă©coulement dense de particules normalement observĂ© pendant la granulation humide Ă  l’intĂ©rieur d’un sphĂ©roniseur modifiĂ©. La deuxiĂšme application montre la possibilitĂ© de pouvoir reproduire l’écoulement des particules observĂ©es dans les lits fluidisĂ©s Ă  haute tempĂ©rature avec l’avantage de pouvoir les opĂ©rer prĂšs de la tempĂ©rature ambiante. La troisiĂšme partie de cette thĂšse utilise spĂ©cifiquement la mĂ©thode d’introduction des forces interparticulaires prĂ©cĂ©demment proposĂ©e afin de caractĂ©riser les Ă©coulements de particules cohĂ©sives dans un sphĂ©roniseur modifiĂ©. En contrĂŽlant le niveau d’intensitĂ© des forces interparticulaires, quatre diffĂ©rents Ă©tats d’écoulement sont obtenus. Le premier Ă©tat est caractĂ©risĂ© par un Ă©coulement libre des particules, lequel est observĂ© prĂšs de la tempĂ©rature ambiante. Le deuxiĂšme Ă©tat est associĂ© Ă  l’apparition d’agglomĂ©rats Ă  la surface du lit de particules, lesquels augmentent de taille Ă  mesure que la tempĂ©rature est haussĂ©e. Le troisiĂšme Ă©tat fait rĂ©fĂ©rence Ă  la formation d’une seconde couche de particules agglomĂ©rĂ©es dont le volume change de maniĂšre pĂ©riodique en fonction du temps. Le quatriĂšme Ă©tat est caractĂ©risĂ© par un Ă©coulement en masse produit par l’agglomĂ©ration quasiment complĂšte des particules. L’emploi d’un profileur laser permet de quantifier les diffĂ©rents Ă©tats d’écoulement en mesurant la forme du tore obtenu ainsi que la variabilitĂ© de la position du profil de la surface du lit de particules. À la suite des rĂ©sultats obtenus, un diagramme des Ă©tats d’écoulement est construit. Ce diagramme montre le potentiel de cette approche pour imiter les Ă©coulements cohĂ©sifs propres aux procĂ©dĂ©s de granulation humide. En consĂ©quence, il est recommandĂ© que la granulation humide soit opĂ©rĂ©e dans des conditions permettant d’obtenir le deuxiĂšme Ă©tat d’écoulement dĂ©crit prĂ©cĂ©demment. Ceci est expliquĂ© par le fait que les forces interparticulaires permettent d’induire la formation d’agglomĂ©rats sans toutefois nuire au mĂ©lange granulaire qui est essentiel pour obtenir un produit homogĂšne. La quatriĂšme partie de cette thĂšse utilise un modĂšle multi-Ă©chelle qui fait intervenir un bilan de population rĂ©solu Ă  l’aide d’une mĂ©thode de Monte-Carlo commandĂ©e par Ă©vĂ©nement. Ce bilan de population est utilisĂ© pour simuler la granulation humide dans un sphĂ©roniseur modifiĂ©. Il prend en compte l’échelle particulaire en considĂ©rant trois mĂ©canismes de granulation qui sont le mouillage des particules, la coalescence et le bris. D’autre part, Ă  l’échelle du granulateur, l’intĂ©gration du mouvement granulaire est prise en compte Ă  l’aide d’une compartimentation du lit de particules. À l’aide d’une approche utilisant une chaĂźne de Markov Ă  temps continu, les mouvements de particules entre les zones peuvent alors ĂȘtre considĂ©rĂ©s. La construction des propriĂ©tĂ©s de la chaine de Markov, soient le temps de sĂ©jour dans les zones et la matrice indiquant la probabilitĂ© de transition des particules entre celles-ci, est effectuĂ©e grĂące aux rĂ©sultats ayant Ă©tĂ© obtenus Ă  l’aide de la DEM dans la premiĂšre partie de cette thĂšse. Une fois le modĂšle multi-Ă©chelle mis en place, celui-ci est comparĂ© Ă  un modĂšle utilisant un bilan de population qui ne tient pas compte du dĂ©placement des particules. Les rĂ©sultats de simulation obtenus sont comparĂ©s aux expĂ©riences de granulation afin de voir les amĂ©liorations obtenues avec le modĂšle multi-Ă©chelle. Il apparaĂźt que pour des conditions oĂč le taux de mouillage est modĂ©rĂ©, la considĂ©ration du mouvement des particules permet d’amĂ©liorer les rĂ©sultats de la modĂ©lisation. La distribution de taille des particules en fonction du temps correspond mieux Ă  la tendance observĂ©e expĂ©rimentalement qu’avec un bilan de population conventionnel. Par contre, pour un taux de mouillage Ă©levĂ©, le modĂšle multi-Ă©chelle et le bilan de population conventionnel donnent sensiblement les mĂȘmes rĂ©sultats. ---------- This thesis proposes different approaches to quantify particle flow dynamics effects for granulation processes. Different types of granulation equipment exist. The rotor granulator has been selected for the simplicity of its design which produces easy to characterize particle flow patterns. The rotor granulator has also several advantages of the high shear mixers and fluid bed granulators but it has not been extensively covered in the literature compared to these granulators. The particle flow dynamics in the rotor granulator is investigated following three different points of view: ‱ The characterization and quantification of the flow and segregation patterns in a modified spheronizer, which is similar to a rotor granulator; ‱ The development of a new approach to control the intensity of the interparticle forces within the particle flow inside a modified spheronizer; ‱ The development of a multiscale model which takes into account the motion of particles in order to predict the particle size distribution during granulation with a modified spheronizer. The first part of this thesis studies the dense granular flow of a 2 and 4 mm particle blend inside a spheronizer. The use of the discrete element method (DEM), a particulate model that can simulate the particle motion based on Newton’s second law of motion, allows characterizing the particle flow behavior inside the equipment. The particle mixedness state is assessed with the help of mixing indexes that have been developed by Doucet et al. (2008) in order to quantify the segregation occurring inside the particle bed. This study shows that the fill level and the disc rotational speed have a significant impact on the segregation phenomena observed. For a disc speed varying between 20 and 100 rad/s, the particle bed takes the form of a torus within which two distinct segregation zones are observed. As the disc speed increases, the small particles tend to migrate from a zone located at the center of the torus toward another zone which is observed near the spheronizer wall. This transfer of small particles is confirmed by the coefficients of correlation used by the mixing index, which relate the particle size and spatial coordinates. Moreover, the distribution of the shear rate in the particle domain explains the appearance of the segregation patterns. The two zones characterized by a high concentration of the smallest particles are correlated with the areas of the particle bed associated to a low shear rate. On the other hand, a correlation which considers the shear rate was developed to predict the azimuthal speed of the particles inside the spheronizer. This correlation improves the velocity profile predictions when the particle flow is characterized by high shear rate values. The second part of this thesis develops a new approach to incorporate and control interparticle forces homogeneously in the context of particle flow applications. This approach uses particles coated with a PEA/PMMA copolymer. When submitted to an increase of temperature above the copolymer glass transition state, the interparticle forces increase. A relationship between the interparticle forces created by the copolymer and the flow of coated particles is characterized with a surface force apparatus (SFA). This equipment shows that the cohesion forces increase linearly when the temperature in incremented from 10°C to 50°C. The interparticle forces obtained are in the same range as other common forces encountered frequently in granulation processes such as the capillary and the van der Waals forces. The flow behavior of the cohesive coated particles is applied to two different applications. The first application considers a dense particle flow normally encountered during a wet granulation with a modified spheronizer. The second application shows the possibility to mimic the particle flow behavior that would be obtained in high temperature fluidized beds but with the advantage of operating them near ambient conditions. The third part of this work uses the polymer coating approach proposed in the second part of the thesis to characterize the flow behavior of cohesive particles inside a modified spheronizer. By controlling the level of intensity of interparticle forces with the increase of temperature, four different flow states are observed. The first state is characterized by a free-flowing behavior of the particles, which is observed near ambient temperature. The second flow state is associated with the appearance of agglomerates at the surface of the torus of particles. These agglomerates increase in size as the temperature is incremented within this state. The third flow state refers to the appearance of a secondary layer formed by agglomerated particles the volume of which changes periodically with respect to time. The fourth state is characterized by a solid mass motion of the particle bed which is produced following the complete agglomeration of the particles. The use of a laser profiler helps to quantify the particle flow behavior observed for the different flow states by measuring the torus shape obtained and the variability associated with the surface profile position. These results help to construct a flow map representing the different flow behaviors observed. The flow map shows the potential use of the polymer coating approach to mimic the interparticle forces observed in wet granulation applications. Based on this flow map, it is shown that it is preferable to operate the wet granulation processes within the second flow state. This is explained by the fact that interparticle forces in this flow state induce the formation of agglomerates without preventing a good particle mixedness state that ensures the production of a uniform product. The fourth part of this thesis develops of a multiscale model based on an event-driven Monte-Carlo based population balance. It is used to simulate wet granulation in a modified spheronizer. The model takes into account the particle scale with three different granulation mechanisms, which are the wetting, the coalescence and the breakage of the particles. On the other hand, the granulator scale integrates the particle motion with a compartmental approach which divides the particle bed into different zones, each of which is associated with a granulation mechanism. The use of a continuous-time Markov chain allows representing the motion of the particles between the different zones. The properties of the Markov chain, which are the residence time in the different zones and the matrix containing the probabilities of transition between the zones, are built with the DEM simulation results of the particle flow in the spheronizer presented in the first article. Once the multiscale model is defined, it is compared to a conventional population balance that does not take into account particle motion. These two population balance models are then tested against granulation experiments with the modified spheronizer. The results show that for a low spray rate, the multiscale model improves results obtained with the conventional population balance without motion. On the other hand, the multiscale model and the conventional population balance give similar results when the spray rate is high. In this case, the granulation mechanisms overcome the effect of the particle flow pattern and the advantage of the proposed multiscale model is less apparent

    Fluidization Behavior in a Gas- Solid Fluidized Bed with Thermally Induced Inter-Particle Forces

    Get PDF
    In this work, a new approach for increasing and controlling inter-particle forces (IPFs) was applied. This method used a spherical inert particle coated with a polymer material having a low glass transition temperature. Since IPFs depend on the temperature of the coated particles, they can be easily controlled by the temperature of the inlet air. For this reason, the temperature of the system was varied uniformly near the glass transition temperature of the polymer, between 20 – 40oC, to investigate the effect of IPFs on fluidization behavior at low and high gas velocitie

    CryoSat Ice Baseline-D validation and evolutions

    Get PDF
    The ESA Earth Explorer CryoSat-2 was launched on 8 April 2010 to monitor the precise changes in the thickness of terrestrial ice sheets and marine floating ice. To do that, CryoSat orbits the planet at an altitude of around 720 km with a retrograde orbit inclination of 92∘ and a quasi repeat cycle of 369 d (30 d subcycle). To reach the mission goals, the CryoSat products have to meet the highest quality standards to date, achieved through continual improvements of the operational processing chains. The new CryoSat Ice Baseline-D, in operation since 27 May 2019, represents a major processor upgrade with respect to the previous Ice Baseline-C. Over land ice the new Baseline-D provides better results with respect to the previous baseline when comparing the data to a reference elevation model over the Austfonna ice cap region, improving the ascending and descending crossover statistics from 1.9 to 0.1 m. The improved processing of the star tracker measurements implemented in Baseline-D has led to a reduction in the standard deviation of the point-to-point comparison with the previous star tracker processing method implemented in Baseline-C from 3.8 to 3.7 m. Over sea ice, Baseline-D improves the quality of the retrieved heights inside and at the boundaries of the synthetic aperture radar interferometric (SARIn or SIN) acquisition mask, removing the negative freeboard pattern which is beneficial not only for freeboard retrieval but also for any application that exploits the phase information from SARIn Level 1B (L1B) products. In addition, scatter comparisons with the Beaufort Gyre Exploration Project (BGEP; https://www.whoi.edu/beaufortgyre, last access: October 2019) and Operation IceBridge (OIB; Kurtz et al., 2013) in situ measurements confirm the improvements in the Baseline-D freeboard product quality. Relative to OIB, the Baseline-D freeboard mean bias is reduced by about 8 cm, which roughly corresponds to a 60 % decrease with respect to Baseline-C. The BGEP data indicate a similar tendency with a mean draft bias lowered from 0.85 to −0.14 m. For the two in situ datasets, the root mean square deviation (RMSD) is also well reduced from 14 to 11 cm for OIB and by a factor of 2 for the BGEP. Observations over inland waters show a slight increase in the percentage of good observations in Baseline-D, generally around 5 %–10 % for most lakes. This paper provides an overview of the new Level 1 and Level 2 (L2) CryoSat Ice Baseline-D evolutions and related data quality assessment, based on results obtained from analyzing the 6-month Baseline-D test dataset released to CryoSat expert users prior to the final transfer to operations

    Triptycene-based organic molecules of intrinsic microporosity

    Get PDF
    Four Organic Molecules of Intrinsic Microporosity (OMIMs) were prepared by fusing triptycene-based components to a biphenyl core. Due to their rigid molecular structures that cannot pack space efficiently, these OMIMs form amorphous materials with significant microporosity as demonstrated by apparent BET surface areas in the range of 515–702 m2 g–1. Bulky cyclic 1â€Č,2â€Č,3â€Č,4â€Č-tetrahydro-1â€Č,1â€Č,4â€Č,4â€Č-tetramethylbenzo units placed on the triptycene termini are especially efficient at enhancing microporosity

    Measurement of the W-boson mass in pp collisions at √s=7 TeV with the ATLAS detector

    Get PDF
    A measurement of the mass of the W boson is presented based on proton–proton collision data recorded in 2011 at a centre-of-mass energy of 7 TeV with the ATLAS detector at the LHC, and corresponding to 4.6 fb−1 of integrated luminosity. The selected data sample consists of 7.8×106 candidates in the W→ΌΜ channel and 5.9×106 candidates in the W→eÎœ channel. The W-boson mass is obtained from template fits to the reconstructed distributions of the charged lepton transverse momentum and of the W boson transverse mass in the electron and muon decay channels, yielding mW=80370±7 (stat.)±11(exp. syst.) ±14(mod. syst.) MeV =80370±19MeV, where the first uncertainty is statistical, the second corresponds to the experimental systematic uncertainty, and the third to the physics-modelling systematic uncertainty. A measurement of the mass difference between the W+ and W−bosons yields mW+−mW−=−29±28 MeV

    Minimal information for studies of extracellular vesicles (MISEV2023): From basic to advanced approaches

    Get PDF
    Extracellular vesicles (EVs), through their complex cargo, can reflect the state of their cell of origin and change the functions and phenotypes of other cells. These features indicate strong biomarker and therapeutic potential and have generated broad interest, as evidenced by the steady year-on-year increase in the numbers of scientific publications about EVs. Important advances have been made in EV metrology and in understanding and applying EV biology. However, hurdles remain to realising the potential of EVs in domains ranging from basic biology to clinical applications due to challenges in EV nomenclature, separation from non-vesicular extracellular particles, characterisation and functional studies. To address the challenges and opportunities in this rapidly evolving field, the International Society for Extracellular Vesicles (ISEV) updates its 'Minimal Information for Studies of Extracellular Vesicles', which was first published in 2014 and then in 2018 as MISEV2014 and MISEV2018, respectively. The goal of the current document, MISEV2023, is to provide researchers with an updated snapshot of available approaches and their advantages and limitations for production, separation and characterisation of EVs from multiple sources, including cell culture, body fluids and solid tissues. In addition to presenting the latest state of the art in basic principles of EV research, this document also covers advanced techniques and approaches that are currently expanding the boundaries of the field. MISEV2023 also includes new sections on EV release and uptake and a brief discussion of in vivo approaches to study EVs. Compiling feedback from ISEV expert task forces and more than 1000 researchers, this document conveys the current state of EV research to facilitate robust scientific discoveries and move the field forward even more rapidly

    Measurement of jet fragmentation in Pb+Pb and pppp collisions at sNN=2.76\sqrt{{s_\mathrm{NN}}} = 2.76 TeV with the ATLAS detector at the LHC

    Get PDF

    Search for new phenomena in events containing a same-flavour opposite-sign dilepton pair, jets, and large missing transverse momentum in s=\sqrt{s}= 13 pppp collisions with the ATLAS detector

    Get PDF

    Measurements of top-quark pair differential cross-sections in the eÎŒe\mu channel in pppp collisions at s=13\sqrt{s} = 13 TeV using the ATLAS detector

    Get PDF

    Measurement of the W boson polarisation in ttˉt\bar{t} events from pp collisions at s\sqrt{s} = 8 TeV in the lepton + jets channel with ATLAS

    Get PDF
    corecore