34 research outputs found
Olfactory Behavioral Responses of Mosquito Vectors to Select Attractants and Floral Scents as Related to Circadian Rhythms and Photoperiod Regimes
This dissertation discusses mosquito behavioral activities involving circadian rhythms defined as insect sensitivity to select of chemical volatiles that vary throughout the 24-hour day. Circannual rhythms occur over seasons varying in photoperiod, defined as the seasonal cycle of light and darkness. These cycles can be endogenously controlled by circadian clocks. The impetus for this research was initiated when reading about the neglected temporal dimension in the context of insect chemical ecology, including insect olfaction. It was proposed that sensitivity to odors does not change in general, but specific sensitivities could vary according to time of day. Chemical scents emitted by host or conspecifics could change according to time of day or season. The serious omission of not including the temporal dimension in the correct timing of assays can lead to false or misleading results upon interpretation of data.
The two mosquito species that I studied were male and female Culex restuans and Aedes albopictus. These species were selected because they differ in both circadian rhythms and photoperiod. Aedes albopictus is diurnal and is active primarily in the summer. Culex restuans is crepuscular/nocturnal and is active primarily in the spring and fall. The inclusion of male mosquitoes has been considered an important first step in the study of male mosquito behavioral ecology, as there is a gender imbalance when researching and studying mosquitoes.
The measuring instruments utilized to conduct my entomology experiments were a flexible dual port olfactometer, and laboratory constructed photoperiodic light regimes. The four chemicals used to test olfactory mosquito responses were acetone, carbon dioxide, lactic acid, and octanol. The floral scents tested for Culex restuans included Clethra, Fennel, and Oregano Plants, and Mountain Mint. Aedes albopictus scents tested were Rose absolot, Lavendar Oil, Sweet Orange, and Cilantro and Mountain Mint (flowers and leaves).
The results of these entomology experiments revealed the following information: Although there were differences between species and between female and male mosquito response to select odorants, several female and male mosquitoes of both species did respond positively to specific host odors and floral scents. Neither males nor females of Aedes albopictus demonstrated significant preferences for either the host odors or the floral scents tested. However, Culex restuans females significantly preferred the host odors of carbon dioxide and lactic acid treatments to control filtered air. In contrast, Culex restuans males did not show a positive response to either chemical. Future research into the chemical ecology of male and female mosquitoes will be helpful in investigating these differences
Evaluation of Delivery Conditions for Cutaneous Plasmid Electrotransfer Using a Multielectrode Array
Electroporation (EP) is a simple in vivo method to deliver normally impermeable molecules, such as plasmid DNA, to a variety of tissues. Delivery of plasmid DNA by EP to a large surface area is not practical because the distance between the electrode pairs, and therefore the applied voltage, must be increased to effectively permeabilize the cell membrane. The design of the multielectrode array (MEA) incorporates multiple electrode pairs at a fixed distance to allow for delivery of plasmid DNA to the skin, potentially reducing the sensation associated with in vivo EP. In this report, we evaluate the effects of field strength and pulse width on transgene expression and duration using a plasmid encoding the luciferase reporter gene delivered by intradermal injection in a guinea pig model followed by EP with the MEA. As expected, the level of luciferase expression increased with the magnitude and duration of the voltage applied. In addition to adjusting transgene expression levels by altering fielding strength, levels could also be controlled by adjusting the plasmid dose. Our results indicate that the design of the MEA is a viable option for cutaneous plasmid DNA delivery by in vivo EP to a large surface area
Structure modeling hints at a granular organization of the Golgi ribbon
Funding Information: This work was funded by the Medical Research Council (grants MC_UU_12018/2 and MC_UU_00012/2 to D.F.C.) and by the British Heart Foundation (grant PG/14/76/31087 to D.F.C.). Publisher Copyright: © 2022, The Author(s).Background: In vertebrate cells, the Golgi functional subunits, mini-stacks, are linked into a tri-dimensional network. How this “ribbon” architecture relates to Golgi functions remains unclear. Are all connections between mini-stacks equal? Is the local structure of the ribbon of functional importance? These are difficult questions to address, without a quantifiable readout of the output of ribbon-embedded mini-stacks. Endothelial cells produce secretory granules, the Weibel-Palade bodies (WPB), whose von Willebrand Factor (VWF) cargo is central to hemostasis. The Golgi apparatus controls WPB size at both mini-stack and ribbon levels. Mini-stack dimensions delimit the size of VWF "boluses” whilst the ribbon architecture allows their linear co-packaging, thereby generating WPBs of different lengths. This Golgi/WPB size relationship suits mathematical analysis. Results: WPB lengths were quantized as multiples of the bolus size and mathematical modeling simulated the effects of different Golgi ribbon organizations on WPB size, to be compared with the ground truth of experimental data. An initial simple model, with the Golgi as a single long ribbon composed of linearly interlinked mini-stacks, was refined to a collection of mini-ribbons and then to a mixture of mini-stack dimers plus long ribbon segments. Complementing these models with cell culture experiments led to novel findings. Firstly, one-bolus sized WPBs are secreted faster than larger secretory granules. Secondly, microtubule depolymerization unlinks the Golgi into equal proportions of mini-stack monomers and dimers. Kinetics of binding/unbinding of mini-stack monomers underpinning the presence of stable dimers was then simulated. Assuming that stable mini-stack dimers and monomers persist within the ribbon resulted in a final model that predicts a “breathing” arrangement of the Golgi, where monomer and dimer mini-stacks within longer structures undergo continuous linking/unlinking, consistent with experimentally observed WPB size distributions. Conclusions: Hypothetical Golgi organizations were validated against a quantifiable secretory output. The best-fitting Golgi model, accounting for stable mini-stack dimers, is consistent with a highly dynamic ribbon structure, capable of rapid rearrangement. Our modeling exercise therefore predicts that at the fine-grained level the Golgi ribbon is more complex than generally thought. Future experiments will confirm whether such a ribbon organization is endothelial-specific or a general feature of vertebrate cells.publishersversionpublishe
Structure modeling hints at a granular organization of the Golgi ribbon
Background
In vertebrate cells, the Golgi functional subunits, mini-stacks, are linked into a tri-dimensional network. How this “ribbon” architecture relates to Golgi functions remains unclear. Are all connections between mini-stacks equal? Is the local structure of the ribbon of functional importance? These are difficult questions to address, without a quantifiable readout of the output of ribbon-embedded mini-stacks. Endothelial cells produce secretory granules, the Weibel-Palade bodies (WPB), whose von Willebrand Factor (VWF) cargo is central to hemostasis. The Golgi apparatus controls WPB size at both mini-stack and ribbon levels. Mini-stack dimensions delimit the size of VWF "boluses” whilst the ribbon architecture allows their linear co-packaging, thereby generating WPBs of different lengths. This Golgi/WPB size relationship suits mathematical analysis.
Results
WPB lengths were quantized as multiples of the bolus size and mathematical modeling simulated the effects of different Golgi ribbon organizations on WPB size, to be compared with the ground truth of experimental data. An initial simple model, with the Golgi as a single long ribbon composed of linearly interlinked mini-stacks, was refined to a collection of mini-ribbons and then to a mixture of mini-stack dimers plus long ribbon segments. Complementing these models with cell culture experiments led to novel findings. Firstly, one-bolus sized WPBs are secreted faster than larger secretory granules. Secondly, microtubule depolymerization unlinks the Golgi into equal proportions of mini-stack monomers and dimers. Kinetics of binding/unbinding of mini-stack monomers underpinning the presence of stable dimers was then simulated. Assuming that stable mini-stack dimers and monomers persist within the ribbon resulted in a final model that predicts a “breathing” arrangement of the Golgi, where monomer and dimer mini-stacks within longer structures undergo continuous linking/unlinking, consistent with experimentally observed WPB size distributions.
Conclusions
Hypothetical Golgi organizations were validated against a quantifiable secretory output. The best-fitting Golgi model, accounting for stable mini-stack dimers, is consistent with a highly dynamic ribbon structure, capable of rapid rearrangement. Our modeling exercise therefore predicts that at the fine-grained level the Golgi ribbon is more complex than generally thought. Future experiments will confirm whether such a ribbon organization is endothelial-specific or a general feature of vertebrate cells
Human CD34+/CD90+ ASCs Are Capable of Growing as Sphere Clusters, Producing High Levels of VEGF and Forming Capillaries
Background: Human adult adipose tissue is an abundant source of mesenchymal stem cells (MSCs). Moreover, it is an easily
accessible site producing a considerable amount of stem cells.
Methodology/Principal Findings: In this study, we have selected and characterized stem cells within the stromal vascular
fraction (SVF) of human adult adipose tissue with the aim of understanding their differentiation capabilities and
performance. We have found, within the SVF, different cell populations expressing MSC markers – including CD34, CD90,
CD29, CD44, CD105, and CD117 – and endothelial-progenitor-cell markers – including CD34, CD90, CD44, and CD54.
Interestingly, CD34+/CD90+ cells formed sphere clusters, when placed in non-adherent growth conditions. Moreover, they
showed a high proliferative capability, a telomerase activity that was significantly higher than that found in differentiated
cells, and contained a fraction of cells displaying the phenotype of a side population. When cultured in adipogenic medium,
CD34+/CD90+ quickly differentiated into adipocytes. In addition, they differentiated into endothelial cells (CD31+/VEGF+/Flk-
1+) and, when placed in methylcellulose, were capable of forming capillary-like structures producing a high level of VEGF, as
substantiated with ELISA tests.
Conclusions/Significance: Our results demonstrate, for the first time, that CD34+/CD90+ cells of human adipose tissue are
capable of forming sphere clusters, when grown in free-floating conditions, and differentiate in endothelial cells that form
capillary-like structures in methylcellulose. These cells might be suitable for tissue reconstruction in regenerative medicine,
especially when patients need treatments for vascular disease
A DNA Vaccine against Chikungunya Virus Is Protective in Mice and Induces Neutralizing Antibodies in Mice and Nonhuman Primates
Chikungunya virus (CHIKV) is an emerging mosquito-borne alphavirus indigenous to tropical Africa and Asia. Acute illness is characterized by fever, arthralgias, conjunctivitis, rash, and sometimes arthritis. Relatively little is known about the antigenic targets for immunity, and no licensed vaccines or therapeutics are currently available for the pathogen. While the Aedes aegypti mosquito is its primary vector, recent evidence suggests that other carriers can transmit CHIKV thus raising concerns about its spread outside of natural endemic areas to new countries including the U.S. and Europe. Considering the potential for pandemic spread, understanding the development of immunity is paramount to the development of effective counter measures against CHIKV. In this study, we isolated a new CHIKV virus from an acutely infected human patient and developed a defined viral challenge stock in mice that allowed us to study viral pathogenesis and develop a viral neutralization assay. We then constructed a synthetic DNA vaccine delivered by in vivo electroporation (EP) that expresses a component of the CHIKV envelope glycoprotein and used this model to evaluate its efficacy. Vaccination induced robust antigen-specific cellular and humoral immune responses, which individually were capable of providing protection against CHIKV challenge in mice. Furthermore, vaccine studies in rhesus macaques demonstrated induction of nAb responses, which mimicked those induced in convalescent human patient sera. These data suggest a protective role for nAb against CHIKV disease and support further study of envelope-based CHIKV DNA vaccines
Analysis of shared heritability in common disorders of the brain
ience, this issue p. eaap8757 Structured Abstract INTRODUCTION Brain disorders may exhibit shared symptoms and substantial epidemiological comorbidity, inciting debate about their etiologic overlap. However, detailed study of phenotypes with different ages of onset, severity, and presentation poses a considerable challenge. Recently developed heritability methods allow us to accurately measure correlation of genome-wide common variant risk between two phenotypes from pools of different individuals and assess how connected they, or at least their genetic risks, are on the genomic level. We used genome-wide association data for 265,218 patients and 784,643 control participants, as well as 17 phenotypes from a total of 1,191,588 individuals, to quantify the degree of overlap for genetic risk factors of 25 common brain disorders. RATIONALE Over the past century, the classification of brain disorders has evolved to reflect the medical and scientific communities' assessments of the presumed root causes of clinical phenomena such as behavioral change, loss of motor function, or alterations of consciousness. Directly observable phenomena (such as the presence of emboli, protein tangles, or unusual electrical activity patterns) generally define and separate neurological disorders from psychiatric disorders. Understanding the genetic underpinnings and categorical distinctions for brain disorders and related phenotypes may inform the search for their biological mechanisms. RESULTS Common variant risk for psychiatric disorders was shown to correlate significantly, especially among attention deficit hyperactivity disorder (ADHD), bipolar disorder, major depressive disorder (MDD), and schizophrenia. By contrast, neurological disorders appear more distinct from one another and from the psychiatric disorders, except for migraine, which was significantly correlated to ADHD, MDD, and Tourette syndrome. We demonstrate that, in the general population, the personality trait neuroticism is significantly correlated with almost every psychiatric disorder and migraine. We also identify significant genetic sharing between disorders and early life cognitive measures (e.g., years of education and college attainment) in the general population, demonstrating positive correlation with several psychiatric disorders (e.g., anorexia nervosa and bipolar disorder) and negative correlation with several neurological phenotypes (e.g., Alzheimer's disease and ischemic stroke), even though the latter are considered to result from specific processes that occur later in life. Extensive simulations were also performed to inform how statistical power, diagnostic misclassification, and phenotypic heterogeneity influence genetic correlations. CONCLUSION The high degree of genetic correlation among many of the psychiatric disorders adds further evidence that their current clinical boundaries do not reflect distinct underlying pathogenic processes, at least on the genetic level. This suggests a deeply interconnected nature for psychiatric disorders, in contrast to neurological disorders, and underscores the need to refine psychiatric diagnostics. Genetically informed analyses may provide important "scaffolding" to support such restructuring of psychiatric nosology, which likely requires incorporating many levels of information. By contrast, we find limited evidence for widespread common genetic risk sharing among neurological disorders or across neurological and psychiatric disorders. We show that both psychiatric and neurological disorders have robust correlations with cognitive and personality measures. Further study is needed to evaluate whether overlapping genetic contributions to psychiatric pathology may influence treatment choices. Ultimately, such developments may pave the way toward reduced heterogeneity and improved diagnosis and treatment of psychiatric disorders
Intradermal Delivery of Plasmids Encoding Angiogenic Growth Factors by Electroporation Promotes Wound Healing and Neovascularization
Gene therapy techniques delivering exogenous angiogenic growth factors, such as vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (FGF-2), are currently being investigated as potential treatments for ischemia resulting from a variety of conditions, such as peripheral artery disease (PAD) and chronic wounds. Despite these intense efforts, a viable clinical option to promote therapeutic neovascularization remains elusive. Electroporation is a simple in vivo method to deliver normally impermeable molecules, such as plasmid DNA, to a variety of tissues including skin and muscle. This study investigated intradermal injection of plasmids encoding angiogenic growth factors with electroporation as a novel therapeutic approach to increase perfusion in areas of ischemia. Two common animal models of ischemia were employed: a skin flap model, used to study wound healing, and a hindlimb ischemia model, used to investigate potential therapies for PAD. In the skin flap model, delivery of plasmid VEGF with electroporation significantly increased VEGF expression for 5 days after delivery compared to injection of the plasmid alone. While the increase in VEGF expression was short-term, it significantly increased expression of the downstream angiogenic growth factor endothelial nitric oxide synthase, as well as perfusion and healing in the distal area of the skin flap. To facilitate the translation of electroporation to the clinic, a novel electrode configuration was previously designed for cutaneous delivery of plasmids to a large surface area. The design of the Multielectrode Array allows for delivery to a large surface area without the need to increase the applied voltage. Conditions for plasmid delivery with this electrode were optimized and it was then utilized to deliver plasmid FGF-2 (pFGF) to the hindlimb ischemia model. FGF-2 expression, perfusion, and angiogenesis were assessed. FGF-2 expression was significantly higher for 10 days after treatment with pFGF with electroporation compared to injection of pFGF alone. This increase in FGF-2 expression induced a significant increase in perfusion and angiogenesis in the ischemic limb. The research presented here suggests intradermal injection of plasmids encoding angiogenic factors by electroporation is a novel potential therapeutic approach to increase perfusion to areas of ischemia and promote wound healing
Intradermal Delivery of Plasmids Encoding Angiogenic Growth Factors by Electroporation Promotes Wound Healing and Neovascularization
Gene therapy techniques delivering exogenous angiogenic growth factors, such as vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (FGF-2), are currently being investigated as potential treatments for ischemia resulting from a variety of conditions, such as peripheral artery disease (PAD) and chronic wounds. Despite these intense efforts, a viable clinical option to promote therapeutic neovascularization remains elusive. Electroporation is a simple in vivo method to deliver normally impermeable molecules, such as plasmid DNA, to a variety of tissues including skin and muscle. This study investigated intradermal injection of plasmids encoding angiogenic growth factors with electroporation as a novel therapeutic approach to increase perfusion in areas of ischemia. Two common animal models of ischemia were employed: a skin flap model, used to study wound healing, and a hindlimb ischemia model, used to investigate potential therapies for PAD. In the skin flap model, delivery of plasmid VEGF with electroporation significantly increased VEGF expression for 5 days after delivery compared to injection of the plasmid alone. While the increase in VEGF expression was short-term, it significantly increased expression of the downstream angiogenic growth factor endothelial nitric oxide synthase, as well as perfusion and healing in the distal area of the skin flap. To facilitate the translation of electroporation to the clinic, a novel electrode configuration was previously designed for cutaneous delivery of plasmids to a large surface area. The design of the Multielectrode Array allows for delivery to a large surface area without the need to increase the applied voltage. Conditions for plasmid delivery with this electrode were optimized and it was then utilized to deliver plasmid FGF-2 (pFGF) to the hindlimb ischemia model. FGF-2 expression, perfusion, and angiogenesis were assessed. FGF-2 expression was significantly higher for 10 days after treatment with pFGF with electroporation compared to injection of pFGF alone. This increase in FGF-2 expression induced a significant increase in perfusion and angiogenesis in the ischemic limb. The research presented here suggests intradermal injection of plasmids encoding angiogenic factors by electroporation is a novel potential therapeutic approach to increase perfusion to areas of ischemia and promote wound healing