67 research outputs found

    Regulatory T Cells in γ Irradiation-Induced Immune Suppression

    Get PDF
    Sublethal total body γ irradiation (TBI) of mammals causes generalized immunosuppression, in part by induction of lymphocyte apoptosis. Here, we provide evidence that a part of this immune suppression may be attributable to dysfunction of immune regulation. We investigated the effects of sublethal TBI on T cell memory responses to gain insight into the potential for loss of vaccine immunity following such exposure. We show that in mice primed to an MHC class I alloantigen, the accelerated graft rejection T memory response is specifically lost several weeks following TBI, whereas identically treated naïve mice at the same time point had completely recovered normal rejection kinetics. Depletion in vivo with anti-CD4 or anti-CD25 showed that the mechanism involved cells consistent with a regulatory T cell (T reg) phenotype. The loss of the T memory response following TBI was associated with a relative increase of CD4+CD25+ Foxp3+ expressing T regs, as compared to the CD8+ T effector cells requisite for skin graft rejection. The radiation-induced T memory suppression was shown to be antigen-specific in that a third party ipsilateral graft rejected with normal kinetics. Remarkably, following the eventual rejection of the first MHC class I disparate skin graft, the suppressive environment was maintained, with markedly prolonged survival of a second identical allograft. These findings have potential importance as regards the immunologic status of T memory responses in victims of ionizing radiation exposure and apoptosis-inducing therapies

    The Role of Oestrogen Receptor Beta (ERβ) in the Aetiology and Treatment of Type 2 Diabetes Mellitus

    Get PDF
    Introduction: Challenges facing the treatment of type 2 diabetes necessitate the search for agents which act via alternative pathways to provide better therapeutic outcomes. Recently, an increasing body of evidence implicates the activation of oestrogen receptors (ERα and ERβ) in the development and treatment of underlying conditions in type 2 diabetes. This article summarizes available evidence for the involvement of oestrogen receptors in insulin secretion, insulin resistance as well as glucose uptake and highlights the potential of ERβ as a therapeutic target. Background: Recent studies indicate an association between the activation of each of the isoforms of ER and recent findings indicate that ERβ shows promise as a potential target for antidiabetic drugs. In vitro and in vivo studies in receptor knockout mice indicate beneficial actions of selective agonists of ERβ receptor and underscore its therapeutic potential. Conclusion: Studies are needed to further elucidate the exact mechanism underlying the role of ERβ activation as a therapeutic approach in the management of type 2 diabetes

    The Role of Human Movement in the Transmission of Vector-Borne Pathogens

    Get PDF
    Vector-borne diseases constitute a largely neglected and enormous burden on public health in many resource-challenged environments, demanding efficient control strategies that could be developed through improved understanding of pathogen transmission. Human movement—which determines exposure to vectors—is a key behavioral component of vector-borne disease epidemiology that is poorly understood. We develop a conceptual framework to organize past studies by the scale of movement and then examine movements at fine-scale—i.e., people going through their regular, daily routine—that determine exposure to insect vectors for their role in the dynamics of pathogen transmission. We develop a model to quantify risk of vector contact across locations people visit, with emphasis on mosquito-borne dengue virus in the Amazonian city of Iquitos, Peru. An example scenario illustrates how movement generates variation in exposure risk across individuals, how transmission rates within sites can be increased, and that risk within sites is not solely determined by vector density, as is commonly assumed. Our analysis illustrates the importance of human movement for pathogen transmission, yet little is known—especially for populations most at risk to vector-borne diseases (e.g., dengue, leishmaniasis, etc.). We outline several important considerations for designing epidemiological studies to encourage investigation of individual human movement, based on experience studying dengue

    Ybp2 Associates with the Central Kinetochore of Saccharomyces cerevisiae and Mediates Proper Mitotic Progression

    Get PDF
    The spindle checkpoint ensures the accurate segregation of chromosomes by monitoring the status of kinetochore attachment to microtubules. Simultaneous mutations in one of several kinetochore and cohesion genes and a spindle checkpoint gene cause a synthetic-lethal or synthetic-sick phenotype. A synthetic genetic array (SGA) analysis using a mad2Δ query mutant strain of yeast identified YBP2, a gene whose product shares sequence similarity with the product of YBP1, which is required for H2O2-induced oxidation of the transcription factor Yap1. ybp2Δ was sensitive to benomyl and accumulated at the mitotic stage of the cell cycle. Ybp2 physically associates with proteins of the COMA complex (Ctf19, Okp1, Mcm21, and Ame1) and 3 components of the Ndc80 complex (Ndc80, Nuf2, and Spc25 but not Spc24) in the central kinetochore and with Cse4 (the centromeric histone and CENP-A homolog). Chromatin-immunoprecipitation analyses revealed that Ybp2 associates specifically with CEN DNA. Furthermore, ybp2Δ showed synthetic-sick interactions with mutants of the genes that encode the COMA complex components. Ybp2 seems to be part of a macromolecular kinetochore complex and appears to contribute to the proper associations among the central kinetochore subcomplexes and the kinetochore-specific nucleosome

    Measurement of associated Z plus charm production in proton-proton collisions at root s=8TeV

    Get PDF
    A study of the associated production of a Z boson and a charm quark jet (Z + c), and a comparison to production with a b quark jet (Z + b), in pp collisions at a centre-of-mass energy of 8 TeV are presented. The analysis uses a data sample corresponding to an integrated luminosity of 19.7 fb(-1), collected with the CMS detector at the CERN LHC. The Z boson candidates are identified through their decays into pairs of electrons or muons. Jets originating from heavy flavour quarks are identified using semileptonic decays of c or b flavoured hadrons and hadronic decays of charm hadrons. The measurements are performed in the kinematic region with two leptons with pT(l) > 20 GeV, vertical bar eta(l)vertical bar 25 GeV and vertical bar eta(jet)vertical bar Z + c + X) B(Z -> l(+)l(-)) = 8.8 +/- 0.5 (stat)+/- 0.6 (syst) pb. The ratio of the Z+c and Z+b production cross sections is measured to be sigma(pp -> Z+c+X)/sigma (pp -> Z+b+X) = 2.0 +/- 0.2 (stat)+/- 0.2 (syst). The Z+c production cross section and the cross section ratio are also measured as a function of the transverse momentum of theZ boson and of the heavy flavour jet. The measurements are compared with theoretical predictions.Peer reviewe

    Measurement of the underlying event activity in inclusive Z boson production in proton-proton collisions at root s=13 TeV

    Get PDF
    This paper presents a measurement of the underlying event activity in proton-proton collisions at a center-of-mass energy of 13TeV, performed using inclusive Z boson production events collected with the CMS experiment at the LHC. The analyzed data correspond to an integrated luminosity of 2.1 fb(-1). The underlying event activity is quantified in terms of the charged particle multiplicity, as well as of the scalar sum of the charged particles' transverse momenta in different topological regions defined with respect to the Z boson direction. The distributions are unfolded to the stable particle level and compared with predictions from various Monte Carlo event generators, as well as with similar CDF and CMS measurements at center-of-mass energies of 1.96 and 7TeV respectively.Peer reviewe

    Global age-sex-specific mortality, life expectancy, and population estimates in 204 countries and territories and 811 subnational locations, 1950–2021, and the impact of the COVID-19 pandemic: a comprehensive demographic analysis for the Global Burden of Disease Study 2021

    Get PDF
    Background: Estimates of demographic metrics are crucial to assess levels and trends of population health outcomes. The profound impact of the COVID-19 pandemic on populations worldwide has underscored the need for timely estimates to understand this unprecedented event within the context of long-term population health trends. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021 provides new demographic estimates for 204 countries and territories and 811 additional subnational locations from 1950 to 2021, with a particular emphasis on changes in mortality and life expectancy that occurred during the 2020–21 COVID-19 pandemic period. Methods: 22 223 data sources from vital registration, sample registration, surveys, censuses, and other sources were used to estimate mortality, with a subset of these sources used exclusively to estimate excess mortality due to the COVID-19 pandemic. 2026 data sources were used for population estimation. Additional sources were used to estimate migration; the effects of the HIV epidemic; and demographic discontinuities due to conflicts, famines, natural disasters, and pandemics, which are used as inputs for estimating mortality and population. Spatiotemporal Gaussian process regression (ST-GPR) was used to generate under-5 mortality rates, which synthesised 30 763 location-years of vital registration and sample registration data, 1365 surveys and censuses, and 80 other sources. ST-GPR was also used to estimate adult mortality (between ages 15 and 59 years) based on information from 31 642 location-years of vital registration and sample registration data, 355 surveys and censuses, and 24 other sources. Estimates of child and adult mortality rates were then used to generate life tables with a relational model life table system. For countries with large HIV epidemics, life tables were adjusted using independent estimates of HIV-specific mortality generated via an epidemiological analysis of HIV prevalence surveys, antenatal clinic serosurveillance, and other data sources. Excess mortality due to the COVID-19 pandemic in 2020 and 2021 was determined by subtracting observed all-cause mortality (adjusted for late registration and mortality anomalies) from the mortality expected in the absence of the pandemic. Expected mortality was calculated based on historical trends using an ensemble of models. In location-years where all-cause mortality data were unavailable, we estimated excess mortality rates using a regression model with covariates pertaining to the pandemic. Population size was computed using a Bayesian hierarchical cohort component model. Life expectancy was calculated using age-specific mortality rates and standard demographic methods. Uncertainty intervals (UIs) were calculated for every metric using the 25th and 975th ordered values from a 1000-draw posterior distribution. Findings: Global all-cause mortality followed two distinct patterns over the study period: age-standardised mortality rates declined between 1950 and 2019 (a 62·8% [95% UI 60·5–65·1] decline), and increased during the COVID-19 pandemic period (2020–21; 5·1% [0·9–9·6] increase). In contrast with the overall reverse in mortality trends during the pandemic period, child mortality continued to decline, with 4·66 million (3·98–5·50) global deaths in children younger than 5 years in 2021 compared with 5·21 million (4·50–6·01) in 2019. An estimated 131 million (126–137) people died globally from all causes in 2020 and 2021 combined, of which 15·9 million (14·7–17·2) were due to the COVID-19 pandemic (measured by excess mortality, which includes deaths directly due to SARS-CoV-2 infection and those indirectly due to other social, economic, or behavioural changes associated with the pandemic). Excess mortality rates exceeded 150 deaths per 100 000 population during at least one year of the pandemic in 80 countries and territories, whereas 20 nations had a negative excess mortality rate in 2020 or 2021, indicating that all-cause mortality in these countries was lower during the pandemic than expected based on historical trends. Between 1950 and 2021, global life expectancy at birth increased by 22·7 years (20·8–24·8), from 49·0 years (46·7–51·3) to 71·7 years (70·9–72·5). Global life expectancy at birth declined by 1·6 years (1·0–2·2) between 2019 and 2021, reversing historical trends. An increase in life expectancy was only observed in 32 (15·7%) of 204 countries and territories between 2019 and 2021. The global population reached 7·89 billion (7·67–8·13) people in 2021, by which time 56 of 204 countries and territories had peaked and subsequently populations have declined. The largest proportion of population growth between 2020 and 2021 was in sub-Saharan Africa (39·5% [28·4–52·7]) and south Asia (26·3% [9·0–44·7]). From 2000 to 2021, the ratio of the population aged 65 years and older to the population aged younger than 15 years increased in 188 (92·2%) of 204 nations. Interpretation: Global adult mortality rates markedly increased during the COVID-19 pandemic in 2020 and 2021, reversing past decreasing trends, while child mortality rates continued to decline, albeit more slowly than in earlier years. Although COVID-19 had a substantial impact on many demographic indicators during the first 2 years of the pandemic, overall global health progress over the 72 years evaluated has been profound, with considerable improvements in mortality and life expectancy. Additionally, we observed a deceleration of global population growth since 2017, despite steady or increasing growth in lower-income countries, combined with a continued global shift of population age structures towards older ages. These demographic changes will likely present future challenges to health systems, economies, and societies. The comprehensive demographic estimates reported here will enable researchers, policy makers, health practitioners, and other key stakeholders to better understand and address the profound changes that have occurred in the global health landscape following the first 2 years of the COVID-19 pandemic, and longer-term trends beyond the pandemic
    corecore