298 research outputs found
Finite-temperature Fermi-edge singularity in tunneling studied using random telegraph signals
We show that random telegraph signals in metal-oxide-silicon transistors at
millikelvin temperatures provide a powerful means of investigating tunneling
between a two-dimensional electron gas and a single defect state. The tunneling
rate shows a peak when the defect level lines up with the Fermi energy, in
excellent agreement with theory of the Fermi-edge singularity at finite
temperature. This theory also indicates that defect levels are the origin of
the dissipative two-state systems observed previously in similar devices.Comment: 5 pages, REVTEX, 3 postscript figures included with epsfi
Stellar structure and compact objects before 1940: Towards relativistic astrophysics
Since the mid-1920s, different strands of research used stars as "physics
laboratories" for investigating the nature of matter under extreme densities
and pressures, impossible to realize on Earth. To trace this process this paper
is following the evolution of the concept of a dense core in stars, which was
important both for an understanding of stellar evolution and as a testing
ground for the fast-evolving field of nuclear physics. In spite of the divide
between physicists and astrophysicists, some key actors working in the
cross-fertilized soil of overlapping but different scientific cultures
formulated models and tentative theories that gradually evolved into more
realistic and structured astrophysical objects. These investigations culminated
in the first contact with general relativity in 1939, when J. Robert
Oppenheimer and his students George Volkoff and Hartland Snyder systematically
applied the theory to the dense core of a collapsing neutron star. This
pioneering application of Einstein's theory to an astrophysical compact object
can be regarded as a milestone in the path eventually leading to the emergence
of relativistic astrophysics in the early 1960s.Comment: 83 pages, 4 figures, submitted to the European Physical Journal
Attentive Learning of Sequential Handwriting Movements: A Neural Network Model
Defense Advanced research Projects Agency and the Office of Naval Research (N00014-95-1-0409, N00014-92-J-1309); National Science Foundation (IRI-97-20333); National Institutes of Health (I-R29-DC02952-01)
A radium assay technique using hydrous titanium oxide adsorbent for the Sudbury Neutrino Observatory
As photodisintegration of deuterons mimics the disintegration of deuterons by
neutrinos, the accurate measurement of the radioactivity from thorium and
uranium decay chains in the heavy water in the Sudbury Neutrino Observatory
(SNO) is essential for the determination of the total solar neutrino flux. A
radium assay technique of the required sensitivity is described that uses
hydrous titanium oxide adsorbent on a filtration membrane together with a
beta-alpha delayed coincidence counting system. For a 200 tonne assay the
detection limit for 232Th is a concentration of 3 x 10^(-16) g Th/g water and
for 238U of 3 x 10^(-16) g U/g water. Results of assays of both the heavy and
light water carried out during the first two years of data collection of SNO
are presented.Comment: 12 pages, 4 figure
Non Linear Current Response of a Many-Level Tunneling System: Higher Harmonics Generation
The fully nonlinear response of a many-level tunneling system to a strong
alternating field of high frequency is studied in terms of the
Schwinger-Keldysh nonequilibrium Green functions. The nonlinear time dependent
tunneling current is calculated exactly and its resonance structure is
elucidated. In particular, it is shown that under certain reasonable conditions
on the physical parameters, the Fourier component is sharply peaked at
, where is the spacing between
two levels. This frequency multiplication results from the highly nonlinear
process of photon absorption (or emission) by the tunneling system. It is
also conjectured that this effect (which so far is studied mainly in the
context of nonlinear optics) might be experimentally feasible.Comment: 28 pages, LaTex, 7 figures are available upon request from
[email protected], submitted to Phys.Rev.
Measurement of D*+/- meson production in jets from pp collisions at sqrt(s) = 7 TeV with the ATLAS detector
This paper reports a measurement of D*+/- meson production in jets from
proton-proton collisions at a center-of-mass energy of sqrt(s) = 7 TeV at the
CERN Large Hadron Collider. The measurement is based on a data sample recorded
with the ATLAS detector with an integrated luminosity of 0.30 pb^-1 for jets
with transverse momentum between 25 and 70 GeV in the pseudorapidity range
|eta| < 2.5. D*+/- mesons found in jets are fully reconstructed in the decay
chain: D*+ -> D0pi+, D0 -> K-pi+, and its charge conjugate. The production rate
is found to be N(D*+/-)/N(jet) = 0.025 +/- 0.001(stat.) +/- 0.004(syst.) for
D*+/- mesons that carry a fraction z of the jet momentum in the range 0.3 < z <
1. Monte Carlo predictions fail to describe the data at small values of z, and
this is most marked at low jet transverse momentum.Comment: 10 pages plus author list (22 pages total), 5 figures, 1 table,
matches published version in Physical Review
Vintage venoms: proteomic and pharmacological stability of snake venoms stored for up to eight decades
For over a century, venom samples from wild snakes have been collected and stored around the world. However, the quality of storage conditions for "vintage" venoms has rarely been assessed. The goal of this study was to determine whether such historical venom samples are still biochemically and pharmacologically viable for research purposes, or if new sample efforts are needed. In total, 52 samples spanning 5 genera and 13 species with regional variants of some species (e.g., 14 different populations of Notechis scutatus) were analysed by a combined proteomic and pharmacological approach to determine protein structural stability and bioactivity. When venoms were not exposed to air during storage, the proteomic results were virtually indistinguishable from that of fresh venom and bioactivity was equivalent or only slightly reduced. By contrast, a sample of Acanthophis antarcticus venom that was exposed to air (due to a loss of integrity of the rubber stopper) suffered significant degradation as evidenced by the proteomics profile. Interestingly, the neurotoxicity of this sample was nearly the same as fresh venom, indicating that degradation may have occurred in the free N- or C-terminus chains of the proteins, rather than at the tips of loops where the functional residues are located. These results suggest that these and other vintage venom collections may be of continuing value in toxin research. This is particularly important as many snake species worldwide are declining due to habitat destruction or modification. For some venoms (such as N. scutatus from Babel Island, Flinders Island, King Island and St. Francis Island) these were the first analyses ever conducted and these vintage samples may represent the only venom ever collected from these unique island forms of tiger snakes. Such vintage venoms may therefore represent the last remaining stocks of some local populations and thus are precious resources. These venoms also have significant historical value as the Oxyuranus venoms analysed include samples from the first coastal taipan (Oxyuranus scutellatus) collected for antivenom production (the snake that killed the collector Kevin Budden), as well as samples from the first Oxyuranus microlepidotus specimen collected after the species' rediscovery in 1976. These results demonstrate that with proper storage techniques, venom samples can retain structural and pharmacological stability. This article is part of a Special Issue entitled: Proteomics of non-model organisms. Biological significance: •These results show that with proper storage venoms are useful for decades.•These results have direct implications for the use of rare venoms
Spinor condensates and light scattering from Bose-Einstein condensates
These notes discuss two aspects of the physics of atomic Bose-Einstein
condensates: optical properties and spinor condensates. The first topic
includes light scattering experiments which probe the excitations of a
condensate in both the free-particle and phonon regime. At higher light
intensity, a new form of superradiance and phase-coherent matter wave
amplification were observed. We also discuss properties of spinor condensates
and describe studies of ground--state spin domain structures and dynamical
studies which revealed metastable excited states and quantum tunneling.Comment: 58 pages, 33 figures, to appear in Proceedings of Les Houches 1999
Summer School, Session LXXI
Search for supersymmetry in final states with jets, missing transverse momentum and one isolated lepton in sqrt{s} = 7 TeV pp collisions using 1 fb-1 of ATLAS data
We present an update of a search for supersymmetry in final states containing
jets, missing transverse momentum, and one isolated electron or muon, using
1.04 fb^-1 of proton-proton collision data at sqrt{s} = 7 TeV recorded by the
ATLAS experiment at the LHC in the first half of 2011. The analysis is carried
out in four distinct signal regions with either three or four jets and
variations on the (missing) transverse momentum cuts, resulting in optimized
limits for various supersymmetry models. No excess above the standard model
background expectation is observed. Limits are set on the visible cross-section
of new physics within the kinematic requirements of the search. The results are
interpreted as limits on the parameters of the minimal supergravity framework,
limits on cross-sections of simplified models with specific squark and gluino
decay modes, and limits on parameters of a model with bilinear R-parity
violation.Comment: 18 pages plus author list (30 pages total), 9 figures, 4 tables,
final version to appear in Physical Review
- …
