246 research outputs found

    Modelling trace metal background to evaluate anthropogenic contamination in arable soils of south-western France

    Get PDF
    The trace metal (TM) content in arable soils has been monitored across a region of France characterised by a large proportion of calcareous soils. Within this particular geological context, the objectives were to first determine the natural levels of trace metals in the soils and secondly, to assess which sites were significantly contaminated. Because no universal contamination assessment method is currently available, four different methods were applied and compared in order to facilitate the best diagnosis of contamination. First, the TM geochemical background was determined by using basic descriptive statistics and linear regression models calculated with semi-conservative major elements as predictors. The natural concentrations of trace metals varied greatly due to the high soil heterogeneity encountered on the regional scale and were more-or-less accurately modelled according to the considered TM. Second, the basic descriptive statistics and the linear regression methods were then compared with the enrichment factor (EF) method and multivariate analysis (PCA), in order to evaluate whether the concentrations measured in soils were abnormally high or not. The advantages and disadvantages of each method were discussed and their results used to identify the most probable contamination cases, the influence of the soils characteristics, as well as the agricultural land cover. The basic descriptive method was good as a first and easy approach to describe the TM ambient concentrations, but may misinterpret the natural anomalies as contaminations. Based on geochemical associations, the linear regression method provided more realistic results even if the relationships between major and trace metals were not significant for the most mobile TM. The EF method was useful to identify high point source contaminations, but it was not suitable when considering a large dataset of low TM concentrations. Finally, the PCA method was a good preliminary tool for the description of the global TM concentrations in a studied area, but it could only give indication on the highest contaminated points. By comparing the results of the different methods in the studied region, we estimated that 24% of the arable soils were contaminated by at least one trace metal, mainly Cu in vineyards/orchards and Cd, Pb and/or Zn in grazing lands. In addition, the calcareous soils exhibited globally higher natural and anthropogenic TM concentrations than non-calcareous soils, probably because of the lower TM mobility at alkaline pH

    Measurement of isotopically-exchangeable Zn in Zn-deficient paddy soil

    Get PDF
    The changes in soil chemistry following submergence of a soil for rice production result in zinc (Zn) being immobilized in very insoluble forms. Consequently, Zn deficiency is widespread in rice crops and in human populations that subsist on rice. We explored the use of stable isotopic dilution assays for assessing Zn dynamics in submerged paddy soil with two types of strongly Zn-deficient soil for rice cultivation in the Philippines. We optimized the isotope enrichment, electrolyte and equilibration time to measure isotopically-exchangeable Zn (E-values) without changing redox conditions. Available Zn was rapidly and strongly immobilized following submergence, which was controlled by CO2 accumulation. Addition of the isotopic tracer before submergence produced unreliable E-values because irreversible immobilization of the tracer progressed faster than isotopic exchange. Addition of the tracer to already reduced soil produced stable E-values for tracer–soil contact of up to 1 week. Longer periods produced unreliable E-values because of continuing irreversible fixation of the tracer. We discuss the implications for applications of isotopic dilution methods to measure trace-element dynamics in submerged soil

    Diagnostic de la contamination des eaux par les Ă©lĂ©ments traces mĂ©talliques dans la zone aurifĂšre de Komabangou – TillabĂ©ri, Niger

    Get PDF
    A Komabangou, dans la rĂ©gion de TillabĂ©ri au Niger, l’or est exploitĂ©, durant des dĂ©cennies, de maniĂšre artisanale avec l’utilisation des mĂ©thodes inadĂ©quates et des substances peu respectueuses de l’environnement comme le mercure et le cyanure. La prĂ©sente Ă©tude a pour objectif de dĂ©terminer les teneurs en Ă©lĂ©ments traces mĂ©talliques (ETM) des eaux de Komabangou afin de prĂ©voir les risques environnementaux et sanitaires liĂ©s à leur utilisation. Ainsi, des prĂ©lĂšvements d’eau ont Ă©tĂ© effectuĂ©s sur 8 sites d’extraction d’or, 4 forages et 3 mares, et leurs concentrations en mĂ©taux tels que As, Cd, Cu, Hg, Ni, Pb et Zn ont Ă©tĂ© analysĂ©es par spectromĂ©trie de masse avec plasma Ă  couplage inductif (ICP-MS). Les rĂ©sultats obtenus rĂ©vĂšlent une contamination importante de ces eaux et soulignent une variabilitĂ© significative des concentrations des ETM en fonction du mĂ©tal analysĂ© et du type d’eau. Dans la plupart des eaux, les valeurs limites rĂ©glementaires notamment celles de l’OMS ont Ă©tĂ© dĂ©passĂ©es, cela pourrait poser des problĂšmes de toxicitĂ© pour les plantes, les animaux et la population locale. Par consĂ©quent, la mise en place d’un programme de surveillance et de traitement des eaux contaminĂ©es de la zone de Komabangou serait nĂ©cessaire pour rĂ©duire les risques de contamination humaine.Mots clĂ©s : ETM, eaux, risque, site aurifĂšre, Komabangou, Niger

    Nickel hyperaccumulation mechanisms: a review on the current state of knowledge

    Get PDF
    Background: Hyperaccumulator plants are unusual plants that accumulate particular metals or metalloids, such as nickel, zinc, cadmium and arsenic, in their living tissues to concentrations that are hundreds to thousands of times greater than what is normal for most plants. The hyperaccumulation phenomenon is rare (exhibited by less than 0.2% of all angiosperms), with most of the ~500 hyperaccumulator species known globally for nickel. Scope: This review highlights the contemporary understanding of nickel hyperaccumulation processes, which include root uptake and sequestration, xylem loading and transport, leaf compartmentation and phloem translocation processes. Conclusions: Hyperaccumulator plants have evolved highly efficient physiological mechanisms for taking up nickel in their roots followed by rapid translocation and sequestration into the aerial shoots. The uptake of nickel is mainly involved with low affinity transport systems, presumably from the ZIP family. The presence of high concentrations of histidine prevents nickel sequestration in roots. Nickel is efficiently loaded into the xylem, where it mainly presents as Ni. The leaf is the main storage organ, which sequestrates nickel in non-active sites, e.g. vacuoles and apoplast. Recent studies show that phloem translocates high levels of nickel, which has a strong impact on nickel accumulation in young growing tissues

    Using isotopic dilution to assess chemical extraction of labile Ni, Cu, Zn, Cd and Pb in soils

    Get PDF
    Chemical extractants used to measure labile soil metal must ideally select for and solubilise the labile fraction, with minimal solubilisation of non-labile metal. We assessed four extractants (0.43 M HNO3, 0.43 M CH3COOH, 0.05 M Na2H2EDTA and 1 M CaCl2) against these requirements. For soils contaminated by contrasting sources, we compared isotopically exchangeable Ni, Cu, Zn, Cd and Pb (EValue, mg kg-1), with the concentrations of metal solubilised by the chemical extractants (MExt, mg kg-1). Crucially, we also determined isotopically exchangeable metal in the soil–extractant systems (EExt, mg kg-1). Thus ‘EExt - EValue’ quantifies the concentration of mobilised non-labile metal, while ‘EExt - MExt’ represents adsorbed labile metal in the presence of the extractant. Extraction with CaCl2 consistently underestimated EValue for Ni, Cu, Zn and Pb, while providing a reasonable estimate of EValue for Cd. In contrast, extraction with HNO3 both consistently mobilised non-labile metal and overestimated the EValue. Extraction with CH3COOH appeared to provide a good estimate of EValue for Cd; however, this was the net outcome of incomplete solubilisation of labile metal, and concurrent mobilisation of non-labile metal by the extractant (MExt EValue). The Na2H2EDTA extractant mobilised some non-labile metal in three of the four soils, but consistently solubilised the entire labile fraction for all soil-metal combinations (MExt ≈ EExt). Comparison of EValue, MExt and EExt provides a rigorous means of assessing the underlying action of soil chemical extraction methods and could be used to refine long-standing soil extraction methodologies

    Bioavailability in soils

    Get PDF
    The consumption of locally-produced vegetables by humans may be an important exposure pathway for soil contaminants in many urban settings and for agricultural land use. Hence, prediction of metal and metalloid uptake by vegetables from contaminated soils is an important part of the Human Health Risk Assessment procedure. The behaviour of metals (cadmium, chromium, cobalt, copper, mercury, molybdenum, nickel, lead and zinc) and metalloids (arsenic, boron and selenium) in contaminated soils depends to a large extent on the intrinsic charge, valence and speciation of the contaminant ion, and soil properties such as pH, redox status and contents of clay and/or organic matter. However, chemistry and behaviour of the contaminant in soil alone cannot predict soil-to-plant transfer. Root uptake, root selectivity, ion interactions, rhizosphere processes, leaf uptake from the atmosphere, and plant partitioning are important processes that ultimately govern the accumulation ofmetals and metalloids in edible vegetable tissues. Mechanistic models to accurately describe all these processes have not yet been developed, let alone validated under field conditions. Hence, to estimate risks by vegetable consumption, empirical models have been used to correlate concentrations of metals and metalloids in contaminated soils, soil physico-chemical characteristics, and concentrations of elements in vegetable tissues. These models should only be used within the bounds of their calibration, and often need to be re-calibrated or validated using local soil and environmental conditions on a regional or site-specific basis.Mike J. McLaughlin, Erik Smolders, Fien Degryse, and Rene Rietr

    Using isotope dilution assays to understand speciation changes in Cd, Zn, Pb and Fe in a soil model system under simulated flooding conditions

    Get PDF
    Flooded soils are systems with complex chemistry and understanding the mechanisms that control the mobility and bioavailability of metals in these soils is important for their management. This work uses stable metal multi-element isotopic dilution combined with sequential extraction assays to help understand the changes in solid and solution speciation of Cd, Fe, Pb and Zn in a contaminated soil following submergence. However, it is necessary to ensure that the isotopic dilution principles, originally developed for aerobic soils, are not compromised; in particular due to the presence of non-labile colloids in the solution phase. In particular, no studies examining the validity of these assays in systems where rapid pH and Eh changes are occurring due to fermentation reactions have been published. Thus sucrose (0.42% and 1.26% added C) was used as a carbon source to stimulate bacterial mediated fermentation reactions allowing changes in Cd, Zn, Fe and Pb isotopic exchangeability, speciation and solution chemistry to be examined after 10, 20 and 42 days of submergence. Without the addition of added C, submergence for 42 days only produced minor changes in the speciation of the metals in solid or solution phases. However, the presence of easily labile carbon produced significant responses depending on the quantity of C added. Assessments of whether fermentation products caused over-estimation of the isotopically exchangeable pool of metals (E-values) were made by measuring concentrations with and without a resin purification step. Results showed generally good agreement over a pH range of 4–7 for Pb, Cd, Zn and Fe and demonstrate that fermentation by-products do not induce the formation of non-exchangeable metal colloids. E-value concentrations were compared with fractions extracted using a modified Tessier sequential extraction. With no carbonate phases present in the soils, the E-values for Cd, Zn, Fe and Pb compared favourably with the concentrations of metal present in the combined solution, exchangeable and specifically adsorbed fractions. This provided additional evidence that the conditions for the isotopic dilution assays were not violated as these fractions should be isotopically exchangeable. Combining results from the different treatments and stages of the reduction process, strong pH dependence was found for the isotopically exchangeable and the solution pools of Cd, Zn and Pb

    Ecological changes in historically polluted soils: Metal(loid) bioaccumulation in microarthropods and their impact on community structure

    Get PDF
    International audienceSoil pollution by persistent metal(loid)s present environmental and sanitary risks. While the effects of metal(loid)s on vegetation and macrofauna have been widely studied, their impact on microarthropods (millimetre scale) and their bioaccumulation capacity have been less investigated. However, microarthropods provide important ecosystem services, contributing in particular to soil organic matter dynamics. This study focussed on the impact of metal(loid) pollution on the structure and distribution of microarthropod communities and their potential to bioaccumulate lead (Pb). Soil samples were collected from a contaminated historical site with a strong horizontal and vertical gradient of Pb concentrations. Microarthropods were extracted using the Berlese method. The field experiments showed that microarthropods were present even in extremely polluted soils (30,000 mg Pb kg− 1). However, while microarthropod abundance increased with increasing soil C/N content (R2 = 0.79), richness decreased with increasing pollution. A shift in the community structure from an oribatid-to a springtail-dominated community was observed in less polluted soils (R2 = 0.68). In addition, Pb bioamplification occurred in microarthropods, with higher Pb concentrations in predators than in detritivorous microarthropods. Finally, the importance of feeding and reproductive ecological traits as potentially relevant descriptors of springtail community structures was highlighted. This study demonstrates the interest of microarthropod communities with different trophic levels and ecological features for evaluating the global environmental impact of metal(loid) pollution on soil biological quality

    Spatially Explicit Analysis of Metal Transfer to Biota: Influence of Soil Contamination and Landscape

    Get PDF
    Concepts and developments for a new field in ecotoxicology, referred to as “landscape ecotoxicology,” were proposed in the 1990s; however, to date, few studies have been developed in this emergent field. In fact, there is a strong interest in developing this area, both for renewing the concepts and tools used in ecotoxicology as well as for responding to practical issues, such as risk assessment. The aim of this study was to investigate the spatial heterogeneity of metal bioaccumulation in animals in order to identify the role of spatially explicit factors, such as landscape as well as total and extractable metal concentrations in soils. Over a smelter-impacted area, we studied the accumulation of trace metals (TMs: Cd, Pb and Zn) in invertebrates (the grove snail Cepaea sp and the glass snail Oxychilus draparnaudi) and vertebrates (the bank vole Myodes glareolus and the greater white-toothed shrew Crocidura russula). Total and CaCl2-extractable concentrations of TMs were measured in soils from woody patches where the animals were captured. TM concentrations in animals exhibited a high spatial heterogeneity. They increased with soil pollution and were better explained by total rather than CaCl2-extractable TM concentrations, except in Cepaea sp. TM levels in animals and their variations along the pollution gradient were modulated by the landscape, and this influence was species and metal specific. Median soil metal concentrations (predicted by universal kriging) were calculated in buffers of increasing size and were related to bioaccumulation. The spatial scale at which TM concentrations in animals and soils showed the strongest correlations varied between metals, species and landscapes. The potential underlying mechanisms of landscape influence (community functioning, behaviour, etc.) are discussed. Present results highlight the need for the further development of landscape ecotoxicology and multi-scale approaches, which would enhance our understanding of pollutant transfer and effects in ecosystems
    • 

    corecore