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Abstract 

Chemical extractants used to measure labile soil metal must ideally select for and solubilise 

the labile fraction, with minimal solubilisation of non-labile metal. We assessed four 

extractants (0.43 M HNO3, 0.43 M CH3COOH, 0.05 M Na2H2EDTA and 1 M CaCl2) against 

these requirements. For soils contaminated by contrasting sources, we compared isotopically 

exchangeable Ni, Cu, Zn, Cd and Pb (EValue, mg kg
-1

), with the concentrations of metal 

solubilised by the chemical extractants (MExt, mg kg
-1

). Crucially, we also determined 

isotopically exchangeable metal in the soil–extractant systems (EExt, mg kg
-1

). Thus ‘EExt - 

EValue’ quantifies the concentration of mobilised non-labile metal, while ‘EExt - MExt’ 

represents adsorbed labile metal in the presence of the extractant. Extraction with CaCl2 

consistently underestimated EValue for Ni, Cu, Zn and Pb, while providing a reasonable 

estimate of EValue for Cd. In contrast, extraction with HNO3 both consistently mobilised non-

labile metal and overestimated the EValue. Extraction with CH3COOH appeared to provide a 

good estimate of EValue for Cd; however, this was the net outcome of incomplete 

solubilisation of labile metal, and concurrent mobilisation of non-labile metal by the 

extractant (MExt < EExt > EValue). The Na2H2EDTA extractant mobilised some non-labile metal 

in three of the four soils, but consistently solubilised the entire labile fraction for all soil-

metal combinations (MExt ≈ EExt). Comparison of EValue, MExt and EExt provides a rigorous 

means of assessing the underlying action of soil chemical extraction methods and could be 

used to refine long-standing soil extraction methodologies. 



Introduction 

The solubility and reactivity of metal added to soil may decrease with prolonged contact as it 

becomes ‘fixed’ in mineral phases due to aging processes (Bruemmer et al., 1988; Buekers et 

al., 2007; Young, 2013). In this respect, contaminant metal in soils is often found to be more 

labile than the metal originating from the soil parent material (Gleyzes et al., 2002). The 

reverse situation may also occur if recalcitrant waste material is added to soil. To improve the 

assessment of risks associated with soil-borne metals, it may be useful to determine soil metal 

solubility and lability alongside total soil metal content. This is particularly relevant if metal 

uptake from soil pore water, by soil organisms, is being considered (Plette et al., 1999; Nolan 

et al., 2003). There is a clear dependence of soil metal solubility on the labile fraction, as 

illustrated by Buekers et al. (2008) and Marzouk (2012), who showed that isotopically 

exchangeable metal, as an estimate of labile metal, is superior to total metal as an input 

parameter for geochemical models to predict soil metal solubility.  

Measuring the isotopically exchangeable soil metal pool, the ‘E value’, by isotopic dilution 

(Hamon et al., 2008), may be the most conceptually sound approach to determining the labile 

metal pool in soils, because of the mechanistic basis of the method (Buekers et al., 2008; 

Groenenberg et al., 2010). However, chemical extraction methods are far more widely used 

to estimate the labile metal fraction in soils, despite being substantially dependent on 

operational parameters such as the nature and concentration of chemical extractant, soil-to-

solution ratio and extraction time (Young et al., 2006). The preference for simple chemical 

extractions persists, partly because the methods are more familiar, faster, less analytically 

demanding and considered cheaper than isotopic dilution. In marked contrast to the dilute 

suspending matrices used for E value assays, e.g. deionised water, 0.1 M CaCl2, 0.01 M 

Ca(NO3)2, and 0.0005 M EDTA (Young et al., 2000; Atkinson et al., 2011; Huang et al., 

2011), chemical extractants are ideally required to select for and solubilise the labile fraction, 



while not solubilising any non-labile metal through, for example, chemical attack on the soil 

solid phase. This dual requirement may present an operational contradiction which remains 

unresolved; see for example Gleyzes et al. (2002), Young et al. (2006) and Peijnenburg et al. 

(2007) who have reviewed the extensive range of published chemical extraction methods. In 

order to introduce some standardisation, the Measurements and Testing Programme of the 

European Commission published collaboratively tested and harmonised extraction methods 

for 0.05 M EDTA and 0.43 M CH3COOH (Quevauviller, 1998a; b; 2002). Standardisation 

alone, however, does not validate their use for the measurement of labile metal in soils. 

To assess the reliability of estimates of labile metal determined by chemical extraction, 

several studies have compared chemically extracted metal with E values. For example, it has 

been found that Cd E value correlates well with Cd extracted with 1 M CaCl2 over a wide 

range of soil types, total metal concentrations and Cd contamination sources (Young et al., 

2000; Gray et al., 2003; Gray et al., 2004; Sterckeman et al., 2009) but that Zn extracted by 

the same method underestimates E value (Young et al., 2000). Extraction of Cd with both 

0.05 M and 0.04 M EDTA has been shown to overestimate E value (Nakhone & Young, 1993; 

Stanhope et al., 2000; Gray et al., 2003) whereas a lower concentration of EDTA (0.025 M) 

has been reported to provide a good estimate (Gäbler & Bahr, 2001).  Gabler et al. (1999) 

determined extractable Ni, Cu, Zn, Cd and Pb in water, NH4NO3 and buffered 0.025 M 

EDTA extractants and compared this with E value measured in the extractant.  They observed 

E value to be nearly independent of extractant.  A comparison of 0.025 M EDTA extracts 

with E value for 115 soils with a wide range of properties resulted in good correlations for Ni, 

Cu, Zn, Cd and Pb.  No significant differences were observed for Zn and Cd indicating that 

both approaches were accessing the same metal pool whereas EDTA extracted more Ni, Cu 

and Pb than the E value approach.  Conversely, Ayoub et al. (2003) reported that, for both Cd 

and Zn, extraction with 0.05 M EDTA underestimates E value, and this has also been 



observed for Pb by Tongtavee et al. (2005).   There is therefore a need for a more systematic 

analysis of how well different chemical extractants satisfy the two requirements outlined 

above.   

In this study, we compared the concentrations of Ni, Cu, Zn, Cd and Pb solubilised by four 

commonly used chemical extraction methods (MExt, mg kg
-1

), with labile metal 

concentrations determined by multi-element stable-isotope dilution (EValue, mg kg
-1

) in a 

dilute electrolyte suspension (0.01 M Ca(NO3)2). In addition, to understand the interaction 

between the chemical extractants and the soil, we combined the isotopic dilution and 

chemical extraction methodologies by isotopically labelling soil suspended in each extractant. 

This enabled determination of isotopically exchangeable metal in the presence of the 

extractant (EExt, mg kg
-1

). Comparison of the three variables, EValue, EExt and MExt, allowed us 

to assess the selectivity of each extraction method for the isotopically labile pool and thus the 

usefulness of each method as a surrogate for isotope dilution. 

Materials and methods 

Soils 

Four UK soils, selected for their contrasting metal contamination histories and metal 

concentrations, were sampled (0-20 cm) from the following locations: Kegworth (52
o
 49’ 

35’’ N, 1
o
 16’ 19” W), Chat Moss (53

o
 28’ 34” N, 2

o
 24’ 11” W), Clough Wood (53

o
 09’ 07” 

N, 1
o
 36’ 52” W) and a sewage processing farm (52

o
 57’ 33” N, 1

o
 02’ 49” W) (Atkinson et 

al., 2011). The metal contamination history of each site has been described in detail by 

Atkinson et al. (2011) but, briefly, the Kegworth, Chat Moss, Clough Wood and Sewage 

Farm soils were contaminated by road traffic, 19
th

 century urban waste from Manchester, 

Pb/Zn calcareous mine spoil and digested sewage sludge respectively. Soils were air dried 

and sieved to < 2 mm. Soil pH was determined in soil-water suspensions (5 g : 12.5 ml), and 

loss on ignition (550°C, 7 hours) was used as an estimate of soil organic matter content.  



Available P was determined using the Olsen method (Rowell, 1994).  Soil texture was 

measured by laser diffraction particle size analysis (Beckman Coulter LS13320) following 

organic matter removal by oxidation with H2O2 (30% w/v) (Sheldrick and Wang, 1993). 

Chemical extractions 

Three replicate soil samples were suspended in the extractants 0.43 M HNO3, 0.43 M 

CH3COOH, 0.05 M Na2H2EDTA and 1.0 M CaCl2. The operational details for each extraction 

method, and the publications from which each method was adapted, are outlined in Table 1. 

Extraction suspensions were centrifuged at 2200 g for 15 minutes, and supernatant solutions 

filtered to < 0.22 µm (Filtropur S without prefilter, Sarstedt). The filtered CaCl2 extractions 

were acidified to 2 % HNO3; samples were stored at 4°C prior to multi-element analysis by 

ICP-MS. 

For the determination of total soil metal concentration (MTotal), soil (< 2 mm) was agate ball-

milled (Retsch, PM400) and two replicates (c. 0.2 g) digested with 2 ml HNO3, 1 ml HClO4 

and 2.5 ml HF. All chemicals were either Trace Analysis Grade (TAG) or Analytical Reagent 

(AR) grade (Fisher Scientific UK Ltd, Loughborough, UK).  Total P was determined by ICP-

AES on the soil digests. 

Isotopic dilution assay 

Enriched stable isotopes with certified isotopic abundances (IA), were obtained as metal foils 

from Isoflex, San Fransisco, USA:  
62

Ni (IA = 97.0 %), 
65

Cu (IA = 99.2 %), 
70

Zn (IA = 

99.9 %), 
108

Cd (IA = 70.3 %) and 
204

Pb (IA = 99.4 %) and dissolved in 5 % TAG HNO3. 

Dilute isotope stock solutions of 
62

Ni, 
65

Cu, 
70

Zn, 
108

Cd and 
204

Pb were combined to create 

bespoke mixed-isotope spikes for each soil-extractant combination (Table 2). The 

concentrations used were intended to cause an increase of at least 20 % in the natural 

abundance of the spike isotopes in the soil, based on a spike volume of 0.4 ml, equivalent to 



an increase in MTotal  of Ni: 0.252-1.2 %, Cu: 1.29-7.58 %, Zn 0.036-0.22 %, Cd: 0.476 – 

20.5 %, Pb: 0.083-0.201 %.  Spike additions were increased for some soil-extractant 

combinations to ensure that the measurement of metal concentrations were analytically robust 

(Table 2). Six replicate soil samples (c. 1 g) were suspended in 30 ml 0.01 M Ca(NO3)2 and 

shaken for 72 hours at room temperature. Three replicate suspensions were then spiked with 

the mixed-isotope solution (0.4 ml; Table 2), before all replicates were shaken for a further 

72 hours. Similarly, six replicate soil samples were suspended in HNO3, CaCl2, CH3COOH 

and Na2H2EDTA, at the same concentration and soil-to-solution ratio as the corresponding 

chemical extraction method (Table 1). Immediately after suspension, three replicates were 

spiked with a mixed-isotope solution (0.4 ml; Table 2) before being shaken for the time 

periods outline in Table 1. All suspensions were centrifuged at 2200 g for 15 minutes and 

supernatant solutions filtered to < 0.22 µm. Neutral salt solutions (0.01 M Ca(NO3)2 and 1 M 

CaCl2) were acidified to 2 % HNO3 prior to determination of isotopic abundances by ICP-MS 

in all soil extracts. 

Multi-element analysis and determination of isotopic abundances by ICP-MS 

Metal concentrations in the soil extracts were measured by quadrupole ICP-MS (X-Series
II
; 

Thermo Fisher Scientific, Bremen, Germany). The ICP-MS was operated in collision cell 

technology with kinetic energy discrimination (CCT-KED) mode, to minimise polyatomic 

interferences. Internal standards Sc, Ge, Rh and Ir were used to correct for changes in analyte 

sensitivity throughout the sample run. External multi-element standards were used for 

instrument calibration. 

The isotope ratios 
62

Ni/
60

Ni, 
65

Cu/
63

Cu, 
70

Zn/
66

Zn, 
108

Cd/
111

Cd, 
204

Pb/
208

Pb, 
206

Pb/
208

Pb and 

207
Pb/

208
Pb, were measured by quadrupole ICP-MS, again operating in CCT-KED mode, 

particularly to minimise interference from the chlorine dimer (
35

Cl-
35

Cl) in some extractions, 

which interferes with measurements of 
70

Zn. The isobaric interference of 
204

Hg on 
204

Pb was 



corrected by assay of 
202

Hg, although this was a very small adjustment. The  isobaric 

interference of 
208

Pd on 
108

Cd was found to be negligible from the mass ratio 108/111 

(
108

Cd/
111

Cd) in the supernatant solution of all unspiked soil suspensions (expected value = 

0.06953).  Where necessary, samples were diluted to ensure measurement by the electron 

multiplier detector in pulse-counting, rather than analogue, mode. Corrections for mass 

discrimination (MD) were calculated from measured count rate (CPS) ratios of ICP-MS 

calibration standards for Ni, Cu, Zn and Cd, and the certified reference standard NIST SRM-

981 for Pb; these were run every 20 samples and MD factors implemented as a drift 

correction. 

Calculation of Evalue and EExt 

The isotopically exchangeable metal concentrations (mg kg
-1

) in soil suspended in 0.01 M 

Ca(NO3)2 (EValue) or in the extractants listed in Table 1 (EExt), were determined from the 

isotopic abundance (IA) of the spike isotope (
s
IA), and a reference isotope (

r
IA), measured in 

three solutions: the spike solution (spike), the spiked soil-solution (sp-soil) and the un-spiked 

soil-solution (control). For a given metal this was calculated from Equation 1 (Nolan et al., 

2004; Degryse et al., 2007; Atkinson et al., 2011) where AMcontrol and AMspike are the average 

atomic masses of the metal in the unspiked soil and the spike respectively, Cspike and Vspike 

are the concentration (mg L
-1

) and volume (L) of the spike respectively, and W is the mass of 

the soil (kg). 
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Experimental theory 

If a chemical extraction method is to provide a good estimate of labile soil metal, the 

extractant must solubilise all the labile soil metal during the specified extraction time, but 

without mobilising significant non-labile soil metal. These requirements can be rigorously 

tested by comparison of the three assays of soil metal described below. 

EValue and EExt 

For the purpose of this study, we regard isotopically exchangeable metal, measured in a 0.01 

M Ca(NO3)2 suspending matrix, (EValue), as representing the labile metal concentration under 

natural soil conditions, and therefore as the reference concentration against which we will 

assess chemical extractant performance. We will use the term ‘mobilisation’ specifically to 

refer to the process(es) by which soil metal that is non–labile (i.e. not isotopically 

exchangeable in 0.01 M Ca(NO3)2) becomes isotopically exchangeable under the conditions 

of the extraction. We assume that, if the extraction conditions have not caused quantifiable 

mobilisation of non-labile metal, EExt should be equal to EValue. If EExt > EValue, the suspending 

extractant has mobilised non-labile metal, either into solution or into adsorbed isotopically 

exchangeable forms. Conversely, it is also possible that EExt < EValue, in which case either (i) 

the suspending extractant has caused fixation of naturally labile metal into non-labile forms 

within the soil solid phase or (ii) the isotope equilibration time permitted by the extraction 

protocol (Table 1) has been insufficient to match the level of isotopic dilution achieved in 

measuring the EValue with three days isotope equilibration. 

MExt and EExt 

Ideally, the metal solubilised by the extractant (MExt, mg kg
-1

) should be equal to the EValue. 

Furthermore, if MExt = EExt, any non-labile metal mobilised by the extractant must also have 

been solubilised. However, if MExt < EExt a proportion of the isotopically exchangeable metal 

pool (which will include any non-labile metal mobilised by the extractant) is present in 



adsorbed isotopically exchangeable forms. There is no mechanistic basis for the outcome 

MExt > EExt because all metal in solution (MExt)  must also be isotopically exchangeable and 

so this outcome must represent analytical or procedural error. 

 

MExt and EValue 

If MExt < EValue, the extraction method has underestimated labile soil metal. This is either 

solely because the extractant is too weak to solubilise all the naturally labile metal, or 

represents a situation where the extractant has actually mobilised non-labile metal, and a 

proportion of the resulting isotopically exchangeable pool (EExt) remains adsorbed to the solid 

phase (MExt < EValue but MExt < EExt > EValue). Conversely, if MExt > EValue the extraction 

method overestimates labile soil metal because non-labile metal has been both mobilised and 

solubilised by the extractant. There are two possible explanations for the outcome MExt = 

EValue. It is possible that the extractant has solubilised all the naturally labile metal without 

mobilising any non-labile metal, i.e. it has efficiently extracted the naturally labile pool. 

Alternatively, this may be the co-incidental outcome of a situation where the extractant has 

mobilised non-labile metal, but a proportion of the isotopically exchangeable metal pool 

(which now includes the mobilised metal) is not solubilised (MExt ≈ EValue but MExt < EExt > 

EValue). Measurement of EValue, MExt and EExt allows us to distinguish between these two 

possibilities. 

Results and discussion 

General soil characteristics 

The general characteristics of the four soils are shown in Table 3. The Chat Moss soil 

contaminated with urban waste was sampled from an arable fenland and had the highest 

organic matter content (58.5 %) and the lowest pH (4.8), in relation to the other soils. The 

total metal concentrations of the soils reflects the varied contamination sources and land uses 



at the soil sampling sites. The Kegworth roadside soil contained the lowest concentration of 

all five metals, but was comparable in organic matter content to the Clough Wood mine spoil 

soil which had the greatest concentrations of Zn (6080 mg kg
-1

), Cd (64.4 mg kg
-1

) and Pb 

(17 400 mg kg
-1

). The largest concentrations of Ni (478 mg kg
-1

) and Cu (1030 mg kg
-1

) were 

in the Sewage Farm soil that was previously found to have extremely high available (453 mg 

kg
-1

) and total ( 9540 mg kg
-1

) phosphate contents (Atkinson et al., 2011). 

Labile soil metal 

The values of EValue (mg kg
-1

) for the four soils, shown in Table 3, cover a range spanning 

several orders of magnitude. EValue expressed as a percentage of MTotal, in the soils 

contaminated by road traffic, urban waste and mine spoil, was found to increase in the order 

Ni < Zn ≈ Cu < Pb < Cd (Figures 1a, b and c); when averaged across these three soils %EValue 

was 8 %, 19 %, 21 %, 34 % and 51 %, respectively. In contrast, in the soil contaminated by 

sewage sludge (Figure 1d), Ni was the most labile metal (%EValue = 42), possibly because of 

the large humus content derived from sewage sludge addition; available Ni exists mainly in 

organically-bound forms (Gonnelli & Renella, 2013).  Lead was the least labile metal in this 

soil (%EValue = 18), probably resulting from the high phosphate content of the soil and the 

consequent presence of Pb in the form of insoluble Pb-phosphates (Atkinson et al., 2011). 

Test for mobilisation of non-labile soil metal (EExt vs. EValue) 

The concentration of non-labile soil metal mobilised by each chemical extractant was 

quantified by comparison of EExt and EValue (Figure 1). The concentration of non-labile metal 

mobilised by each extractant (EExt – EValue) almost invariably decreased in the order HNO3 > 

CH3COOH > Na2H2EDTA > CaCl2 for each of the five metals and for all four soils, 

according to the relative ability of each extractant to dissolve mineral assemblages in the soils. 

None of the extractants mobilised the entire pool of non-labile soil metal (%EExt < 100 %). 



On average, HNO3 mobilised 17 %, 43 %, 33 %, 40 % and 63 % of the non-labile Ni, Cu, Zn, 

Cd and Pb, respectively. The percentage of non-labile metal mobilised by HNO3 was 

particularly large (>50 %) for Cu, Zn, Cd and Pb in the sewage sludge soil (Figure 1d), for Zn 

and Pb in the minespoil soil (Figure 1c) and for Pb in the roadside soil (Figure 1a). In contrast, 

mobilisation of non-labile Ni and Zn in the reclaimed fen peat soil contaminated with urban 

waste (Figure 1b) was relatively small (< 5 %) as was mobilisation of non-labile Ni in the 

roadside soil (Figure 1a). The CH3COOH extractant mobilised a smaller percentage of non-

labile metal than the HNO3 extractant for every soil-metal combination. Mobilisation of non-

labile metal by Na2H2EDTA was reasonably consistent across all soil-metal combinations; 

with the exception of Cu in the mine spoil soil (Figure 1c), and Pb in the roadside soil (Figure 

1a), EExt was never more than twice the EValue. The Na2H2EDTAextractant did not mobilise 

any non-labile metal in the reclaimed fen peat soil contaminated with urban waste (Figure 1b). 

For 1 M CaCl2, EExt and EValue were very close for Ni, Cu, Zn and Cd across all soils but, on 

average, CaCl2 mobilised 15 % of the non-labile Pb. However, for seven (out of 20) soil-

metal combinations, values of EExt in CaCl2 and Na2H2EDTA were significantly (p < 0.01) 

smaller than the corresponding EValue (percentage difference ranged from 4-30 %). Although 

theoretically this may represent a situation where the extractant has caused fixation of 

naturally labile metal into non-labile forms within the soil solid phase, there is no obvious 

mechanism for this process. It is known that that EValue increases significantly over several 

days with increasing isotope equilibration time (e.g. Tongtavee et al., 2005; Oliver et al., 

2006). It is therefore likely that the longer isotope equilibration time allowed for the 

measurement of EValue (72 hours), compared to measurements of EExt in 1 M CaCl2 (24 hours) 

and 0.05 M Na2H2EDTA (1 hour), is the main cause of these differences. 

 

Test for complete solubilisation of labile soil metal (MExt vs. EExt) 



The proportion of the isotopically exchangeable metal (which includes any non-labile metal 

mobilised by the extractant; EExt) that is solubilised (MExt) in the presence of the extractant is 

given by RMExt/EExt
.  For HNO3 as the extractant, MExt was, on average, 97 %, 75 %, 102 %, 

99 %, 80 % of EExt for Ni, Cu, Zn, Cd and Pb, respectively (Figure 2a). In comparison, in 

CH3COOH a larger proportion of the isotopically exchangeable metal remained adsorbed 

with 71 %, 14 %, 77 %, 64 % and 12 % of EExt dissolved for Ni, Cu, Zn, Cd and Pb, 

respectively (Figure 2b). Both extractants solubilise soil metal by competition with H
+
 ions 

and loss of negative charge on adsorption sites (Alloway, 1990). In addition, CH3COOH may 

cause metal solubilisation due to the formation of weak acetate-metal complexes (Meers et al., 

2007).   However, overall, these results show that the stronger acid (HNO3) was more 

effective in solubilising all five metals. Nitric acid (0.43 M) was able to completely solubilise 

all isotopically exchangeable Ni, Zn and Cd. Solubilisation of Ni, Zn and Cd by CH3COOH 

was more variable across the range of soils, and particularly poor in the Chat Moss soil 

contaminated with urban waste. Solubilisation of isotopically exchangeable Cu and Pb by 

both acid extractants was noticeably lower than for Ni, Zn and Cd. This is likely to be 

because of their relatively high binding strength to the soil solids, resulting in retention of a 

proportion of the isotopically exchangeable metal by the soil, even under extracting 

conditions. 

The Na2H2EDTA extraction was the only method to result in complete solubilisation of 

isotopically exchangeable metal (EExt).  For all five metals, in all soils, MExt was close to EExt 

(Figure 2c); thus Na2H2EDTA met one of the requirements of the ideal extractant. For some 

soil-metal combinations, values of RMExt/EExt
 in Na2H2EDTA exceeded 100 %, for which 

there is no mechanistic basis. This is most likely the result of compounded errors across the 

two analytical techniques used to measure EExt and MExt. 



For 1 M CaCl2 as the extractant, on average 84 % of the Cd EExt concentration was solubilised, 

but only 4 % and 14 % of the Cu and Pb EExt concentrations respectively (Figure 2d). 

Solubilisation of isotopically exchangeable Ni and Zn by this extractant was particularly 

variable ranging from 8 % and 6 % in the soil contaminated by road traffic, to 57 % and 64 % 

in the soil contaminated by urban waste for Ni, and Zn, respectively. Extraction with CaCl2 

solubilises metals from soil by competition with Ca
2+

 ions and formation of chloride 

complexes (McLaughlin et al., 2000; Young et al., 2000). The efficiency of CaCl2 as an 

extractant for Cd results from the relatively high binding strength of Cd to chloride ions, 

relative to the binding strength of the Cd to the soil solid-phase. However, the metal-chloride 

stability constants for Ni, Cu, Zn and Pb are considerably lower than that of Cd, and the 

higher binding strength of Cu and Pb to the soil solid-phase (Bruemmer et al., 1986; Alloway, 

1990) limits the efficiency of CaCl2 at solubilising these metals. 

Use of the chemical extraction methods to estimate labile soil metal (MExt vs. EValue) 

The overall performance of each extraction method was assessed by directly comparing 

extracted metal concentration (MExt) with EValue (MExt/EValue).  The HNO3 extraction method 

(recently standardized as BSI ISO 17402) overestimated EValue for all soil-metal combinations 

(Figure 3a) and on average solubilised 196 %, 182 %, 236 %, 157 % and 208 % of the EValue 

concentrations for Ni, Cu, Zn, Cd and Pb respectively, due to mobilisation of non-labile metal 

by the extractant (Figure 1). This was despite the fact that, for Cu and Pb, a proportion of the 

isotopically exchangeable metal in the soil suspension remained adsorbed during the 

extraction process with HNO3 (EExt > MExt; Figure 2a). The degree to which EValue was 

overestimated was variable: in the soil contaminated with urban waste, MExt overestimated 

EValue by up to a factor of two, whereas in the soil contaminated with mine spoil, MExt 

overestimated EValue by up to a factor of four. 



The behaviour of the metals in the CH3COOH extractions, and the consequent relationship 

between MExt and EValue was variable (Figure 3b). Values of Cu and Pb EValue were 

underestimated in the soils contaminated by road traffic, mine spoil and sewage sludge, 

because although the extractant mobilised non-labile Cu and Pb (Figure 1), a proportion of 

the isotopically exchangeable metal (EExt) remained adsorbed to the soil (Figure 2b). Values 

of EValue for Ni, Cu, Zn, Cd and Pb were underestimated in the Chat Moss soil contaminated 

with urban waste (Figure 3b). In this instance, little non-labile Ni, Cu, Zn, Cd or Pb was 

mobilised by the extractant (Figure 1b), but solubilisation of isotopically exchangeable metal 

(EExt) was poor (Figure 2b). When only comparing MExt and EValue (Figure 3b), it appeared 

that extraction with CH3COOH provided a reasonably good estimate of Cd EValue in the 

mineral soils contaminated by road traffic, mine spoil and sewage sludge. However, 

comparison of EValue and MExt with EExt revealed that this was actually a fortuitous result in 

which there was compensation for mobilisation of non-labile Cd (Figure 1; EExt > EValue) with 

incomplete solubilisation of the isotopically exchangeable Cd in the extractant (Figure 2b; 

MExt < EExt). 

The Na2H2EDTA extraction method (MExt) provided a good estimate of EValue for the Chat 

Moss fenland soil (Figure 3c). In this soil, the extractant solubilised all labile metal (Figure 

2c), without mobilising any non-labile metal (Figure 1b), possibly due to the low soil pH (4.8) 

and high organic matter content (59 %) which ensured the predominance of organically 

bound metal. These findings are in agreement with Marzouk (2012), who reported that 

extraction with 0.05 M Na2H2EDTA was an appropriate method for the estimation of labile 

Zn, Cd and Pb in organic soils with pH < 6.4. However, in the three more mineral soils, the 

Na2H2EDTA extractant mobilised (Figure 1) and solubilised (Figure 2c) non-labile metal, so 

that MExt overestimated EValue by up to a factor of approximately two (Figure 3). This 

overestimation was less variable than the overestimation of EValue by the HNO3 extraction. An 



extraction method using a lower concentration of Na2H2EDTA  e.g. 0.025 M as used by 

Gabler et al. (2007) might therefore provide better estimates of EValue in mineral soils, if, by 

reducing the Na2H2EDTA concentration, a smaller proportion of non-labile metal is 

mobilised, and at the same time, all labile metal can still be solubilised (as in Figure 2c). 

The CaCl2 extraction method on average solubilised 32 %, 3 %, 29 %, 88 % and 19 % of the 

EValue concentrations for Ni, Cu, Zn, Cd and Pb, respectively. This comparatively weak 

extraction method therefore substantially underestimated EValue for Ni, Cu, Zn and Pb (Figure 

3d) but, as reported previously by many authors, (Hutchinson et al., 2000; Stanhope et al., 

2000; Young et al., 2000; Gray et al., 2003; Gray et al., 2004; Sterckeman et al., 2009), 

provided a reasonable estimate of Cd EValue. The extractant was strong enough to solubilise, 

on average, 84 % of the isotopically exchangeable Cd (EExt, Figure 2d) and yet did not 

mobilise non-labile Cd (Figure 1); EExt was just 105 % of the EValue. 

Conclusions 

The combined isotopic-dilution-chemical-extraction assay (EExt), when compared to MExt and 

EValue, reveals whether extractants (i) mobilise any non-labile soil metal and (ii) solubilise all 

labile soil metal, including isotopically exchangeable metal generated during the extraction. It 

therefore provides a rigorous means of assessing the underlying action of soil chemical 

extraction methods and could be used to refine long-standing soil extraction methodologies.  

The method can distinguish between circumstances where an extraction method appears to 

provide a good estimate of labile metal (MExt ≈ EValue) because mobilisation of non-labile 

metal is being compensated for by incomplete solubilisation of labile metal (MExt < EExt > 

EValue), from circumstances where an extraction method is good at selectively extracting the 

labile metal only, providing a genuine surrogate for isotope dilution (MExt = EValue). Of the 

four extractants tested,  



0.43 M CH3COOH provided the clearest evidence of this. In such circumstances, and for 

weaker extractants such as CaCl2, the extraction method would demonstrate an enhanced 

operational dependence on soil-to-solution ratio.  The presence of an adsorbed labile pool of 

metal ions would presumably desorb in response to any decrease in soil-solution ratio and so 

change the calculated value of MExt. 

None of the extraction methods tested in this study provided consistently good estimates of 

labile metal for all 20 soil-metal combinations. However, the Na2H2EDTA extraction method 

did consistently solubilise all isotopically exchangeable soil metal thereby meeting one of the 

requirements of the ideal extractant. The second requirement (no mobilisation of non-labile 

metal) was only met by this extractant for the most organic soil, with substantial mobilisation 

of non-labile metal occurring in the three mineral soils. Given that in this study the number of 

soil was limited, for the Na2H2EDTA extraction in particular, the methods presented could 

usefully be applied to a wider range of soils to investigate how well extractants perform in 

different soil types. In addition, by testing a range of Na2H2EDTA extractant concentrations, 

below that used in this study (0.05 M), it may be possible to establish an optimum 

Na2H2EDTA extractant concentration, at which complete solubilisation of labile metal is still 

achieved, and yet mobilisation of non-labile metal is minimised. 
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Table 1:  Operational details for the chemical extraction methods. 

Extractant Concentration 

(M) 

Soil to solution 

ratio  (g : ml) 

Shaking 

time (hr) 

Associated publications 

HNO3 0.43 1: 10 2 Goody et al. (1995), Temminghoff et 

al. (1997), Cancès et al. (2003), 

Tipping et al. (2003) and 

Groenenberg et al. (2010). 

CH3COOH 0.43 0.75: 30 16 Pueyo et al. (2001) - collaboratively 

tested and harmonised extraction 

procedure. 

Na2H2EDTA 0.05 1: 10 1 Quevauviller (1998a) - 

collaboratively tested and 

harmonised extraction procedure. 

CaCl2 1 1: 10 24 Young et al. (2000), Gray et al. 

(2004) and Sterckeman et al. (2009). 

 

 

Table 2:  Mixed-isotope solution concentrations. 

Soil Extractant Spike Concentration (mg L
-1

) 

  
62

Ni 
65

Cu 
70

Zn 
108

Cd 
204

Pb 

Kegworth All extractants 1.49 3.10 0.379 0.472 1.36 

Chat Moss All extractants 1.49 51.7 0.379 0.472 1.63 

Clough Wood Ca(NO3)2, CH3COOH, CaCl2 2.41 4.20 15.3 0.767 46.3 

HNO3, Na2H2EDTA 3.22 8.96 20.5 1.02 73.6 

Sewage Farm Ca(NO3)2, CH3COOH, CaCl2 3.02 84.0 15.3 0.767 1.77 

HNO3, Na2H2EDTA 4.83 112 20.5 1.02 2.95 
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Table 3: Soil properties, total metal concentrations (MTotal) and E values measured in 0.01 M Ca(NO3)2 (EValue). Values in brackets are standard errors (n=2) 

[n=3]. 

Soil and 

contaminant 

source 

pH LOI 

(%) 

Olsen P 

(mg kg-1) 

Total P 

(mg kg-1) 

 Texture  MTotal   

(mg kg-1) 

 EValue  

(mg kg-1) 

 Sand 

(%) 

Clay 

(%) 

Silt (%)  Ni Cu Zn Cd Pb  Ni Cu Zn Cd Pb 

Chat Moss, 
Urban waste 

 

4.8  58.5 
[0.8] 

44.3 1920  26.00 31.18 42.82  63.6 
[1.6] 

273 
[7] 

422 
[1] 

2.16 
[0.09] 

624 
(16) 

 6.74 
[0.01] 

53.0 
[1.5] 

119 
[1] 

1.03 
[0.01] 

196 
[12] 

Kegworth, 
Road traffic 

 

7.4 10.2 
[0.0] 

2.37 213  82.04 7.81 10.16  49.3 
[11.7] 

45.4 
[0.1] 

186 
[6] 

0.923 
[0.003] 

271 
[2] 

 1.10 
(0.00) 

11.4 
(0.1) 

21.4 
(0.8) 

0.426 
(0.001) 

77.9 
(1.0) 

Clough Wood, 
Pb/Zn mine spoil 

 

6.8  13.9 
[0.7] 

9.70 832  49.93 20.46 29.61  116 
[15] 

130 
[1] 

6080 
[139] 

64.4 
[1.6] 

17400 
(211) 

 12.2 
(0.1) 

25.9 
(0.9) 

1090 
(9) 

38.5 
(0.3) 

7190 
(79) 

Sewage Farm, 
Sewage sludge 

6.3  26.6 
[0.8] 

453 9540  61.88 15.68 22.44  478 
[7] 

1030 
[15] 

2800 
[36] 

47.7 
[0.3] 

852 
[48] 

 200 
(4) 

336 
(1) 

778 
(3) 

16.0 
(0.2) 

158 
(8) 

 

 



23 

 

0

10

20

30

40

50

60

70

80

90

100

Ni Cu Zn Cd Pb

%
 E

E
x

t
an

d
 %

 E
V

al
u

e
(a) Kegworth

0

10

20

30

40

50

60

70

80

90

100

Ni Cu Zn Cd Pb

%
 E

E
x

t
an

d
 %

 E
V

al
u

e

(b) Chat Moss
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Figure 1:  Values of EExt for Ni, Cu, Zn, Cd and Pb in the presence of 0.43 M HNO3, 0.43 M CH3COOH, 0.05 M Na2H2EDTA and 1 M CaCl2 extractants (white, 

dark grey, light grey and striped bars respectively), expressed as a percentage of total soil metal content (MTotal), for soils contaminated by (a) road traffic 

(Kegworth), (b) urban waste (Chat Moss), (c) Pb/Zn mine spoil (Clough Wood) and (d) sewage sludge (Sewage Farm). The EValue (in 0.01 M Ca(NO3)2) as a 

percentage of total soil metal for each soil-metal combination is shown as a solid horizontal line. Error bars show standard error of the ratio for two replicates. 
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Figure 2:  Values of RMExt/EExt
 (MExt as a percentage of EExt) for soils contaminated by road traffic (Kegworth, □), urban waste (Chat Moss, ○), Pb/Zn mine 

spoil (Clough Wood, △) and sewage sludge (Sewage Farm, ◇). Extractants used were (a) 0.43 M HNO3, (b) 0.43 M CH3COOH, (c) 0.05 M Na2H2EDTA and (d) 

1 M CaCl2. Error bars show standard error of the ratio for two or three replicates. 
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Figure 3:  Values of RMExt/EValue

 (MExt as a percentage of EValue) for soils contaminated by road traffic (Kegworth, □), urban waste (Chat Moss, ○), 

Pb/Zn mine spoil (Clough Wood, △) and sewage sludge (Sewage Farm, ◇). Extractants used were (a) 0.43 M HNO3, (b) 0.43 M CH3COOH, (c) 0.05 M 

Na2H2EDTA and (d) 1 M CaCl2. Error bars show standard error of the ratio for two or three replicates. 


