133 research outputs found

    Dysconnection in schizophrenia: from abnormal synaptic plasticity to failures of self-monitoring

    Get PDF
    Over the last 2 decades, a large number of neurophysiological and neuroimaging studies of patients with schizophrenia have furnished in vivo evidence for dysconnectivity, ie, abnormal functional integration of brain processes. While the evidence for dysconnectivity in schizophrenia is strong, its etiology, pathophysiological mechanisms, and significance for clinical symptoms are unclear. First, dysconnectivity could result from aberrant wiring of connections during development, from aberrant synaptic plasticity, or from both. Second, it is not clear how schizophrenic symptoms can be understood mechanistically as a consequence of dysconnectivity. Third, if dysconnectivity is the primary pathophysiology, and not just an epiphenomenon, then it should provide a mechanistic explanation for known empirical facts about schizophrenia. This article addresses these 3 issues in the framework of the dysconnection hypothesis. This theory postulates that the core pathology in schizophrenia resides in aberrant N-methyl-D-aspartate receptor (NMDAR)–mediated synaptic plasticity due to abnormal regulation of NMDARs by neuromodulatory transmitters like dopamine, serotonin, or acetylcholine. We argue that this neurobiological mechanism can explain failures of self-monitoring, leading to a mechanistic explanation for first-rank symptoms as pathognomonic features of schizophrenia, and may provide a basis for future diagnostic classifications with physiologically defined patient subgroups. Finally, we test the explanatory power of our theory against a list of empirical facts about schizophrenia

    Conditional Knockout of NMDA Receptors in Dopamine Neurons Prevents Nicotine-Conditioned Place Preference

    Get PDF
    Nicotine from smoking tobacco produces one of the most common forms of addictive behavior and has major societal and health consequences. It is known that nicotine triggers tobacco addiction by activating nicotine acetylcholine receptors (nAChRs) in the midbrain dopaminergic reward system, primarily via the ventral tegmental area. Heterogeneity of cell populations in the region has made it difficult for pharmacology-based analyses to precisely assess the functional significance of glutamatergic inputs to dopamine neurons in nicotine addiction. By generating dopamine neuron-specific NR1 knockout mice using cre/loxP-mediated method, we demonstrate that genetic inactivation of the NMDA receptors in ventral tegmental area dopamine neurons selectively prevents nicotine-conditioned place preference. Interestingly, the mutant mice exhibit normal performances in the conditioned place aversion induced by aversive air puffs. Therefore, this selective effect on addictive drug-induced reinforcement behavior suggests that NMDA receptors in the dopamine neurons are critical for the development of nicotine addiction

    The Role of NMDA Receptor Antagonists in Nicotine Tolerance, Sensitization, and Physical Dependence: A Preclinical Review

    Get PDF
    Nicotine, the primary psychoactive component of tobacco products, produces diverse neurophysiological, motivational, and behavioral effects through several brain regions and neurochemical pathways. Various neurotransmitter systems have been explored to understand the mechanisms behind nicotine tolerance, dependence, and withdrawal. Recent evidence suggests that glutamate neurotransmission has an important role in this phenomenon. The aim of the present review is to discuss preclinical findings concerning the role of N-methyl-D-aspartate (NMDA) receptor neurotransmission in mediating the behavioral effects of nicotine, tolerance, sensitization, dependence, and withdrawal. Based on preclinical findings, it is hypothesized that NMDA receptors mediate the common adaptive processes that are involved in the development, maintenance, and expression of nicotine addiction. Modulation of glutamatergic neurotransmission with NMDA receptor antagonists may prove to be useful in alleviating the symptoms of nicotine abstinence and facilitate tobacco-smoking cessation

    The Role of NMDA Receptor Antagonists in Nicotine Tolerance, Sensitization, and Physical Dependence: A Preclinical Review

    Get PDF
    Nicotine, the primary psychoactive component of tobacco products, produces diverse neurophysiological, motivational, and behavioral effects through several brain regions and neurochemical pathways. Various neurotransmitter systems have been explored to understand the mechanisms behind nicotine tolerance, dependence, and withdrawal. Recent evidence suggests that glutamate neurotransmission has an important role in this phenomenon. The aim of the present review is to discuss preclinical findings concerning the role of N-methyl-D-aspartate (NMDA) receptor neurotransmission in mediating the behavioral effects of nicotine, tolerance, sensitization, dependence, and withdrawal. Based on preclinical findings, it is hypothesized that NMDA receptors mediate the common adaptive processes that are involved in the development, maintenance, and expression of nicotine addiction. Modulation of glutamatergic neurotransmission with NMDA receptor antagonists may prove to be useful in alleviating the symptoms of nicotine abstinence and facilitate tobacco-smoking cessation

    Deuterium substitutions in the L-DOPA molecule improve its anti-akinetic potency without increasing dyskinesias

    No full text
    Treatment of Parkinson's disease is complicated by a high incidence of L-DOPA-induced dyskinesias (LID). Strategies to prevent the development of LID aim at providing more stable dopaminergic stimulation. We have previously shown that deuterium substitutions in the L-DOPA molecule (D3-L-DOPA) yield dopamine that appears more resistant to enzymatic breakdown. We here investigated the effects of D3-L-DOPA on motor performance and development of dyskinesias in a rodent model of Parkinson's disease. Through acute experiments, monitoring rotational behavior, dose effect curves were established for D3-L-DOPA and L-DOPA. The equipotent dose of D3-L-DOPA was estimated to be 60% of L-DOPA. Subsequently, animals were treated with either the equipotent dose of D3-L-DOPA (5 mg/kg), the equivalent dose of D3-L-DOPA (8 mg/kg), L-DOPA (8 mg/kg) or vehicle. The equivalent dose of D3-L-DOPA produced superior anti-akinetic effects compared to L-DOPA in the cylinder test (p<0.05), whereas the equipotent dose of D3-L-DOPA produced an anti-akinetic effect similar to L-DOPA. Dyskinesias developed to the same degree in the groups treated with equivalent doses of D3-L-DOPA and L-DOPA. The equipotent dose of D3-L-DOPA induced fewer dyskinesias than L-DOPA (p<0.05). In conclusion, our study provides evidence for improved potency and reduced side-effects of L-DOPA by deuterium substitutions in the molecule. These results are of clinical interest since the occurrence of LID is related to the total L-DOPA dose administered. D3-L-DOPA may thus represent a novel strategy to reduce the total dose requirement and yet achieve an effective control of parkinsonian symptoms. (C) 2010 Elsevier Inc. All rights reserved

    Naltrexone modulates dopamine release following chronic, but not acute amphetamine administration : a translational study

    No full text
    The opioid antagonist naltrexone has been shown to attenuate the subjective effects of amphetamine. However, the mechanisms behind this modulatory effect are currently unknown. We hypothesized that naltrexone would diminish the striatal dopamine release induced by amphetamine, which is considered an important mechanism behind many of its stimulant properties. We used positron emission tomography and the dopamine D2-receptor radioligand [C-11]raclopride in healthy subjects to study the dopaminergic effects of an amphetamine injection after pretreatment with naltrexone or placebo. In a rat model, we used microdialysis to study the modulatory effects of naltrexone on dopamine levels after acute and chronic amphetamine exposure. In healthy humans, naltrexone attenuated the subjective effects of amphetamine, confirming our previous results. Amphetamine produced a significant reduction in striatal radioligand binding, indicating increased levels of endogenous dopamine. However, there was no statistically significant effect of naltrexone on dopamine release. The same pattern was observed in rats, where an acute injection of amphetamine caused a significant rise in striatal dopamine levels, with no effect of naltrexone pretreatment. However, in a chronic model, naltrexone significantly attenuated the dopamine release caused by reinstatement of amphetamine. Collectively, these data suggest that the opioid system becomes engaged during the more chronic phase of drug use, evidenced by the modulatory effect of naltrexone on dopamine release following chronic amphetamine administration. The importance of opioid-dopamine interactions in the reinforcing and addictive effects of amphetamine is highlighted by the present findings and may help to facilitate medication development in the field of stimulant dependence
    • …
    corecore