62 research outputs found

    Failure rate, repair time and unscheduled O&M cost analysis of offshore wind turbines

    Get PDF
    Determining and understanding offshore wind turbine failure rates and resource requirement for repair are vital for modelling and reducing O&M costs and in turn reducing the cost of energy. While few offshore failure rates have been published in the past even less details on resource requirement for repair exist in the public domain. Based on ~350 offshore wind turbines throughout Europe this paper provides failure rates for the overall wind turbine and its sub-assemblies. It also provides failure rates by year of operation, cost category and failure modes for the components/sub-assemblies that are the highest contributor to the overall failure rate. Repair times, average repair costs and average number of technicians required for repair are also detailed in this paper. An onshore to offshore failure rate comparison is carried out for generators and converters based on this analysis and an analysis carried out in a past publication. The results of this paper will contribute to offshore wind O&M cost and resource modelling and aid in better decision making for O&M planners and managers

    Wind turbine condition monitoring : technical and commercial challenges.

    Get PDF
    Deployment of larger scale wind turbine systems, particularly offshore, requires more organized operation and maintenance strategies to ensure systems are safe, profitable and cost-effective. Among existing maintenance strategies, reliability centred maintenance is regarded as best for offshore wind turbines, delivering corrective and proactive (i.e. preventive and predictive) maintenance techniques enabling wind turbines to achieve high availability and low cost of energy. Reliability centred maintenance analysis may demonstrate that an accurate and reliable condition monitoring system is one method to increase availability and decrease the cost of energy from wind. In recent years, efforts have been made to develop efficient and cost-effective condition monitoring techniques for wind turbines. A number of commercial wind turbine monitoring systems are available in the market, most based on existing techniques from other rotating machine industries. Other wind turbine condition monitoring reviews have been published but have not addressed the technical and commercial challenges, in particular, reliability and value for money. The purpose of this paper is to fill this gap and present the wind industry with a detailed analysis of the current practical challenges with existing wind turbine condition monitoring technology

    Towards reliability centred maintenance of wind turbines

    Get PDF
    Reliability centred maintenance applied to a fleet of wind turbines is presented in this paper. The key components and failure modes are identified via analysis of maintenance records. Corrective actions which an operator can take to mitigate such failures are discussed, together with implementation issues. By developing a robust set of RCM tools, wind farm operators can better quantify and minimise operational expenditure of wind farm fleets

    Strategy for enhancing reliability and lifetime of DC-AC inverters used for wind turbines

    Get PDF
    Lifetime of wind turbine inverters is below expectations therefore, novel design and drive strategies are timely required to achieve optimum life span. In this work, a novel driving strategy to mitigate stresses on inverters is proposed. First, an electro thermal analysis was carried out using finite element modelling methods. Subsequently, the outcomes of the models were validated using DC/AC IGBT based power inverter module interfaced to 1.1 kW electrical outputs of a horizontal wind turbine operated under different wind speeds. Real time data was collected using both dSPACE system and high speed thermal imaging camera. The proposed driving method is based on adjusting the switching frequency according to wind speed. Edge detection scheme was embedded in Simulink to determine temperature fluctuations caused by variations in wind speed profile. Effects of these fluctuations are mitigated by regulating the switching frequency and power losses based on a look up table and interpolation method. The proposed strategy of operation reduces cyclic temperature depended lifetime span (total lifetime consumption) to 1.45×10−5 cycles compared to 1.88×10−5 when operated under conventional fixed frequency. Wire-bond thermal stress was also reduced from 54.5 MPa, for the fixed switching frequency, to 45.5 MPa. This represents about 21% reduction in total lifetime consumption of inverter's wire-bond which, brings huge benefits to wind energy industry

    Detection of sub-surface damage in wind turbine bearings using acoustic emissions and probabilistic modelling

    Get PDF
    Bearings are the culprit of a large quantity of Wind Turbine (WT) gearbox failures and account for a high percentage of the total of global WT downtime. Damage within rolling element bearings have been shown to initiate beneath the surface which defies detection by conventional vibration monitoring as the geometry of the rolling surface is unaltered. However, once bearing damage reaches the surface, it generates spalling and quickly drives the deterioration of the entire gearbox through the introduction of debris into the oil system. There is a pressing need for performing damage detection before damage reaches the bearing surface. This paper presents a methodology for detecting sub-surface damage using Acoustic Emission (AE) measurements. AE measurements are well known for their sensitivity to incipient damage. However, the background noise and operational variations within a bearing necessitate the use of a principled statistical procedure for damage detection. This is addressed here through the use of probabilistic modelling, more specifically Gaussian mixture models. The methodology is validated using a full-scale rig of a WT bearing. The bearings are seeded with sub-surface and early-stage surface defects in order to provide a comparison of the detectability at each level of a fault progression

    Bio-based resins for digital light processing : Mechanical and degradable properties

    No full text
    Thermosets are appropriate materials for various applications due to benefits such as heat resistance and good mechanical properties. The disadvantages of traditional thermosets from a sustainable manufacturing perspective are that they are usually derived from fossil resources, and also have permanent cross-linked networks that are difficult to break, making them non-recyclable. It is therefore of great interest to find bio-based alternatives, especially ones that can be recycled or bio-degraded. In this project four bio-based photocurable resins, meant for 3D printing thermosets, were characterized by their mechanical properties and chemical degradation. They were designed with esters and imine groups in order to use dynamic, reversible bonds to attempt mechanical recycling and chemical degradation. The resins were composed of methacrylated eugenol, methacrylated PHB-diol and Schiff base methacrylated extended vanillin. The latter provided good thermal stability, solvent resistance and mechanical properties to the thermosets. The mechanical recycling was able to produce cohesive thermoset films, successfully reforming broken bonds, but the mechanical properties decreased substantially from the process. Chemical degradation of the thermosets could be performed, but further use of the degraded material was not examined.Härdplaster är lämpliga material för olika applikationer på grund av sina fördelaktiga egenskaper, som värmebeständighet och goda mekaniska egenskaper. Nackdelarna med traditionella härdplaster ur ett hållbarhetsperspektiv är att de vanligtvis härrör från fossila resurser. De har även permanent tvärbundna nätverk som är svåra att bryta, vilket gör dem icke-återvinningsbara. Det är därför av stort intresse att hitta biobaserade alternativ, särskilt sådana som kan återvinnas eller biologiskt nedbrytas. I detta projekt karaktäriserades fyra biobaserade foto-polymeriserbara hartser, avsedda för 3D-tillverkning av härdplaster, genom sina mekaniska egenskaper och kemiska nedbrytbarhet. De designades med ester- och imingrupper för att kunna använda dynamiska, reversibla bindningar i ett försök att mekaniskt återvinna och kemiskt bryta ned härdplasterna. Hartserna var sammansatta av metakrylerad eugenol, metakrylerad PHB-diol och Schiff-bas metakrylerad förlängd vanillin. Den senare tillförde bra termisk stabilitet, motstånd mot lösningsmedel och mekaniska egenskaper åt härdplasterna. Den mekaniska återvinningen kunde producera sammanhängande plastfilmer genom återskapade bindningar, men de mekaniska egenskaperna försämrades avsevärt från processen. Kemisk nedbrytning av härdplasterna kunde utföras, men ytterligare användning av det nedbrutna materialet undersöktes inte

    Bio-based resins for digital light processing : Mechanical and degradable properties

    No full text
    Thermosets are appropriate materials for various applications due to benefits such as heat resistance and good mechanical properties. The disadvantages of traditional thermosets from a sustainable manufacturing perspective are that they are usually derived from fossil resources, and also have permanent cross-linked networks that are difficult to break, making them non-recyclable. It is therefore of great interest to find bio-based alternatives, especially ones that can be recycled or bio-degraded. In this project four bio-based photocurable resins, meant for 3D printing thermosets, were characterized by their mechanical properties and chemical degradation. They were designed with esters and imine groups in order to use dynamic, reversible bonds to attempt mechanical recycling and chemical degradation. The resins were composed of methacrylated eugenol, methacrylated PHB-diol and Schiff base methacrylated extended vanillin. The latter provided good thermal stability, solvent resistance and mechanical properties to the thermosets. The mechanical recycling was able to produce cohesive thermoset films, successfully reforming broken bonds, but the mechanical properties decreased substantially from the process. Chemical degradation of the thermosets could be performed, but further use of the degraded material was not examined.Härdplaster är lämpliga material för olika applikationer på grund av sina fördelaktiga egenskaper, som värmebeständighet och goda mekaniska egenskaper. Nackdelarna med traditionella härdplaster ur ett hållbarhetsperspektiv är att de vanligtvis härrör från fossila resurser. De har även permanent tvärbundna nätverk som är svåra att bryta, vilket gör dem icke-återvinningsbara. Det är därför av stort intresse att hitta biobaserade alternativ, särskilt sådana som kan återvinnas eller biologiskt nedbrytas. I detta projekt karaktäriserades fyra biobaserade foto-polymeriserbara hartser, avsedda för 3D-tillverkning av härdplaster, genom sina mekaniska egenskaper och kemiska nedbrytbarhet. De designades med ester- och imingrupper för att kunna använda dynamiska, reversibla bindningar i ett försök att mekaniskt återvinna och kemiskt bryta ned härdplasterna. Hartserna var sammansatta av metakrylerad eugenol, metakrylerad PHB-diol och Schiff-bas metakrylerad förlängd vanillin. Den senare tillförde bra termisk stabilitet, motstånd mot lösningsmedel och mekaniska egenskaper åt härdplasterna. Den mekaniska återvinningen kunde producera sammanhängande plastfilmer genom återskapade bindningar, men de mekaniska egenskaperna försämrades avsevärt från processen. Kemisk nedbrytning av härdplasterna kunde utföras, men ytterligare användning av det nedbrutna materialet undersöktes inte
    corecore