
Batunlu, C and Albarbar, A (2018)Strategy for enhancing reliability and life-
time of DC-AC inverters used for wind turbines. Microelectronics Reliability,
85. pp. 25-37. ISSN 0026-2714

Downloaded from: http://e-space.mmu.ac.uk/621275/

Version: Accepted Version

Publisher: Elsevier

DOI: https://doi.org/10.1016/j.microrel.2018.04.006

Usage rights: Creative Commons: Attribution-Noncommercial-No Deriva-
tive Works 4.0

Please cite the published version

https://e-space.mmu.ac.uk

http://e-space.mmu.ac.uk/view/creators/Batunlu=3AC=3A=3A.html
http://e-space.mmu.ac.uk/view/creators/Albarbar=3AA=3A=3A.html
http://e-space.mmu.ac.uk/621275/
https://doi.org/10.1016/j.microrel.2018.04.006
https://e-space.mmu.ac.uk


Strategy for Enhancing Reliability and Lifetime of DC-AC 

Inverters used for Wind Turbines 
 

C. Batunlu1 and A. Albarbar 2 
1  Dept. of Electrical and Electronics Engineering, Middle East Technical University 

Northern Cyprus Campus, Kalkanlı, Güzelyurt, TRNC, Mersin 10 Turkey 
2  Advanced Industrial Diagnostics Research Centre, School of Engineering, Manchester Met 

University, Manchester, UK ; 
e-mail : 1cbatunlu@metu.edu.tr 2 a.albarbar@mmu.ac.uk ; Tel.: +44 -161-274-6297 

 

Abstract — Lifetime of wind turbine inverters is below expectations therefore, novel design 

and drive strategies are timely required to achieve optimum life span.  

In this work, a novel driving strategy to mitigate stresses on inverters is proposed. First, an 

electro thermal analysis was carried out using finite element modelling methods. Subsequently, 

the outcomes of the models were validated using DC/AC IGBT based power inverter module 

interfaced to 1.1kW electrical outputs of a horizontal wind turbine operated under different 

wind speeds. Real time data was collected using both dSPACE system and high speed thermal 

imaging camera. The proposed driving method is based on adjusting the switching frequency 

according to wind speed. Edge detection scheme was embedded in Simulink to determine 

temperature fluctuations caused by variations in wind speed profile. Effects of these 

fluctuations are mitigated by regulating the switching frequency and power losses based on a 

look up table and interpolation method. The proposed strategy of operation reduces cyclic 

temperature depended lifetime span (total lifetime consumption) to 1.45 x 10-5 cycles compared 

to 1.88 x 10-5 when operated under conventional fixed frequency. Wire-bond thermal stress was 

also reduced from 54.5 MPa, for the fixed switching frequency, to 45.5 MPa. This represents 

about 21% reduction in total lifetime consumption of inverter’s wire-bond which, brings huge 

benefits to wind energy industry. 

 

1. Introduction 

 

In wind turbines, power electronic converters (PECs) switching devices e.g. Insulated Gate 

Bipolar Transistors (IGBTs) have earlier break down mechanisms [1] compared to the other 

elements. This is caused by thermo-mechanical effects or long-term exposure to high 

temperatures during variable mission profiles [2] under changing weather conditions. IGBT 

modules consist of different layers as shown in Figure 1, with different material properties. 

During its operation, temperature cycling generates stress  within bonded materials which have 

different coefficient of thermal expansions (CTEs) [3]. This causes fatigue at regions such as 

bonding wire or solder; hence, degradations and eventual failures occur [4]. 

 
Figure 1. Structural Details of IGBT Module [5] 

 

According to Lu et al. [6], almost 60% of failures are caused by temperature cycling. Two main 

failure mechanisms are solder fatigue and bond wire lift-off. Thermal resistance increment 
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occurs due to the solder fatigue, and on-state voltage increment is commonly caused by the wire 

bond lift off [7]. Reconstruction of the aluminium metallization mostly initiates bond wire lift-

off due to the plastic stress relaxation of the aluminium. During power cycling, it causes 

increment in the collector to emitter voltage which results in higher power losses and hence 

increases temperature profile of chips [8]. This expedites the bond wire lift-off due to the stress 

caused by thermal expansion between wire bond and the chip [9]. A sample view of the wire 

bond lift-off can be seen in Figure 2. 

 
Figure 2 Wire bond lift off mechanism [7] 

After an emitter wire lift off, the associated chip is no longer able to conduct the current; hence 

other bond wires are forced to conduct higher current. This also causes a continual lift off for 

the other wires as they may experience more current than they are capable of [9]. In order to 

detect such temperature induced failure occurring, accurate electro thermal modelling is 

essential. Proper thermal models with heat coupling effect analysis were considered in [10] 

[11]. These works studied a thermal impedance matrix that was convenient for thermal coupling 

effect estimations and most suitable way to represent actual heat path through the device. 

Drofenik et al. [12]  expanded the study proposed in [10] from air cooled to a water cooled heat 

sink model for a power module. Total of 2% maximum temperature difference was observed 

when compared between FEM and infrared camera estimations. An experimental power cycling 

test proposed by Forest et al. [13] studied for ageing of IGBT power modules by monitoring 

device temperature and on-state voltage for detecting possible wire bond degradation and 

emitter metallization for the test devices IGBT modules. The average lifetime of the devices 

varied between 550,000 to 660,000 cycles and degradations were observed for the wire bond. 

Von Mises stress was studied for analysisng strain distributions due to thermal expansion and 

it was estimated that the highest stress occurred at the centre upper solder and gate bond wire 

[14]. Recently, Medjahed et al. [15] studied electro thermal stress for wire bonds of IGBT 

module located the maximal value (10 MPa) at the tail of the wire, near heel area where main 

failure modes occur close to this specific region. Description of power cycling experiments 

using the Joule heating of the bond wires for finding failures are presented in [16]. Ozkol et al. 

[17] studied power cycling performance of IGBT modules by implementing wire bond layout 

of the emitter contact.  

Deriving accurate reliability prediction models are challenging due to the several reasons 

discussed in introduction and thermo-mechanical modelling sections [18]; hence, physics of 

failure approaches need to be investigated further by considering individual material properties 

and failure mechanisms of power module layer and interactions among themselves during 

power and thermal cycling. Xie et al. [19] proposed new failure models for power electronic 

converters used for wind turbines and confirmed that wind speeds and type of the generator 

have significant impacts on converter reliability performance [20], [21]. Kostandyan and Ma 

[22] used Rainflow algorithm to estimate temperature means and temperature variations. 

Palmgren–Miner rule [23] was used to calculate accumulated damage and to estimate 



reliability. This rule was also considered for deriving a reliability estimation method for solder 

joints of an IGBT power electronic module in [24].  

Active thermal management systems are designed to regulate steady state and transient thermal-

mechanical stress in power electronic modules of operation [25]. Andresen and Liserre [26] 

analysed the thermal cycles of the junction temperature in dependence of current and switching 

frequency and they derived a switching utilization method for an electrical vehicle. Zhou et al. 

[27] proposed a novel method for reliability improvement of a inverter system. IGBT chip 

temperature was decreased from 9°C to 0.5°C based on the proposed model by carrier frequency 

adjustment through experimental implementation. Batunlu at.al. investigated the reliability and 

thermal stresses of converters under different maximum power points tracking algorithms [28]. 

Based on the studied literature review, the switching frequency adaption method has not been 

applied to an actual wind turbine system based PEC. There is still need for evaluation of this 

method for thermo mechanical stress and reliability analysis. In this paper, actual wind turbine 

was used to critically asses these method by interfacing a DC/AC IGBT based power inverter 

module. The electro thermal and thermo mechanical test was performed by real-time 

application with dSPACE system. The case studies included a fixed and adjustable switching 

frequency of operation derived in [11]. The results were used to define total lifetime 

consumption (TLC) for the IGBT wire bonds. 

 The paper starts by state of art of the thermo mechanical and electro thermal models for and 

recalling the proposed switching frequency adjusting technique in Section 2. In Section 3, 

experimental set up and critical assessments of the lifetime analysis are demonstrated and 

results are compared with the performance of conventional method. Conclusions are depicted 

in final section. 

 

2. DC-AC Inverters: Function and Operating Methods 

 

Inverters are needed to convert DC outputs of batteries or photovoltaic systems into an AC 

output voltage at desired frequencies and amplitudes. They mainly depend upon semiconductor 

switching devices such as insulated gate bipolar transistors or thyristors etc. These devices are 

derived by switching patterns such as square, sinusoidal pulse width modulation (SPWM) or 

space vector modulation (SVM) techniques; hence, although the output voltage waveforms of 

inverters should be sinusoidal, the waveforms of practical inverters are non-sinusoidal and 

contain certain harmonics. Their power loss characteristics also vary based on the type of the 

switching method used. Switching losses are affected by the driving frequency and the type of 

the switching method [11]. These losses are one of the main causes of the heat occurring on the 

inverters which cause high temperature profiles on these devices during operation. The 

conventional SPWM and variable frequency based proposed method to decrease the power 

losses are discussed in the following sections. 

 

2.1 Sinusoidal Pulse Width Modulation (SPWM) Driving Method 

 

In SPWM, the generation of gating signals for a three phase DC-AC inverter with sine PWM 

are shown in Figure 3. There are three sinusoidal reference waves (Va, Vb, Vc) each shifted by 

120°. A triangular carrier wave (VT) is compared with the reference signals to produce the 

gating signals. The process is based on a constant switching frequency operation with the 

frequency modulation ratio (mf) is defined as the ratio between frequency of triangular signal 

(fT) and frequency of modulated sinusoidal signal (fm)  which is used to modulate the switch 

duty ratio. In this study, a modified version of SPWM was proposed for a variable frequency 

operation and implemented in dSPACE RTI as explained in the following section. 
 



 
Figure 3. Gating Signal Generation 

 

2.2 Variable Frequency Driving Method 

 

The switching frequency of a PWM inverter affects the total switching power losses and hence 

temperature occurring on IGBT switches and antiparallel diodes as: 
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where the PSW,IGBT is the instantaneous switching power losses of IGBT, ESW,ON and ESW,OFF, 

are the turn-on and turn-off energy losses, Ic is the IGBT collector current, IF is the forward 

current across the diodes, ESW,RR is the recovery energy losses of the diode and fs is the switching 

frequency. One of the main concerns for the reliability issue for the semiconductor based 

inverter is the temperature swing (fluctuations) rather than the mean temperature itself as it is 

further discussed in the following sections. Therefore, the proposed method aims to minimize 

these fluctuations by considering the power losses and mean temperature. As it is stated in [11], 

for a kilowatt level inverter used in a wind turbine system, the temperature fluctuations can be 

kept constant by lowering the switching frequency around 50 %, in the case approximately 

current increases 25%. In opposite case, where the current decreases, the switching frequency 

can be increased to keep the temperature fluctuations constant. However, in the latter, the mean 

temperature certainly increases as the frequency increases. Therefore, a limiter for the 

increment operation of switching frequency needed to be defined. For the purpose of controlling 

the temperature fluctuations, the flowchart of the proposed control strategy can be seen in 

Figure 4. 
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Figure 4. Flowchart of proposed strategy 

The algorithm begins by measurement of energy losses as a function of current, voltage and 

temperature, in previously defined look up tables. Then power losses that are the input for 

thermal model are calculated as a function of switching frequency. When the current and the 

temperature swing both decreases the mean temperature is stored as a limiter value (Tmo). Then 

the switching frequency is increased, by the ratio of K (ratio of modulation and carrier 

frequencies in multiple of three in order to keep each three-phase voltages in symmetric), as the 

stored and instantaneous mean temperature difference is lower than 3 °C. This value is selected 

as an example case for the purpose of limiting the mean temperature which can increase as the 

frequency inclines.  In the case of current and temperature fluctuation increment, the switching 

frequency decreased by the same ratio of K, as the temperature swing is higher than the previous 

sample data. The process is implemented by using edge detecting block available in Simulink 

Library. 

 

3. Modelling and Numerical Simulation 

 

The proposed method was applied to an actual permanent magnet generator based wind turbine 

system test rig. A double bridge AC/DC rectifier was used to convert the generated AC into 

DC. Then, the power module was used as an inverter during variable environmental conditions 

in order to analyse the performance of the reliability of the bond wires located on IGBT and 

diode chips. The studied inverter module for this study can be seen in Figure 5 (a) along with 

its circuit configuration which consists of six IGBTs and six diodes in Figure 5 (b).    

 



                   
 

Figure 5 (a) View of the Inverter and (b) Circuit configuration of the Inverter 

The specifications of the module are presented in Table 1. The energy loss distribution over the 

device was calculated by a datasheet study using the methods studied as in [28]. Hence, the 

module losses were extracted to calculate the losses for each chip.  

 
Table 1 Specifications of the inverter module 

Spec. VCEs IC(T=25C) IC(T=80C) Cies Cres td(on) tr td(off) tf Eon(T=25C) Eoff(T=25C) 

Value 1.2 kV 16A 10A 0.70nF 0.026nF 0.037μs 0.02μs 0.29μs 0.09μs 0.95mJ 0.7mJ 

 

 

 An enhanced version of the driver circuit derived in references [29, 30], was implemented in 

order to drive the inverter module. 3-phase/6-channel PWM feature of the DS5101 platform 

was used to generate gate signals. Then, the implemented driver circuit was used to increase to 

power level of these signals for sufficient gate driving. 

 

3.1 Finite Element Modelling 

FE model of the inverter module was studied in details by using COMSOL. In order to increase 

the accuracy, dimension and material properties of each layer as well as the geometrical shapes 

of the wire bonds were accurately designed. The meshed view of the inverter model with the 

attached heat can be depicted in Figure 6. The geometry was modelled with 111743 tetrahedral 

elements. Mesh size for the heat sink and individual layers of the module are different for 

computational efficiency. Mesh refinement was completed by scale factor of two especially 

only for narrow edges of wire bonds and thin solder layers. 

 

                     
Figure 6 Meshed FE model of the Inverter 

 

In the model, thermal conductivity properties are defined as a function of temperatures and 

considered as dynamic functions. Heat diffusion equation was defined for whole model to solve 

the distribution of temperature variations. It is defined as:  

 

                                                       t

T

k

c

k

q

z

T

y

T

x

T


















 .
2

2

2

2

2

2 

        (3)                                                          

(a) (b) 



 

where T is the temperature, k is the thermal conductivity, c is specific heat capacity,  ρ is the 

mass density and q is the rate of generation of energy per unit volume. The module was 

unmounted and the encapsulation silicone gel was removed. Hence, thermal isolation is no 

longer provided for the inverter module. In order to provide these test conditions in 

experimental analysis, the heat transfer coefficient h is defined as 5 W/m2K over the model 

representing the natural convection. Thermal and mechanical properties of the materials used 

for the FEM simulation are shown in Table 2. 

 
Table 2 Physical properties of each layer material at 25 °C 

Layer 

Physical Properties at 25 °C 

ρ (kg/m3) k (W/m·K) c (J/(kg·K) CTE (10−6/K) 
Young Modulus 

(MPa) 

Poisson 

Ratio 

Silicon 2330 153 703 3.61 113.000 0.28 

Solder 7360 33 200 30.20 27.557 0.40 

Copper 8850 398 380 17.30 128.000 0.36 

Alumina 3965 35 730 6.5 170.000 0.22 

Aluminium 3300 180 750 4.60 344.000 0.22 

Solder 11,300 35 129 29 16.876 0.44 

T. Grease 2500 2 700 29 15.700 0.32 

Heat Sink 2730 155 893 4.30 384.000 0.30 

 

 

 The ambient and heat sink temperatures were set to be 20°C. Each chip was heated, in 

individual simulations, by a constant two dimensional 10 W heat source. Heating operation for 

a Diode chip can be seen in Figure 7 (a) & (b) at top surface and middle of the chip, respectively.  

        
Figure 7. Heating operation of Diode chip of Inverter at a) top surface and b) middle  

 

Transient thermal resistance Rth and thermal capacitance Cth for each layer was represented with 

Foster model [11] as follows:         
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In order to extract the thermal impedance parameters, the methodology defined in [29] was 

followed. Then, the thermal impedance matrix was implemented as in [11] based on the self-

heating and cross coupling heat generations among each neighbouring chips. For M layers and 

n heating sources, the temperature of each layer can be expressed as:     
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where A is the coefficient 1/Cth and α is the 1/τ  in eqn. 4. A matrix form of eqn. 4 can be derived 

as in eqn. 7 where a1a1, .... aMN  are the transfer functions of thermal impedances. 

 

3.2 Electrical Circuitry Modelling 

Multisim software was used for filter design of the three phases. The aim of this paper is not to 

design an optimised filter for the inverter module. Nevertheless, for accuracy of the real time 

(RT) electro thermal measurements, appropriate sinusoidal current and voltage signals are 

needed in terms of harmonic distortion. A conventional, second order LC filter was 

implemented to reduce harmonic distortions caused by fundamental square waved output 

voltage of the inverter. A shunt capacitor is used to further attenuation of the switching 

frequency components [31]. It is selected to produce low reactance within the control frequency 

range. The resonant frequency is calculated from eqn. 8.                                                        
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where the L is the inductance, C is the capacitance at selected switching frequency fs. The 

characteristic impedance of the passive filter Z is given by:  

                                                          C

L
Z                                                                           (9) 

 

  



 

                                  
 

Figure 8 View of the Multisim Model 
The impedance, Z determines filtering performance at harmonic frequencies except for the 

resonant frequency. Lower characteristic impedance reflects a lower DC capacitor voltage as 

well as lower EMI emissions [32]. The modelled 3-phase inverter systems can be depicted in 

Figure 8. As filtering, 10 mH inductors and 33μF capacitors were selected along with the 

available 18 Ω resistors and 10μF capacitors as balanced loads. 

 

 

4. Experimental Setup and Results 

The heat sink, with dimensions of 75 x 66 x 40mm, was mounted on an isolated mica platform 

along with the driver circuits.  In order to mount the input and output terminals of the inverter 

module, a PCB circuit was implemented and soldered to the specified legs. The inverter is 

isolated through the middle gap of the PCB circuit and mounted directly on the heat sink. A 

total of six gating circuits have been implemented for driving six individual gate signal provided 

by DS5101 DAC platform. A combination of gate driver and opt coupler, namely the HCPL-

4502 and TD351ID was designed. The DS5101PWM6 block from dSPACE Control desk was 

used to generate SPWM based gate signals for each IGBT as shown in Figure 9. The collector 

current and voltages were captured by the DS2004 A/D platform and processed in to power loss 

and thermal models. A case study was conducted at constant 5V volt input while the switching 

frequency of the SPWM was 100 kHz.  

 
Figure 9 dSPACE implementation     

 

4.1 Electro Thermal Modelling Results 

The electro thermal modelling methodology derived in [11] was applied to the inverter module 

by considering self and coupling effect among each chip. IGBT and freewheeling diode current 

and voltage signals are directly embedded in power loss models for each device. The 

Load current and voltage Inverteroutput current and voltage 



temperatures for each layer were monitored by feedback look through individual thermal layer 

model. Results are depicted in Figure 10 (a) & (b) for simulated and experimental studies, 

respectively. 

  
 

                 Figure 10 Temperatures observed by (a) Simulink model and (b) by dSPACE and thermal imaging 

 

The input DC voltage was adjusted as 5V where the switching frequency was 50 kHz. The 

maximum temperature reached up to 96 °C for the simulated case. Compared to the individual 

heating operation seen in Figure 7 (b), by the electro thermal model in Simulink, 15°C 

temperature increase can be obtained by considering the heat coupling effect. The experimental 

results are also in good agreement with the simulated data as seen in Figure 10 (a). The thermal 

imaging captures were taken in 20 seconds of intervals (see Figure 11) while the dSPACE 

model predicts the instantaneous temperature based on the load current and voltage. 

Approximately 1.5 °C temperature swing was estimated during the inverter operation, as well. 

The electro thermal modelling method was considered as successful based on these 

observations. 

 

                  
 

 

                
 

Figure 11 Thermal camera captures 
 

4.2 Effectiveness of Proposed Switching Strategy 

A variable temperature profile was generated by varying the switching frequency at constant 

input voltage. Four sets of different SPWM switching frequency were applied to the inverter in 

20 seconds intervals. The monitored temperature along with the power loss data can be in Figure 

12 (a) & (b), respectively during variable switching frequency operation. The initial switching 

(a) 
(b) 

(t=40s) (t=80s) 

(t=120s) (t=160s) 



frequency was 10 kHz and it was increased to 50 kHz and 100 kHz in each 20 seconds. Then, 

the frequency was pulled back to 20 kHz at 140 seconds.  

 
 

Figure 12 (a) Temperature observed by dSPACE and thermal imaging, (b) power losses 
The power losses increased as the switching frequency increased and this reflected on the 

instantaneous temperature where it was at its highest, 83 °C at 100 kHz due to the higher 

switching losses.  Thermal camera captures in stated time intervals can be seen in Figure 13. 

By these experimental results, the arguments in [11] and [27] are verified in terms of switching 

frequency variation and its effect on the temperature changes. The higher switching frequency 

led higher power losses at specified time intervals which caused temperature increments and 

vice versa.  The distortion of the output voltages at various switching frequency rates also 

explains the total harmonic distortion variations where it was the worst at 10 kHz of switching 

frequency and was smoother as the switching frequency increases.   

 

 

                         
 

                          
 

 Figure 13 Thermal camera captures                         
 

 

4.3 Real-Time Reliability Estimation 

 

The obtained results were practically verified using the experimental set up shown in Figure 

14. The experimental set up consists of 1.1 kW permanent magnet generator, AC-DC rectifies, 

DC-AC inverter module and other auxiliary units. The generator was operated using the speed 

range profile shown in Figure 15. When wind speed increases, switching frequency is adjusted 

according to losses. Temperature profiles for both operation along with temperature variations 

shown in Figure 16 (a) & (b). For the fixed frequency operation the system was operated under 

(b) (a) 

(t=40s) (t=80s) 

(t=120 s) (t=160s) 



50 kHz with fixed switching frequency. As shown in Figure 16, inverter’s temperature increases 

when wind speed increases. The highest estimated temperature was 85 °C at the speed portion 

of 10 with fixed frequency operation whereas 80.5 °C with the adjusting operation. The thermal 

profile behaviour increased with respect to the increments in wind speed as the defined in [11].  

 

 
 

Figure 14 Physical view of the experiment  

 

Higher energy produced by the wind turbine generator caused more power losses which results 

in higher temperature profile for the inverter module at high wind speeds. In both cases, the 

temperature fluctuations which are main cause of thermal stress and fatigue also were increased 

with higher wind speeds; however, the adjusting operation provided smother intervals during 

these changes. The power losses due to the sudden voltage/current changes are declined by the 

control method.  The mean temperature also lowered by approximately 5 °C at 140 second. The 

gate signals were provided by dSPACE and the converter current was used to predict the power 

losses processed through the look up tables and to calculate the inverter temperature during the 

variable speed profile.  

     
 

Figure 15 Wind Speed Profile  
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Figure 16 Inverter Temperature with (a) fixed frequency and (b) adjustable frequency 

 

4.4 Stress Estimation and Prediction of Remaining Life  

The recorded power losses for both fixed and regulated switching frequency operations were 

the inputs for finite element models to calculate von-misses stress occurs on chip wire bonds. 

Yielded stress distribution is by eqn. 10. 

                                                          
mises yield

F                                 (10)                                                    

 

where σyield is the yield stress and σmises is the von Mises stress which is calculated by eqn. 11.  
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where dev is the deviatoric stress tensor. The behaviour of solder layers including temperature 

sensitivity is calculated using the method presented in [33]. Resulted stress is shown in Figure 

17 (a) & (b). Wire bond layers and silicon solders are the most stress affected parts. The 

maximum von Mises stress is found to be at the contact points between the wire bonds and the 

silicon layers which causes lift as defined in [7] and [9].  

 

             
 

 

Figure 17 Surface von Mises stress for (a) fixed and (b) regulated switching frequency operations 

 

(a) (b) 

(a) (b) 



Wire bond stress was estimated to 54.5 MPa where it was 38 MPa for solder layer, 27 MPa for 

the silicon chip and 19 MPa for baseplate for the fixed switching frequency. The wire bond 

stress was mitigated from 54.5 MPa to 45.5 MPa by the proposed method. Approximately 9 

MPa less stress was achieved with the proposed scheme compared to conventional fixed 

method. Stress across the upper layer of the chip caused by highly cycling temperature profile 

with the fixed switching frequency operation of the inverter is decreased with the proposed 

method, as well. Stress across silicon layer edges and copper is reduced in overall. First 

principle stress analyses are shown in Figure 18 (a) & (b) for each method.  

 

               
 
 

Figure 18 Surface first principle stresses for (a) fixed and (b) regulated switching frequency operations 

 

A 26.4 MPa stress was induced using the proposed method compared to 36.1 MPa caused by 

the usual method of operation. Moreover, thermal stress distribution with fixed method is worse 

than that caused by the proposed driving method due to highly fluctuated characteristics. Solder 

layer stress also decreased at the contact area with the silicon layers which reduces crack 

failures.  

 

4.5 Inverter Reliability Investigations 

 

Lifetime estimation methodology discussed in [5], was used to calculated thermal cycles and 

predict life consumption (TLC) of wire bonds. The expected number of cycles to failure is 

calculated using eqn.12: 

                                                         
48.617

.104


 TN
f           (12)                                                   

A 3-D graph to represent effects of mean temperature (Tm), temperature variation (ΔT) and   

total temperature cycles (∆T), calculated using rainflow counting algorithm [34], is shown in 

Figure 19.   

(a) (b) 



 
Figure 19 Rain flow thermal cycling data for (a) fixed and (b) regulated switching frequency operations 

The high numbers of cycles at mean temperature between 80 °C to 84 °C in Figure 19 (a) were 

massively reduced in In Figure 19 (b). To be more quantitative, at ∆T 3°C and 5°C (shown in 

red circles in Figure 19 (a)), correspondent mean temperatures were 84°C and 81°C 

respectively. While in Figure 19 (b), those fluctuations are mitigated by the proposed driving 

method. Therefore, effectiveness of the proposed method is clearly demonstrated by remarkable 

decrement in number of cycles compared to the conventional method of operation. 

This high fluctuation in temperatures causes more stress, speeds up failures reaching points and 

leads to reductions in lifetime.  

  
Figure 20 Lifetime Consumption during variable speed for (a) fixed and (b) regulated switching frequency operations 

Total lifetime consumption, shown in Figure 20, was calculated using linear damage 

accumulation method from reference [35]. TLC of inverter’s wire bond was decreased to 1.45 

x 10-5 percent compared to 1.88 x 10-5 in the case of conventional fixed frequency operation. 

About 21% less TLC was achieved with the proposed method under same loading and 

environmental conditions compared to the conventional one. This is clearly shown in areas 

identified by red circles. Much less TLC was achieved using the proposed method (shown in 

Figure 20 (b)) e.g. at TLC is about 0.5 x 10-6 at ΔT of 5°C od and Tm of 81°C using conventional 

driving meth compared to 0.001 x 10-6 with the proposed method.  

 

5. Conclusion  

An effective driving method, to extend lifetime of DC-AC inverters, have been proposed and 

experimentally verified. The proposed switching frequency method reduces inverter’s wire-

bond total lifetime consumption by about 21%. Total lifetime consumption of 1.88 x 10-5 with 

conventional fixed frequency operation was effectively reduced to 1.45 x 10-5 with the proposed 

 Life consumption (%) 

∆T (°C) 

Tm (°C) ∆T (°C) 
Tm (°C) 

 Life consumption (%) 

 Number of Cycles (N) 

∆T (°C) 

(a) 
(b) 

 Number of Cycles (N) 

Tm (°C) Tm (°C) 
∆T (°C) 

(a) (b) 



driving method. This has been verified using finite element modelling and data collected from 

a wind turbine system while working under realistic operating conditions.  

The total von-misses stress, occurring at the wire-bonds of the inverter, was decreased from 

54.5 MPa for the fixed switching frequency to 45.5 MPa with the proposed controlled frequency 

operation method. The possible drawback for the proposed method could be the visible 

distortions on the sinusoidal current and voltage signals. These could be minimised by keeping 

fixed ratio between fundamental and carrier frequencies and can be further eliminated by active 

filtering methods in further studies. It is believe that the proposed method is now ready to be 

adopted by industry.  
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